fusion_lstm_op.cc 21.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/detail/activation_functions.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
23 24
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
25
DEFINE_bool(seq_mode, false, "Use sequence mode");
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
31 32 33 34 35
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
36 37 38
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
39 40
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
41 42 43 44
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53 54
  PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                 "Output(BatchedInput) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                 "Output(BatchedHidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                 "Output(BatchedCell) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                 "Output(ReorderedH0) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                 "Output(ReorderedC0) of LSTM should not be null.");
T
tensor-tang 已提交
55

T
tensor-tang 已提交
56 57
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
58 59 60 61 62 63 64 65 66 67 68 69

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
84 85
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
86 87
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
88 89 90 91 92 93 94 95
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
96 97 98 99 100 101
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
102

T
tensor-tang 已提交
103
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
104 105
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
106 107 108
  ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
  ctx->SetOutputDim("BatchedHidden", out_dims);
  ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
109 110 111
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

T
tensor-tang 已提交
112 113 114 115 116 117
  int xx_width;
  if (FLAGS_seq_mode) {
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  }
T
tensor-tang 已提交
118 119
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
120 121 122 123 124
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
125
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
126 127 128 129
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
130
  AddInput("X",
T
tensor-tang 已提交
131
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
132
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
133 134 135 136 137 138 139 140 141
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
142 143 144
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
145 146
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
147 148 149 150 151 152 153 154
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165 166
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
167
  AddOutput("Hidden",
T
tensor-tang 已提交
168
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
169 170
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
171
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
172
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
173
  AddOutput("XX",
T
tensor-tang 已提交
174 175 176
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
177 178
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
179 180 181 182 183
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
210 211
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
212 213 214
)DOC");
}

T
tensor-tang 已提交
215
template <typename T>
T
tensor-tang 已提交
216
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
217
 public:
T
tensor-tang 已提交
218 219 220
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
221 222
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
T
tensor-tang 已提交
223 224 225 226 227
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* xx = ctx.Output<LoDTensor>("XX");
T
tensor-tang 已提交
228 229
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
230
    bool is_reverse = ctx.Attr<bool>("is_reverse");
T
tensor-tang 已提交
231

T
tensor-tang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }

T
tensor-tang 已提交
248
    auto x_lod = x->lod();
T
tensor-tang 已提交
249 250 251
    auto x_dims = x->dims();    // T x M
    auto wh_dims = wh->dims();  // D x 4D
    const int total_T = x_dims[0];
T
tensor-tang 已提交
252 253 254 255 256
    const int N = x_lod[0].size() - 1;  // batch size
    const int M = x_dims[1];            // x frame size
    const int D = wh_dims[0];
    const int D2 = D * 2;
    const int D3 = D * 3;
T
tensor-tang 已提交
257 258 259
    const int D4 = wh_dims[1];

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
260 261
    const T* h0_data = h0 ? h0->data<T>() : NULL;
    const T* c0_data = c0 ? c0->data<T>() : NULL;
T
tensor-tang 已提交
262
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
263
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
264
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
265 266
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
267 268

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
269
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
T
tensor-tang 已提交
270
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
287 288

    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
289 290
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
291 292
      const T* prev_c_data = NULL;
      const T* prev_h_data = NULL;
T
tensor-tang 已提交
293 294
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
295 296
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
297 298
      } else {
        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
299 300
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
301 302 303
        // cell out= input*tilde
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
304
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
305 306 307
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
308 309
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
310 311
        tstart = 1;

T
tensor-tang 已提交
312
        move_step();
T
tensor-tang 已提交
313 314 315
      }
      for (int step = tstart; step < seq_len; ++step) {
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
T
tensor-tang 已提交
316
                  prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4);
T
tensor-tang 已提交
317 318

        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
319 320
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
321 322

        // a = forget * prev_cell
T
tensor-tang 已提交
323
        blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2);
T
tensor-tang 已提交
324 325 326 327 328 329 330 331

        // b = input * tilde
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);

        // cell out= a+b
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
332
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
333 334 335
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
336 337
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
338

T
tensor-tang 已提交
339
        move_step();
T
tensor-tang 已提交
340 341
      }
    }
T
tensor-tang 已提交
342 343 344 345
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
346
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
347 348
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
T
tensor-tang 已提交
349
    auto* bias = ctx.Input<Tensor>("Bias");
T
tensor-tang 已提交
350 351
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
T
tensor-tang 已提交
352

T
tensor-tang 已提交
353
    auto* xx = ctx.Output<LoDTensor>("XX");
T
tensor-tang 已提交
354 355 356 357 358
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
359 360
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
361 362
    bool is_reverse = ctx.Attr<bool>("is_reverse");

T
tensor-tang 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }

    auto x_dims = x->dims();    // T x M
    auto wh_dims = wh->dims();  // D x 4D

    // auto x_lod = x->lod();
    // const int N = x_lod[0].size() - 1;  // batch size
    // if (N == 1) {
    //   SeqCompute(ctx);
    // }
    const int M = x_dims[1];
    const int D = wh_dims[0];
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = wh_dims[1];
T
tensor-tang 已提交
392

T
tensor-tang 已提交
393 394
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
395 396 397 398 399 400 401 402
    const T* wh_data = wh->data<T>();
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
403

T
tensor-tang 已提交
404
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
405 406
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
407 408 409 410
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
411 412
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
413 414 415
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
416
                                        bias->data<T>());
T
tensor-tang 已提交
417 418
    }

T
tensor-tang 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
    T* prev_h_data = NULL;
    T* prev_c_data = NULL;
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      // W_ch, W_ih, W_fh, W_oh
      for (int i = 0; i < max_bs; ++i) {
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // cell out= input*tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        // add offset
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
466
    }
T
tensor-tang 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    // Then start from next
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
                prev_h_data, D, wh_data, D4, static_cast<T>(1),
                batched_input_data, D4);

      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
        // W_ch, W_ih, W_fh, W_oh
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);

        // a = forget * prev_cell
        blas.VMUL(D, cur_in_data + D2, cur_prev_c_data, cur_in_data + D2);

        // b = input * tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
T
tensor-tang 已提交
494

T
tensor-tang 已提交
495 496 497 498 499 500 501 502 503 504 505
        // cell out= a+b
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);

        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
506 507
      }

T
tensor-tang 已提交
508 509 510 511 512
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
513 514 515
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
516 517 518 519
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
520
  }
T
tensor-tang 已提交
521

T
tensor-tang 已提交
522 523 524 525 526 527 528
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (FLAGS_seq_mode) {
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
529 530 531 532 533 534
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
535
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
536 537
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
538 539
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);