fusion_lstm_op.cc 25.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_lstm_compute.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22 23
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
24 25 26 27
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of LSTM.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
30
                 "Assert only one Input(WeightX) of LSTM.");
31
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
32
                 "Assert only one Input(WeightH) of LSTM.");
33 34 35
  PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
36
                 "Assert only one Output(Hidden) of LSTM.");
37 38
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Assert only one Output(Cell) of LSTM.");
T
tensor-tang 已提交
39

T
tensor-tang 已提交
40 41
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
42

43 44
  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
68 69
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
70 71
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
72 73 74 75 76 77 78
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90
  if (ctx->Attrs().Get<bool>("use_peepholes")) {
    PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                      "The second dimension of Input(Bias) should be "
                      "7 * %d if enable peepholes connection",
                      frame_size);
    ctx->SetOutputDim("CheckedCell", {2, frame_size});
  } else {
    PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                      "The second dimension of Input(Bias) should be "
                      "4 * %d if disable peepholes",
                      frame_size);
  }
T
tensor-tang 已提交
91

T
tensor-tang 已提交
92
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
93 94
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
95 96
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
97
  int xx_width;
T
tensor-tang 已提交
98
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
99 100 101
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
102
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
103
                   "Assert only one Output(BatchedInput) of LSTM.");
104
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
T
tensor-tang 已提交
105
                   "Assert only one Output(BatchedHidden) of LSTM.");
106
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
T
tensor-tang 已提交
107
                   "Assert only one Output(BatchedCell) of LSTM.");
108
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
109
                   "Assert only one Output(ReorderedH0) of LSTM");
110
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
T
tensor-tang 已提交
111
                   "Assert only one Output(ReorderedC0) of LSTM.");
T
tensor-tang 已提交
112 113 114
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
115
  }
T
tensor-tang 已提交
116 117
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
118 119 120 121 122
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
123
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
124 125 126 127
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
128
  AddInput("X",
T
tensor-tang 已提交
129
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
130
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
131 132 133 134 135 136 137 138 139
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
140 141 142
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
143 144
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
145 146 147 148 149 150 151 152
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
153 154 155 156 157 158 159 160 161 162 163 164
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
165
  AddOutput("Hidden",
T
tensor-tang 已提交
166
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
167 168
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
169
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
170
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
171
  AddOutput("XX",
T
tensor-tang 已提交
172 173 174
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
175 176
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
177 178 179 180 181
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
182 183
  AddOutput("CheckedCell", "(Tensor) (2 x D) only for peephole.")
      .AsIntermediate();
T
tensor-tang 已提交
184 185 186 187 188 189 190 191
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
192 193 194 195
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
214 215
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
216 217 218
)DOC");
}

T
tensor-tang 已提交
219
template <typename T>
T
tensor-tang 已提交
220
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
221
 public:
T
tensor-tang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
239 240 241 242 243 244 245 246 247 248 249 250
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
#define INIT_BASE_INPUT_DATAS                                 \
  const T* x_data = x->data<T>();                             \
  const T* wx_data = wx->data<T>();                           \
  const T* wh_data = wh->data<T>();                           \
  /* diagonal weight*/                                        \
  const T* wc_data = bias->data<T>() + D4;                    \
  /* for peephole only*/                                      \
  T* checked_cell_data = nullptr;                             \
  auto place = ctx.GetPlace();                                \
  if (use_peepholes) {                                        \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/          \
    auto* checked_cell = ctx.Output<Tensor>("CheckedCell");   \
    checked_cell_data = checked_cell->mutable_data<T>(place); \
T
tensor-tang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  }

/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

#define GET_Ct(ct_1, gates, ct)                   \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/ \
  act_cand(D, gates, gates);                      \
  blas.VMUL(D, gates, gates + D, gates + D);      \
  blas.VMUL(D, ct_1, gates + D2, gates + D2);     \
  blas.VADD(D, gates + D, gates + D2, ct)

#define GET_Ht(ct, gates, ht)        \
  /* H_t = act_cell(C_t) * ogated */ \
  act_cell(D, ct, gates + D2);       \
  blas.VMUL(D, gates + D2, gates + D3, ht)

T
tensor-tang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#define GET_Ct_NOH0C0(gates, ct)     \
  /* C_t = igated * cgated*/         \
  act_gate(D, gates + D, gates + D); \
  act_cand(D, gates, gates);         \
  blas.VMUL(D, gates, gates + D, ct)

#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                \
  act_gate(D, gates + D3, gates + D3);     \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                         \
  /* get outgated, put W_oc * C_t on igated */      \
  blas.VMUL(D, wc_data + D2, ct, gates + D);        \
  blas.VADD(D, gates + D, gates + D3, gates + D3);  \
  act_gate(D, gates + D3, gates + D3);              \
T
tensor-tang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
  act_gate(D3, gates + D, gates + D);     \
  GET_Ct(ct_1, gates, ct);                \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht)        \
  /* get fgated and igated*/                              \
  blas.VMUL(D, wc_data, ct_1, checked_cell_data);         \
  blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
  blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
  act_gate(D2, gates + D, gates + D);                     \
  GET_Ct(ct_1, gates, ct);                                \
  /* get ogated*/                                         \
  blas.VMUL(D, wc_data + D2, ct, gates + D);              \
  blas.VADD(D, gates + D, gates + D3, gates + D3);        \
  act_gate(D, gates + D3, gates + D3);                    \
  GET_Ht(ct, gates, ht)

T
tensor-tang 已提交
330 331
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
332 333 334
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
335
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
336

T
tensor-tang 已提交
337
    auto x_lod = x->lod();
T
tensor-tang 已提交
338
    const int total_T = x_dims[0];
T
tensor-tang 已提交
339
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
340 341
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
342
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
343 344
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
345 346 347
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
B
Brian Liu 已提交
348

T
tensor-tang 已提交
349 350 351 352 353
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
354 355
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
356 357 358 359
      xx_offset = -D4;
      gate_offset = -D;
    }

T
tensor-tang 已提交
360 361 362 363 364 365 366
#define MOVE_ONE_STEP                    \
  prev_h_data = h_out_data;              \
  prev_c_data = c_out_data;              \
  xx_data = xx_data + xx_offset;         \
  h_out_data = h_out_data + gate_offset; \
  c_out_data = c_out_data + gate_offset

T
tensor-tang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
#define PROCESS_H0C0_DEFINES                       \
  int bid = is_reverse ? N - 1 - i : i;            \
  int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \
  const T* prev_c_data = nullptr;                  \
  const T* prev_h_data = nullptr;                  \
  int tstart = 0

#define PROCESS_H0C0_PEEPHOLE                                      \
  PROCESS_H0C0_DEFINES;                                            \
  if (h0_data) {                                                   \
    prev_h_data = h0_data + bid * D;                               \
    prev_c_data = c0_data + bid * D;                               \
  } else {                                                         \
    COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                                 \
    tstart = 1;                                                    \
  }

#define PROCESS_H0C0                                      \
  PROCESS_H0C0_DEFINES;                                   \
  if (h0_data) {                                          \
    prev_h_data = h0_data + bid * D;                      \
    prev_c_data = c0_data + bid * D;                      \
  } else {                                                \
    COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                        \
    tstart = 1;                                           \
T
tensor-tang 已提交
394
  }
B
Brian Liu 已提交
395

T
tensor-tang 已提交
396 397
    if (use_peepholes) {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
398
        PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
399
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
400 401 402 403 404 405
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
      }
    } else {
T
tensor-tang 已提交
406
      // TODO(TJ): unly workaround, clean me
T
tensor-tang 已提交
407
      std::function<void(T*, const T*, T*, T*)> compute_ctht;
T
tensor-tang 已提交
408 409 410 411 412
      if (platform::jit::MayIUse(platform::jit::avx) &&
          act_gate_str == "sigmoid" && act_cand_str == "tanh" &&
          act_cell_str == "tanh" && D == 8) {
        compute_ctht = math::lstm_compute_ctht<T>;
      } else {
T
tensor-tang 已提交
413
        compute_ctht = [&](T* gates, const T* ct_1, T* ct, T* ht) {
T
tensor-tang 已提交
414
          COMPUTE_CtHt(gates, ct_1, ct, ht);
T
tensor-tang 已提交
415
        };
T
tensor-tang 已提交
416
      }
T
tensor-tang 已提交
417
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
418
        PROCESS_H0C0
T
tensor-tang 已提交
419
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
420
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
T
tensor-tang 已提交
421
          compute_ctht(xx_data, prev_c_data, c_out_data, h_out_data);
T
tensor-tang 已提交
422 423
          MOVE_ONE_STEP;
        }
T
tensor-tang 已提交
424
      }
T
tensor-tang 已提交
425
    }
T
tensor-tang 已提交
426 427
#undef PROCESS_H0C0_DEFINES
#undef PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
428 429
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
T
tensor-tang 已提交
430 431 432 433
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
434
    INIT_BASE_INPUT_OUTPUT
435
    INIT_BASE_SIZES
T
tensor-tang 已提交
436
    if (x->lod()[0].size() == 2) {
437
      xx->Resize({x_dims[0], D4});
T
tensor-tang 已提交
438
      SeqCompute(ctx);
T
tensor-tang 已提交
439
      return;
T
tensor-tang 已提交
440 441
    }
    INIT_VEC_FUNC
T
tensor-tang 已提交
442
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
443

T
tensor-tang 已提交
444 445 446 447 448 449 450 451 452 453 454
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
455

T
tensor-tang 已提交
456
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
457 458
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
459 460 461 462
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
463 464
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
465 466 467
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
468
                                        bias->data<T>());
T
tensor-tang 已提交
469 470
    }

T
tensor-tang 已提交
471 472 473 474 475 476 477
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
478 479
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
480 481 482 483 484 485
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
486 487
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
T
tensor-tang 已提交
488 489 490 491 492 493 494 495
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
496 497 498 499 500
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
T
tensor-tang 已提交
501 502 503 504 505 506 507
        GET_Ct_NOH0C0(cur_in_data, cur_c_out_data);
        if (use_peepholes) {
          blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D);
          blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3);
        }
        act_gate(D, cur_in_data + D3, cur_in_data + D3);
        GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data);
T
tensor-tang 已提交
508 509 510 511 512
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
513 514
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
515
    }
T
tensor-tang 已提交
516 517
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;

#define DEFINE_CUR                        \
  T* cur_in_data = batched_input_data;    \
  T* cur_prev_c_data = prev_c_data;       \
  T* cur_c_out_data = batched_c_out_data; \
  T* cur_h_out_data = batched_h_out_data

#define MOVE_ONE_BATCH  \
  cur_in_data += D4;    \
  cur_prev_c_data += D; \
  cur_c_out_data += D;  \
  cur_h_out_data += D

#define MOVE_ONE_STEP                  \
  prev_c_data = batched_c_out_data;    \
  prev_h_data = batched_h_out_data;    \
  batched_c_out_data = cur_c_out_data; \
  batched_h_out_data = cur_h_out_data; \
  batched_input_data = cur_in_data
B
Brian Liu 已提交
541

T
tensor-tang 已提交
542 543 544 545 546 547 548 549 550
    if (use_peepholes) {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
                                cur_h_out_data);
          MOVE_ONE_BATCH;
B
Brian Liu 已提交
551
        }
T
tensor-tang 已提交
552 553 554
        MOVE_ONE_STEP;
      }
    } else {
555 556 557 558 559 560 561 562 563 564 565
      // TODO(TJ): unly workaround, clean me
      std::function<void(T*, const T*, T*, T*)> compute_ctht;
      if (platform::jit::MayIUse(platform::jit::avx) &&
          act_gate_str == "sigmoid" && act_cand_str == "tanh" &&
          act_cell_str == "tanh" && D == 8) {
        compute_ctht = math::lstm_compute_ctht<T>;
      } else {
        compute_ctht = [&](T* gates, const T* ct_1, T* ct, T* ht) {
          COMPUTE_CtHt(gates, ct_1, ct, ht);
        };
      }
T
tensor-tang 已提交
566 567 568 569 570
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
571
          compute_ctht(cur_in_data, cur_prev_c_data, cur_c_out_data,
T
tensor-tang 已提交
572 573 574 575
                       cur_h_out_data);
          MOVE_ONE_BATCH;
        }
        MOVE_ONE_STEP;
T
tensor-tang 已提交
576 577
      }
    }
T
tensor-tang 已提交
578 579 580
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
T
tensor-tang 已提交
581 582

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
583 584 585 586
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
587
  }
T
tensor-tang 已提交
588

T
tensor-tang 已提交
589
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
590
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
591 592 593 594 595
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
596 597 598

#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
T
tensor-tang 已提交
599 600 601
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
T
tensor-tang 已提交
602 603 604 605
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
606 607 608
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
609 610 611 612 613 614
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
615
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
616 617
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
618 619
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);