fusion_lstm_op.cc 24.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40 41
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");

T
tensor-tang 已提交
42 43
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53 54 55

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
70 71
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
72 73
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75 76 77 78 79 80
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
81 82 83 84 85 86
  PADDLE_ENFORCE_EQ(
      b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
      "The second dimension of Input(Bias) should be "
      "7 * %d if enable peepholes connection or"
      "4 * %d if disable peepholes",
      frame_size, frame_size);
T
tensor-tang 已提交
87

T
tensor-tang 已提交
88
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
89 90
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
91 92
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
93
  int xx_width;
T
tensor-tang 已提交
94
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
95 96 97
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                   "Output(BatchedInput) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                   "Output(BatchedHidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                   "Output(BatchedCell) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                   "Output(ReorderedH0) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                   "Output(ReorderedC0) of LSTM should not be null.");
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
111
  }
T
tensor-tang 已提交
112 113
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
114 115 116 117 118
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
119
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
120 121 122 123
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
124
  AddInput("X",
T
tensor-tang 已提交
125
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
126
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
136 137 138
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
139 140
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
141 142 143 144 145 146 147 148
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
149 150 151 152 153 154 155 156 157 158 159 160
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
161
  AddOutput("Hidden",
T
tensor-tang 已提交
162
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
163 164
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
165
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
166
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
167
  AddOutput("XX",
T
tensor-tang 已提交
168 169 170
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
171 172
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
173 174 175 176 177
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
178 179 180 181 182 183 184 185
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
186 187 188 189
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
208 209
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
210 211 212
)DOC");
}

T
tensor-tang 已提交
213
template <typename T>
T
tensor-tang 已提交
214
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
215
 public:
T
tensor-tang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
233 234 235 236 237 238 239 240 241 242 243 244
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
255 256
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
257 258 259
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
260

T
tensor-tang 已提交
261
    auto x_lod = x->lod();
T
tensor-tang 已提交
262
    const int total_T = x_dims[0];
T
tensor-tang 已提交
263
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
264
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
265 266
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
267
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
268
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
269 270 271 272 273 274 275 276 277 278 279 280
    const T* wc_data = bias->data<T>() + D4;  // diagonal weight
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
    T* cell_out_data = cell_out->mutable_data<T>(place);

    Tensor checked_cell;
    T* checked_cell_data = nullptr;
    if (use_peepholes) {
      // w_ic * Ct-1, w_fc * Ct-1  // , w_oc * Ct => ih
      checked_cell_data = checked_cell.mutable_data<T>({2, D}, place);
    }
B
Brian Liu 已提交
281

T
tensor-tang 已提交
282
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
283
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
T
tensor-tang 已提交
284
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
301 302

    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
303 304
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
305 306
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
T
tensor-tang 已提交
307 308
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
309 310
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
311
      } else {
T
tensor-tang 已提交
312 313
        // W_ch, W_ih, W_fh, W_oh
        act_gate(D, xx_data + D, xx_data + D);
T
tensor-tang 已提交
314
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
315
        // C_t = input * tilde
T
tensor-tang 已提交
316
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
B
Brian Liu 已提交
317

T
tensor-tang 已提交
318
        // H_t = act_state(cellout) * outgate
B
Brian Liu 已提交
319 320
        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
T
tensor-tang 已提交
321 322 323
          // put result on W_ih
          blas.VMUL(D, wc_data + D2, cell_out_data, xx_data + D);
          blas.VADD(D, xx_data + D, xx_data + D3, xx_data + D3);
B
Brian Liu 已提交
324
        }
T
tensor-tang 已提交
325
        act_gate(D, xx_data + D3, xx_data + D3);
T
tensor-tang 已提交
326
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
327 328 329
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
330 331
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
B
Brian Liu 已提交
332
        tstart = 1;
T
tensor-tang 已提交
333
        move_step();
T
tensor-tang 已提交
334
      }
B
Brian Liu 已提交
335

T
tensor-tang 已提交
336
      for (int step = tstart; step < seq_len; ++step) {
B
Brian Liu 已提交
337
        // + W_h * H_t-1
T
tensor-tang 已提交
338
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
T
tensor-tang 已提交
339
                  prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4);
T
tensor-tang 已提交
340

T
tensor-tang 已提交
341
        // W_ch, W_ih, W_fh, W_oh
B
Brian Liu 已提交
342 343 344 345
        if (use_peepholes) {
          // + W_ic|W_fc * C_t-1 for peephole connection
          blas.VMUL(D, wc_data, prev_c_data, checked_cell_data);
          blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D);
T
tensor-tang 已提交
346
          blas.VADD(D2, checked_cell_data, xx_data + D, xx_data + D);
B
Brian Liu 已提交
347 348 349 350
          act_gate(D2, xx_data + D, xx_data + D);
        } else {
          act_gate(D3, xx_data + D, xx_data + D);
        }
T
tensor-tang 已提交
351 352
        // a = I_t * act_cand(ch)
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
353
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);
T
tensor-tang 已提交
354 355 356
        // b = C_t-1 * F_t
        blas.VMUL(D, prev_c_data, xx_data + D2, xx_data + D2);
        // C_t = a + b
T
tensor-tang 已提交
357 358
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

T
tensor-tang 已提交
359
        // H_t = act_cell(C_t) * act_gate(O_c += C_t * W_oc)
B
Brian Liu 已提交
360
        if (use_peepholes) {
T
tensor-tang 已提交
361 362 363
          // put result on W_ih
          blas.VMUL(D, wc_data + D2, cell_out_data, xx_data + D);
          blas.VADD(D, xx_data + D, xx_data + D3, xx_data + D3);
B
Brian Liu 已提交
364 365
          act_gate(D, xx_data + D3, xx_data + D3);
        }
T
tensor-tang 已提交
366
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
367 368 369
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
370 371
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
372

T
tensor-tang 已提交
373
        move_step();
T
tensor-tang 已提交
374 375
      }  // for seqlen
    }    // for batch
T
tensor-tang 已提交
376 377 378 379
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
380
    INIT_BASE_INPUT_OUTPUT
B
Brian Liu 已提交
381
    if (x->lod()[0].size() == 2) {  // batch size == 1
T
tensor-tang 已提交
382
      SeqCompute(ctx);
T
tensor-tang 已提交
383
      return;
T
tensor-tang 已提交
384 385 386 387
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC

T
tensor-tang 已提交
388 389 390 391 392
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
393

T
tensor-tang 已提交
394 395
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
396
    const T* wh_data = wh->data<T>();
B
Brian Liu 已提交
397 398
    const T* bias_data = bias->data<T>();
    const T* wc_data = bias_data + D4;  // w_ic, w_fc, w_oc
T
tensor-tang 已提交
399 400 401 402 403 404 405
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
406

B
Brian Liu 已提交
407 408 409 410 411 412
    // use local variable
    framework::DDim check_dims({3, D});
    Tensor checked_cell;  // w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct
    auto checked_cell_data =
        checked_cell.mutable_data<T>(check_dims, ctx.GetPlace());

T
tensor-tang 已提交
413
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
414 415
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
416 417 418 419
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
420 421
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
422 423 424
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
425
                                        bias->data<T>());
T
tensor-tang 已提交
426 427
    }

T
tensor-tang 已提交
428 429 430 431 432 433
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

B
Brian Liu 已提交
434 435 436 437 438 439 440 441 442 443 444 445
    T* prev_batch_h_data = nullptr;
    T* prev_batch_c_data = nullptr;
    T* cur_batch_in_data = batched_input_data;
    T* cur_batch_h_out_data = batched_h_out_data;
    T* cur_batch_c_out_data = batched_c_out_data;

    auto move_step = [&](int bs) {
      cur_batch_in_data += bs * D4;
      cur_batch_c_out_data += bs * D;
      cur_batch_h_out_data += bs * D;
    };

T
tensor-tang 已提交
446 447 448 449 450 451 452
    int tstart = 0;
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
B
Brian Liu 已提交
453 454
      prev_batch_h_data = reordered_h0_data;
      prev_batch_c_data = reordered_c0_data;
T
tensor-tang 已提交
455 456 457 458 459 460 461 462
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
B
Brian Liu 已提交
463 464 465 466 467 468 469 470 471 472
      // Compute with no H0/C0
      T* cur_in_data = cur_batch_in_data;
      T* cur_c_out_data = cur_batch_c_out_data;
      T* cur_h_out_data = cur_batch_h_out_data;

      // If step == 0 and there is no initialized hidden state, that is to say
      // the H0 is zeros. Then W_h * H_t-1 can be skiped

      for (int i = 0; i < max_bs; ++i) {  // iterate each data in 1st batch
        // ~C_t
T
tensor-tang 已提交
473
        act_cand(D, cur_in_data, cur_in_data);
B
Brian Liu 已提交
474 475 476 477 478 479 480 481 482 483

        if (use_peepholes) {
          // I_t, F_t
          act_gate(D2, cur_in_data + D, cur_in_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, cur_in_data + D, cur_in_data + D);
        }

        // C_t = I_t * ~C_t
T
tensor-tang 已提交
484
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
B
Brian Liu 已提交
485 486 487 488 489 490 491 492 493 494

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2);
          blas.VADD(D, cur_in_data + D3, checked_cell_data + D2,
                    cur_in_data + D3);
          // O_t
          act_gate(D, cur_in_data + D3, cur_in_data + D3);
        }

T
tensor-tang 已提交
495 496
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
B
Brian Liu 已提交
497
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
498 499
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

B
Brian Liu 已提交
500
        // move to next data in the same batch
T
tensor-tang 已提交
501 502 503 504
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
B
Brian Liu 已提交
505 506 507 508 509

      // move to data for next timestep
      prev_batch_h_data = cur_batch_h_out_data;
      prev_batch_c_data = cur_batch_c_out_data;
      move_step(max_bs);
T
tensor-tang 已提交
510
      tstart = 1;
T
tensor-tang 已提交
511
    }
B
Brian Liu 已提交
512

T
tensor-tang 已提交
513 514 515 516
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
B
Brian Liu 已提交
517
      // + W_h * H_t-1
T
tensor-tang 已提交
518
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
B
Brian Liu 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                prev_batch_h_data, D, wh_data, D4, static_cast<T>(1),
                cur_batch_in_data, D4);

      T* cur_in_data = cur_batch_in_data;
      T* cur_c_out_data = cur_batch_c_out_data;
      T* cur_h_out_data = cur_batch_h_out_data;
      T* prev_c_data = prev_batch_c_data;  // NULL if no C0 in step0
      T* prev_h_data = prev_batch_h_data;  // NULL if no H0 in step0
      auto next_data_in_batch = [&]() {
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
        prev_c_data = prev_c_data ? prev_c_data + D : nullptr;
        prev_h_data = prev_h_data ? prev_h_data + D : nullptr;
      };

      for (int i = 0; i < cur_bs; ++i) {  // iterate each data in same batch
        // ~C_t
T
tensor-tang 已提交
537
        act_cand(D, cur_in_data, cur_in_data);
B
Brian Liu 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

        if (use_peepholes) {
          // + W_ic|W_fc * C_t-1 for peephole connection
          blas.VMUL(D, wc_data, prev_c_data, checked_cell_data);
          blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D);
          blas.VADD(D2, cur_in_data + D, checked_cell_data, cur_in_data + D);
          // I_t, F_t
          act_gate(D2, cur_in_data + D, cur_in_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, cur_in_data + D, cur_in_data + D);
        }

        // F_t * C_t-1
        blas.VMUL(D, cur_in_data + D2, prev_c_data, cur_in_data + D2);
        // I_t * ~C_t
T
tensor-tang 已提交
554
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
B
Brian Liu 已提交
555
        // C_t = F_t * C_t-1 + I_t * ~C_t
T
tensor-tang 已提交
556
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);
B
Brian Liu 已提交
557 558 559 560 561 562 563 564 565 566

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2);
          blas.VADD(D, cur_in_data + D3, checked_cell_data + D2,
                    cur_in_data + D3);
          // O_t
          act_gate(D, cur_in_data + D3, cur_in_data + D3);
        }

T
tensor-tang 已提交
567 568
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
B
Brian Liu 已提交
569
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
570 571
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

B
Brian Liu 已提交
572 573
        // move to next data in same batch
        next_data_in_batch();
T
tensor-tang 已提交
574
      }
B
Brian Liu 已提交
575 576 577 578
      // move to data for next timestep
      prev_batch_h_data = cur_batch_h_out_data;
      prev_batch_c_data = cur_batch_c_out_data;
      move_step(cur_bs);
T
tensor-tang 已提交
579 580 581
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
582 583 584 585
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
586
  }
T
tensor-tang 已提交
587

T
tensor-tang 已提交
588
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
589
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
590 591 592 593 594
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
595 596 597
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
598 599 600 601 602 603
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
604
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
605 606
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
607 608
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);