fusion_lstm_op.cc 20.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49 50
  PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                 "Output(BatchedInput) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                 "Output(BatchedHidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                 "Output(BatchedCell) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                 "Output(ReorderedH0) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                 "Output(ReorderedC0) of LSTM should not be null.");
T
tensor-tang 已提交
51

T
tensor-tang 已提交
52 53
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
80 81
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
82 83
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
84 85 86 87 88 89 90 91
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
92 93 94 95 96 97
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
98

T
tensor-tang 已提交
99
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
100 101
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
102 103 104
  ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
  ctx->SetOutputDim("BatchedHidden", out_dims);
  ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
105 106 107
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

T
tensor-tang 已提交
108
  int xx_width;
T
tensor-tang 已提交
109
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
110 111 112 113
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  }
T
tensor-tang 已提交
114 115
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
116 117 118 119 120
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
121
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
122 123 124 125
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
126
  AddInput("X",
T
tensor-tang 已提交
127
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
128
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
129 130 131 132 133 134 135 136 137
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
138 139 140
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
141 142
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
143 144 145 146 147 148 149 150
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
151 152 153 154 155 156 157 158 159 160 161 162
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
163
  AddOutput("Hidden",
T
tensor-tang 已提交
164
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
165 166
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
167
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
168
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
169
  AddOutput("XX",
T
tensor-tang 已提交
170 171 172
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
173 174
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
175 176 177 178 179
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
180 181 182 183 184 185 186 187
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
188 189 190 191
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
210 211
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
212 213 214
)DOC");
}

T
tensor-tang 已提交
215
template <typename T>
T
tensor-tang 已提交
216
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
217
 public:
T
tensor-tang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
256 257
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
258 259 260
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
261

T
tensor-tang 已提交
262
    auto x_lod = x->lod();
T
tensor-tang 已提交
263
    const int total_T = x_dims[0];
T
tensor-tang 已提交
264
    const int N = x_lod[0].size() - 1;  // batch size
T
tensor-tang 已提交
265 266

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
267 268
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
269
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
270
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
271
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
272 273
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
274 275

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
276
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
T
tensor-tang 已提交
277
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
294 295

    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
296 297
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
298 299
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
T
tensor-tang 已提交
300 301
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
302 303
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
304 305
      } else {
        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
306 307
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
308 309 310
        // cell out= input*tilde
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
311
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
312 313 314
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
315 316
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
317 318
        tstart = 1;

T
tensor-tang 已提交
319
        move_step();
T
tensor-tang 已提交
320 321 322
      }
      for (int step = tstart; step < seq_len; ++step) {
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
T
tensor-tang 已提交
323
                  prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4);
T
tensor-tang 已提交
324 325

        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
326 327
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
328 329

        // a = forget * prev_cell
T
tensor-tang 已提交
330
        blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2);
T
tensor-tang 已提交
331 332 333 334 335 336 337 338

        // b = input * tilde
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);

        // cell out= a+b
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
339
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
340 341 342
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
343 344
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
345

T
tensor-tang 已提交
346
        move_step();
T
tensor-tang 已提交
347 348
      }
    }
T
tensor-tang 已提交
349 350 351 352
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
353
    INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
354
    if (x->lod()[0].size() == 2) {
T
tensor-tang 已提交
355
      SeqCompute(ctx);
T
tensor-tang 已提交
356
      return;
T
tensor-tang 已提交
357 358 359 360
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC

T
tensor-tang 已提交
361 362 363 364 365
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
366

T
tensor-tang 已提交
367 368
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
369 370 371 372 373 374 375 376
    const T* wh_data = wh->data<T>();
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
377

T
tensor-tang 已提交
378
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
379 380
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
381 382 383 384
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
385 386
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
387 388 389
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
390
                                        bias->data<T>());
T
tensor-tang 已提交
391 392
    }

T
tensor-tang 已提交
393 394 395 396 397 398 399
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
400 401
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      // W_ch, W_ih, W_fh, W_oh
      for (int i = 0; i < max_bs; ++i) {
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // cell out= input*tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        // add offset
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
440
    }
T
tensor-tang 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    // Then start from next
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
                prev_h_data, D, wh_data, D4, static_cast<T>(1),
                batched_input_data, D4);

      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
        // W_ch, W_ih, W_fh, W_oh
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // a = forget * prev_cell
        blas.VMUL(D, cur_in_data + D2, cur_prev_c_data, cur_in_data + D2);
        // b = input * tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
        // cell out= a+b
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
476 477
      }

T
tensor-tang 已提交
478 479 480 481 482
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
483 484 485
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
486 487 488 489
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
490
  }
T
tensor-tang 已提交
491

T
tensor-tang 已提交
492
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
493
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
494 495 496 497 498
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
499 500 501
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
502 503 504 505 506 507
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
508
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
509 510
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
511 512
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);