fusion_lstm_op.cc 23.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40 41
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");

T
tensor-tang 已提交
42 43
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53 54 55

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
70 71
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
72 73
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75 76 77 78 79 80
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
81 82 83 84 85 86
  PADDLE_ENFORCE_EQ(
      b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
      "The second dimension of Input(Bias) should be "
      "7 * %d if enable peepholes connection or"
      "4 * %d if disable peepholes",
      frame_size, frame_size);
T
tensor-tang 已提交
87

T
tensor-tang 已提交
88
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
89 90
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
91 92
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
93
  int xx_width;
T
tensor-tang 已提交
94
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
95 96 97
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                   "Output(BatchedInput) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                   "Output(BatchedHidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                   "Output(BatchedCell) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                   "Output(ReorderedH0) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                   "Output(ReorderedC0) of LSTM should not be null.");
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
111
  }
T
tensor-tang 已提交
112 113
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
114 115 116 117 118
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
119
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
120 121 122 123
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
124
  AddInput("X",
T
tensor-tang 已提交
125
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
126
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
136 137 138
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
139 140
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
141 142 143 144 145 146 147 148
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
149 150 151 152 153 154 155 156 157 158 159 160
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
161
  AddOutput("Hidden",
T
tensor-tang 已提交
162
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
163 164
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
165
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
166
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
167
  AddOutput("XX",
T
tensor-tang 已提交
168 169 170
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
171 172
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
173 174 175 176 177
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
178 179 180 181 182 183 184 185
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
186 187 188 189
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
208 209
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
210 211 212
)DOC");
}

T
tensor-tang 已提交
213
template <typename T>
T
tensor-tang 已提交
214
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
215
 public:
T
tensor-tang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
233 234 235 236 237 238 239 240 241 242 243 244
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#define INIT_BASE_INPUT_DATAS                                        \
  const T* x_data = x->data<T>();                                    \
  const T* wx_data = wx->data<T>();                                  \
  const T* wh_data = wh->data<T>();                                  \
  /* diagonal weight*/                                               \
  const T* wc_data = bias->data<T>() + D4;                           \
  /* for peephole only*/                                             \
  Tensor checked_cell;                                               \
  T* checked_cell_data = nullptr;                                    \
  auto place = ctx.GetPlace();                                       \
  if (use_peepholes) {                                               \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                 \
    checked_cell_data = checked_cell.mutable_data<T>({2, D}, place); \
  }

/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

// gates: W_ch, W_ih, W_fh, W_oh
#define GET_Ct(ct_1, gates, ct)                   \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/ \
  act_cand(D, gates, gates);                      \
  blas.VMUL(D, gates, gates + D, gates + D);      \
  blas.VMUL(D, ct_1, gates + D2, gates + D2);     \
  blas.VADD(D, gates + D, gates + D2, ct)

#define GET_Ht(ct, gates, ht)        \
  /* H_t = act_cell(C_t) * ogated */ \
  act_cell(D, ct, gates + D2);       \
  blas.VMUL(D, gates + D2, gates + D3, ht)

#define COMPUTE_CtHt_WITHOUT_H0C0(gates, ct, ht)     \
  act_gate(D, gates + D, gates + D);                 \
  act_cand(D, gates, gates);                         \
  /* C_t = igated * cgated*/                         \
  blas.VMUL(D, gates, gates + D, ct);                \
  /* get outgated*/                                  \
  if (use_peepholes) {                               \
    /* put W_oc * C_t on igated */                   \
    blas.VMUL(D, wc_data + D2, ct, gates + D);       \
    blas.VADD(D, gates + D, gates + D3, gates + D3); \
  }                                                  \
  act_gate(D, gates + D3, gates + D3);               \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
  act_gate(D3, gates + D, gates + D);     \
  GET_Ct(ct_1, gates, ct);                \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht)        \
  /* get fgated and igated*/                              \
  blas.VMUL(D, wc_data, ct_1, checked_cell_data);         \
  blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
  blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
  act_gate(D2, gates + D, gates + D);                     \
  GET_Ct(ct_1, gates, ct);                                \
  /* get ogated*/                                         \
  blas.VMUL(D, wc_data + D2, ct, gates + D);              \
  blas.VADD(D, gates + D, gates + D3, gates + D3);        \
  act_gate(D, gates + D3, gates + D3);                    \
  GET_Ht(ct, gates, ht)

T
tensor-tang 已提交
320 321
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
322 323 324
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
325
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
326

T
tensor-tang 已提交
327
    auto x_lod = x->lod();
T
tensor-tang 已提交
328
    const int total_T = x_dims[0];
T
tensor-tang 已提交
329
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
330 331
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
332
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
333 334
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
335 336 337
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
B
Brian Liu 已提交
338

T
tensor-tang 已提交
339 340 341 342 343
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
344 345
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
346 347 348 349
      xx_offset = -D4;
      gate_offset = -D;
    }

T
tensor-tang 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
#define MOVE_ONE_STEP                    \
  prev_h_data = h_out_data;              \
  prev_c_data = c_out_data;              \
  xx_data = xx_data + xx_offset;         \
  h_out_data = h_out_data + gate_offset; \
  c_out_data = c_out_data + gate_offset

#define PROCESS_H0C0                                            \
  int bid = is_reverse ? N - 1 - i : i;                         \
  int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];              \
  const T* prev_c_data = nullptr;                               \
  const T* prev_h_data = nullptr;                               \
  int tstart = 0;                                               \
  if (h0_data) {                                                \
    prev_h_data = h0_data + bid * D;                            \
    prev_c_data = c0_data + bid * D;                            \
  } else {                                                      \
    COMPUTE_CtHt_WITHOUT_H0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                              \
    tstart = 1;                                                 \
  }
B
Brian Liu 已提交
371

T
tensor-tang 已提交
372 373 374
    if (use_peepholes) {
      for (int i = 0; i < N; ++i) {
        PROCESS_H0C0;
T
tensor-tang 已提交
375
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
376 377 378 379 380 381 382 383
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
      }
    } else {
      for (int i = 0; i < N; ++i) {
        PROCESS_H0C0;
T
tensor-tang 已提交
384
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
385 386 387 388
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
T
tensor-tang 已提交
389
      }
T
tensor-tang 已提交
390 391 392
    }
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
T
tensor-tang 已提交
393 394 395 396
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
397
    INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
398
    if (x->lod()[0].size() == 2) {
T
tensor-tang 已提交
399
      SeqCompute(ctx);
T
tensor-tang 已提交
400
      return;
T
tensor-tang 已提交
401 402 403
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
404
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
405

T
tensor-tang 已提交
406 407 408 409 410 411 412 413 414 415 416
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
417

T
tensor-tang 已提交
418
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
419 420
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
421 422 423 424
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
425 426
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
427 428 429
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
430
                                        bias->data<T>());
T
tensor-tang 已提交
431 432
    }

T
tensor-tang 已提交
433 434 435 436 437 438 439
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
440 441
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
442 443 444 445 446 447
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
448 449
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
T
tensor-tang 已提交
450 451 452 453 454 455 456 457
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
458 459 460 461 462 463
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
        COMPUTE_CtHt_WITHOUT_H0C0(cur_in_data, cur_c_out_data, cur_h_out_data);
T
tensor-tang 已提交
464 465 466 467 468
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
469 470
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
471
    }
T
tensor-tang 已提交
472 473
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;

#define DEFINE_CUR                        \
  T* cur_in_data = batched_input_data;    \
  T* cur_prev_c_data = prev_c_data;       \
  T* cur_c_out_data = batched_c_out_data; \
  T* cur_h_out_data = batched_h_out_data

#define MOVE_ONE_BATCH  \
  cur_in_data += D4;    \
  cur_prev_c_data += D; \
  cur_c_out_data += D;  \
  cur_h_out_data += D

#define MOVE_ONE_STEP                  \
  prev_c_data = batched_c_out_data;    \
  prev_h_data = batched_h_out_data;    \
  batched_c_out_data = cur_c_out_data; \
  batched_h_out_data = cur_h_out_data; \
  batched_input_data = cur_in_data
B
Brian Liu 已提交
497

T
tensor-tang 已提交
498 499 500 501 502 503 504 505 506
    if (use_peepholes) {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
                                cur_h_out_data);
          MOVE_ONE_BATCH;
B
Brian Liu 已提交
507
        }
T
tensor-tang 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520
        MOVE_ONE_STEP;
      }
    } else {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
                       cur_h_out_data);
          MOVE_ONE_BATCH;
        }
        MOVE_ONE_STEP;
T
tensor-tang 已提交
521 522
      }
    }
T
tensor-tang 已提交
523 524 525
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
T
tensor-tang 已提交
526 527

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
528 529 530 531
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
532
  }
T
tensor-tang 已提交
533

T
tensor-tang 已提交
534
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
535
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
536 537 538 539 540
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
541 542 543 544 545 546 547 548

#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
#undef COMPUTE_CtHt_WITHOUT_H0C0
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
549 550 551
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
552 553 554 555 556 557
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
558
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
559 560
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
561 562
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);