parallel_executor.cc 43.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
27
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
36
#include "paddle/fluid/platform/event.h"
37
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
38

39 40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

43 44
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
49 50
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
51
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
52
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
53

Y
Yang Yang 已提交
54
namespace paddle {
Y
Yu Yang 已提交
55 56
namespace framework {

Y
Yu Yang 已提交
57
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
58
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
static bool gProfileStarted = false;
Y
Yu Yang 已提交
60
#endif
61

62 63 64 65
#ifdef PADDLE_WITH_CUDA
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
66 67
class ParallelExecutorPrivate {
 public:
68 69 70
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
71
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
72 73
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
74
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
75 76 77
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
78
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
79 80 81 82
#endif
      });
    }
  }
Y
Yu Yang 已提交
83

84 85 86 87 88 89 90 91 92 93 94
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
95

96 97 98 99
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

100
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
101 102 103

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

104
  /**
T
tianshuo78520a 已提交
105 106
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
107 108 109 110 111 112
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
113
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
114 115
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
116
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
117 118 119 120
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
121 122 123 124 125
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
126 127 128 129 130 131
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

132
#if defined(PADDLE_WITH_NCCL)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
149 150
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
151 152 153 154 155 156 157 158 159 160 161 162
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
163
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
164 165
      } else {
        nccl_id = new ncclUniqueId();
166 167 168
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
169 170
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
171 172 173 174
      }

      flat_nccl_ids.push_back(nccl_id);

175 176
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
177 178 179 180 181 182
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
183 184
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
185 186 187 188 189 190
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
191 192 193
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
194 195 196 197
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

198 199
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
200 201

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
202 203 204 205
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
206 207 208
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
209 210 211
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
212 213 214 215 216

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
217 218 219
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
220 221 222
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
223

224 225 226 227
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
228 229
    }
  }
230

231
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
232 233 234
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
235 236 237
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
238 239 240 241 242 243
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

244
    if (bst->use_hierarchical_allreduce_) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
260 261 262 263 264

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

265 266
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
267
    InitNCCLCtxs(scope, *bst);
268
  }
269 270
#endif

271 272 273 274 275
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
276
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
277 278
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
279
  std::vector<Scope *> local_exec_scopes_;
280
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
281
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
282

283 284
  std::unordered_map<std::string, bool> is_persistable_;

285
#if defined(PADDLE_WITH_NCCL)
286
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
287
#endif
C
chengduoZH 已提交
288 289
  bool own_local_scope_;
  bool use_cuda_;
290
  bool use_all_reduce_;
291
  size_t nranks_;
S
sneaxiy 已提交
292

293
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
294
  ir::GarbageCollectorMap gcs_;
295 296

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
297 298
};

299 300 301 302 303 304 305 306 307 308
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

309
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
326
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
327 328 329 330
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

331 332 333 334 335 336 337 338
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

339 340 341 342 343 344 345 346 347 348
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    addto_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

349 350 351 352 353 354 355 356 357
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
358 359
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
360 361
  }

362
  if (build_strategy_.memory_optimize_.get()) {
363 364 365 366 367 368 369 370 371 372
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
373 374 375
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
376
  }
377

378
  if (!is_gc_enabled) {
379 380 381 382
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
383 384 385 386 387
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
388
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
389
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
390 391
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
392
        gc.reset(new UnsafeFastGPUGarbageCollector(
393
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
394
      } else {
S
sneaxiy 已提交
395
        gc.reset(new StreamGarbageCollector(
396
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
397 398
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
399
    } else {
S
sneaxiy 已提交
400
#endif
S
sneaxiy 已提交
401
      if (platform::is_cpu_place(place)) {
402 403
        gc.reset(new CPUGarbageCollector(
            BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
S
sneaxiy 已提交
404 405
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
406 407
        PADDLE_THROW(platform::errors::PreconditionNotMet(
            "Unsupported place for garbage collection"));
S
sneaxiy 已提交
408
      }
S
sneaxiy 已提交
409 410 411 412
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
413
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
414 415
  }

S
sneaxiy 已提交
416
  if (!gcs_.empty()) {
S
sneaxiy 已提交
417 418
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
419 420
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
421 422
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
423
                                     &last_live_ops_of_vars);
424
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
425
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
426
    VLOG(10) << "EagerDeletionPass Applied";
427 428 429
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
430 431 432 433
  }
  return graph;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

449 450
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

451 452 453 454
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
void InitP2P(const std::vector<platform::Place> &places) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
      if (!is_gpu_place(places[i])) return;

      platform::CUDAPlace device =
          BOOST_GET_CONST(platform::CUDAPlace, places[i]);
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
504 505 506 507 508 509 510 511
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
512
    : member_(new ParallelExecutorPrivate(places, scope)) {
513 514 515
  PADDLE_ENFORCE(places.size() > 0 && !is_xpu_place(places[0]),
                 platform::errors::Unavailable(
                     "XPU is not supported in ParallelExecutor"));
516
  InitP2P(places);
517 518
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
519
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
520
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
521 522
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
523
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
524 525 526 527 528 529 530
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
531 532
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
533 534 535
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
536 537
  }
#endif
Y
Yancey1989 已提交
538

539
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
540 541 542 543 544 545 546 547 548
  if (member_->use_cuda_) {
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
549 550
#endif

551
  VLOG(1) << string::Sprintf(
552 553 554
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
555

556
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
557
  // Create local scopes
558
  if (local_scopes.empty()) {
C
chengduoZH 已提交
559
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
560 561
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
562
      member_->local_scopes_.emplace_back(&scope->NewScope());
563 564
    }
  } else {
C
chengduoZH 已提交
565
    member_->own_local_scope_ = false;
566 567 568 569 570
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
571
    for (size_t i = 0; i < member_->places_.size(); ++i) {
572
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
573
    }
Y
Yu Yang 已提交
574 575
  }

Q
Qiao Longfei 已提交
576
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
577
  if (member_->build_strategy_.async_mode_) {
578 579 580
    PADDLE_ENFORCE_EQ(member_->use_cuda_, false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
581
    graphs.push_back(graph);
D
dongdaxiang 已提交
582
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
583 584 585 586
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
587
  }
Q
Qiao Longfei 已提交
588

Y
Yancey1989 已提交
589 590 591
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
592 593 594 595
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
596 597 598 599
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
600

601
  if (member_->use_cuda_ && member_->nranks_ > 1) {
602
#if defined(PADDLE_WITH_NCCL)
603
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
604

W
Wu Yi 已提交
605 606 607
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
608
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
609 610 611
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
612 613
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
614
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
615 616 617
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
618
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
619
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
620
    }
Y
Yu Yang 已提交
621
#endif
C
chengduoZH 已提交
622
  }
Y
Yan Xu 已提交
623 624
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
625
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
626 627 628 629 630 631 632 633 634
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
635
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
636
  if (need_broadcast()) {
C
chengduo 已提交
637
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
638
  }
639

Q
Qiao Longfei 已提交
640
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
641

Q
Qiao Longfei 已提交
642 643 644
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
645
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
646
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
647
    VLOG(3) << "use local async mode";
C
chengduo 已提交
648 649 650 651
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
652
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
653 654 655 656
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
657
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
658
    }
Q
Qiao Longfei 已提交
659
  } else {
C
chengduo 已提交
660 661 662
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
663
  }
C
chengduoZH 已提交
664
#else
C
chengduo 已提交
665
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
666
    VLOG(3) << "use local async mode";
C
chengduo 已提交
667 668 669
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
670
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
671
      graphs[i] = member_->build_strategy_.Apply(
672
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
673
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
674
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
675
    }
Q
can run  
Qiao Longfei 已提交
676
  } else {
C
chengduo 已提交
677 678 679
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
680
  }
Y
Yu Yang 已提交
681
#endif
682

683
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
684

Q
Qiao Longfei 已提交
685 686
  async_graphs[0] = graph;

687 688
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
689
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
690 691 692 693 694 695
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
696 697 698

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
699 700
    }
  }
Y
Yancey1989 已提交
701

702 703 704 705 706 707 708
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

709 710 711 712 713 714
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
715 716 717

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
718
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
719 720
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
721 722 723
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
724
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
725
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
726
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
727 728
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
729 730 731
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

732 733 734 735 736
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
737 738 739 740 741 742 743 744

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
745
#else
746 747
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
748
#endif
Y
yuyang18 已提交
749
  } else {
750 751 752 753 754 755
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
756
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
757 758 759 760 761 762 763 764
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
765
    } else {
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
781
    }
C
chengduoZH 已提交
782
  }
Y
yuyang18 已提交
783

Q
can run  
Qiao Longfei 已提交
784
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
785
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
786
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
787 788 789 790 791 792 793 794 795
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
796
  }
797 798 799 800 801 802 803 804

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
805 806
}

Y
Yancey1989 已提交
807
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
808
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
809
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
810
  // the initializing bcast, all vars would be bcast from device(0).
811
  for (auto &var : vars) {
X
Xin Pan 已提交
812
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
813
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
814 815 816 817
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
818
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
819
      VLOG(3) << "one in var not inited, return!";
820 821
      continue;
    }
822 823
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
824
#if defined(PADDLE_WITH_NCCL)
825
      std::vector<void *> buffers;
C
chengduo 已提交
826
      buffers.reserve(member_->places_.size());
827 828 829 830 831
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
832

Y
Yan Xu 已提交
833
        if (i == 0 && trainer_id == 0) {
834 835
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
836
          auto local_scope = member_->local_scopes_[i];
837
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
838
          t->Resize(dims);
839
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
840
        }
841
        buffers.push_back(buffer);
842
      }
843

844
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
845 846 847 848
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
849
      {
850
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
851 852
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
853
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
854 855
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
856
        }
857
        nccl_ctxs->WaitAll();
858
      }
C
chengduoZH 已提交
859
#endif
860 861
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
862
      for (size_t i = 1; i < member_->places_.size(); ++i) {
863 864
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
865

Q
Qiao Longfei 已提交
866
        auto copy_memory = [&] {
867 868 869
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
870 871
        };

Q
Qiao Longfei 已提交
872
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
873 874 875 876 877 878 879

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
880
        } else {
Q
can run  
Qiao Longfei 已提交
881
          share_memory();
882
        }
Y
Yu Yang 已提交
883
      }
Y
Stash  
Yu Yang 已提交
884 885
    }
  }
Y
Yu Yang 已提交
886
}
Y
Yu Yang 已提交
887

Z
Zhen Wang 已提交
888 889
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
890
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
891 892
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
893 894 895
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
896 897
  }
#endif
Y
Yu Yang 已提交
898

X
Xin Pan 已提交
899
  platform::RecordBlock b(0);
900

901 902
  ResetHasFeedGuard reset_has_feed_guard(member_);

903 904
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
905 906

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
907
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
908
  return fetch_data;
Y
Yu Yang 已提交
909
}
Y
Yu Yang 已提交
910

Y
Yu Yang 已提交
911 912
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
928

929
  size_t feed_num = 0;
Y
Yu Yang 已提交
930 931
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
932 933 934 935 936 937
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
938
    for (auto &pair : map) {
939
      bool is_persistable = member_->IsPersistable(pair.first);
940 941 942
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
943 944 945 946 947
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
948 949 950 951
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
952 953 954 955 956 957 958 959 960 961 962 963

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
964 965 966 967
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
968
  size_t num_places = member_->places_.size();
969 970 971 972 973
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

974
  for (auto &pair : tensors) {
975 976 977 978
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
979
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
980
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
981 982
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
983
      auto error_info = string::Sprintf(
984 985 986
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
987 988 989 990 991 992
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
993
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
994 995 996 997
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
998 999 1000 1001 1002 1003
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
1004 1005 1006 1007 1008 1009
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1010
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1011 1012 1013 1014 1015 1016 1017 1018 1019
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
1020
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1021
      }
C
chengduo 已提交
1022
    }
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1049 1050 1051 1052 1053
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1054 1055
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1056 1057
    }
  }
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1074 1075
}

X
Xin Pan 已提交
1076 1077 1078 1079 1080 1081 1082
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1083
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1084
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1085
    const BuildStrategy &build_strategy) const {
1086 1087 1088
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1089

Y
Yancey1989 已提交
1090
  bool enable_parallel_graph = true;
1091

X
Xin Pan 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1105 1106 1107
    }
  }

1108
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1109
    if (build_strategy.enable_sequential_execution_ ||
1110
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1111
      enable_parallel_graph = false;
1112 1113 1114 1115 1116 1117 1118 1119 1120
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1121
  return enable_parallel_graph;
1122 1123
}

1124 1125 1126 1127
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1128
}  // namespace framework
Y
Yang Yang 已提交
1129
}  // namespace paddle
S
sneaxiy 已提交
1130

S
sneaxiy 已提交
1131
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1132
USE_PASS(eager_deletion_pass);
1133
USE_PASS(buffer_shared_inplace_pass);
1134
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1135
USE_PASS(inplace_addto_op_pass);