parallel_executor.cc 10.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Y
Yu Yang 已提交
16 17
#include "lod_tensor.h"
#include "op_registry.h"
Y
Yu Yang 已提交
18
#include "threadpool.h"
Y
Yang Yang 已提交
19 20

namespace paddle {
Y
Yu Yang 已提交
21 22 23 24 25 26 27 28 29 30
namespace framework {

struct OpHandle;

struct VarHandle {
  size_t version_;
  std::string name_;
  platform::Place place_;

  OpHandle *generated_op_;
Y
Yu Yang 已提交
31 32

  std::vector<OpHandle *> pending_ops_;
Y
Yu Yang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
};

struct OpHandle {
  std::vector<VarHandle *> inputs_;
  std::vector<VarHandle *> outputs_;

  std::string DebugString() {
    std::stringstream ss;
    ss << "(";
    for (auto *var : inputs_) {
      ss << var->name_ << ":" << var->place_ << ", ";
    }
    ss << ") --> (";
    for (auto *var : outputs_) {
      ss << var->name_ << ":" << var->place_ << ", ";
    }
    ss << ")\n";
    return ss.str();
  }

  virtual ~OpHandle() {}
};

struct ComputationOpHandle : public OpHandle {
  std::unique_ptr<OperatorBase> op_;

  explicit ComputationOpHandle(const OpDesc &op_desc)
      : op_(framework::OpRegistry::CreateOp(op_desc)) {}
};

struct ScaleLossGradOpHandle : public OpHandle {};

struct NCCLAllReduceOpHandle : public OpHandle {};

class ParallelExecutorPrivate {
 public:
Y
Yu Yang 已提交
69 70 71
  explicit ParallelExecutorPrivate(size_t num_threads = 12)
      : pool_(num_threads) {}

Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80 81 82 83
  std::unordered_map<platform::Place, Scope *, platform::PlaceHash>
      local_scopes_;
  std::unordered_map<platform::Place, platform::CUDADeviceContext,
                     platform::PlaceHash>
      dev_ctxs_;
  platform::Place main_place_;

  std::unordered_map<platform::Place,
                     std::unordered_map<std::string, std::map<int, VarHandle>>,
                     platform::PlaceHash>
      vars_;
  std::vector<std::unique_ptr<OpHandle>> ops_;
Y
Yu Yang 已提交
84 85

  ThreadPool pool_;
Y
Yu Yang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
  // FIXME!!
  return ncclFloat;
}

ParallelExecutor::ParallelExecutor(
    const std::vector<platform::Place> &places,
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
    : member_(new ParallelExecutorPrivate()) {
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
  for (auto &place : places) {
    member_->local_scopes_[place] = &scope->NewScope();
  }
  member_->main_place_ = places[0];

  // Bcast Parameters to all GPUs
  if (platform::is_gpu_place(member_->main_place_)) {  // Is CUDA
    //    BCastParamsToGPUs(startup_program);
  }
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  ConstructDependencyGraph(params, main_program, loss_var_name);
}

void ParallelExecutor::ConstructDependencyGraph(
    const std::unordered_set<std::string> &params,
    const ProgramDesc &main_program, const std::string &loss_var_name) const {
  std::unordered_set<std::__cxx11::string> grads;
  for (auto &each_param : params) {
    grads.insert(each_param + "@GRAD");
  }

  bool is_forwarding = true;
  for (auto *op : main_program.Block(0).AllOps()) {
    bool change_forward = false;

    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (auto &pair : member_->local_scopes_) {
      member_->ops_.emplace_back(new ComputationOpHandle(*op));
      auto *op_handle = member_->ops_.back().get();

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        VarHandle *var = GetVarHandle(each_var_name, place);
        op_handle->inputs_.emplace_back(var);
Y
Yu Yang 已提交
150
        var->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        GenerateVar(op_handle, each_var_name, place);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name) {
          // Insert ScaleCost OpHandle
          member_->ops_.emplace_back(new ScaleLossGradOpHandle());

          op_handle = member_->ops_.back().get();
          auto &place = pair.first;
          VarHandle *loss = GetVarHandle(loss_var_name, place);
Y
Yu Yang 已提交
167
          loss->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
          op_handle->inputs_.emplace_back(loss);
          GenerateVar(op_handle, loss_var_name + "@GRAD", place);
          change_forward = true;
          LOG(INFO) << "Scale Loss " << op_handle->DebugString();
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grads.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
          member_->ops_.emplace_back(new NCCLAllReduceOpHandle());
          auto *op_handle = member_->ops_.back().get();

          for (auto &pair : member_->local_scopes_) {
            auto &place = pair.first;
            auto &vars = member_->vars_[place][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->inputs_.emplace_back(prev_grad);
Y
Yu Yang 已提交
197
            prev_grad->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            auto &var = vars[vars.size()];
            var.place_ = place;
            var.generated_op_ = op_handle;
            var.name_ = og;
            var.version_ = vars.size() - 1;
            op_handle->outputs_.emplace_back(&var);
          }
        }
      }
    }
  }
}

void ParallelExecutor::GenerateVar(OpHandle *op_handle,
                                   const std::string &each_var_name,
                                   const platform::Place &place) const {
  auto &vars = member_->vars_[place][each_var_name];
  size_t version = vars.size();
  auto &var = vars[version];
  var.version_ = version;
  var.generated_op_ = op_handle;
  var.name_ = each_var_name;
  var.place_ = place;
  op_handle->outputs_.emplace_back(&var);
}

VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
                                          const platform::Place &place) const {
  auto &var_holders = member_->vars_[place];
  auto &var_holder = var_holders[each_var_name];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    auto &init_var = var_holder[0];
    init_var.place_ = place;
    init_var.name_ = each_var_name;
    init_var.generated_op_ = nullptr;
    init_var.version_ = 0;
    var = &init_var;
  } else {
    var = &var_holder.rbegin()->second;
  }
  return var;
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
  auto *main_scope = member_->local_scopes_[member_->main_place_];
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();

      ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
      auto &dims = main_tensor.dims();
      size_t numel = main_tensor.numel();
      std::vector<std::pair<void *, const platform::DeviceContext *>> mems;
      mems.emplace_back(
          const_cast<void *>(main_tensor.data<void>()),
          new platform::CUDADeviceContext(
              boost::get<platform::CUDAPlace>(member_->main_place_)));

      for (auto &pair : member_->local_scopes_) {
        if (pair.first == member_->main_place_) {
          continue;
        }

        auto local_scope = pair.second;
        auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
        t->Resize(dims);
        mems.emplace_back(t->mutable_data(pair.first, main_tensor.type()),
                          new platform::CUDADeviceContext(
                              boost::get<platform::CUDAPlace>(pair.first)));
      }

      // TODO(yy): Invoke ncclBCast here. mems, numel, data_type. The mems[0]
      // is the src, rests are dests.

      (void)(data_type);
      (void)(numel);

      // Free Communication Ctx
      for (auto &pair : mems) {
        // Release Communication Ctx

        // FIXME: Store CUDA DevCtx to member. Since NCCL All Reduce will use
        // this
        delete pair.second;
      }
    }
  }
}

std::vector<LoDTensor> ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
  // Version --> VarHandle
Y
Yu Yang 已提交
293 294

  std::unordered_map<VarHandle *, bool> pending_vars;
Y
Yu Yang 已提交
295 296 297 298 299
  std::unordered_map<OpHandle *, size_t> pending_ops;

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      for (auto &version_pair : name_pair.second) {
Y
Yu Yang 已提交
300 301
        pending_vars[&version_pair.second] =
            version_pair.second.generated_op_ == nullptr;
Y
Yu Yang 已提交
302 303 304 305 306 307 308 309
      }
    }
  }

  for (auto &op : member_->ops_) {
    pending_ops.insert({op.get(), op->inputs_.size()});
  }

Y
Yu Yang 已提交
310 311 312 313 314
  while (!pending_ops.empty()) {
    VarHandle *ready_var = nullptr;
    for (auto &pair : pending_vars) {
      if (pair.second) {
        ready_var = pair.first;
Y
Yu Yang 已提交
315 316
      }
    }
Y
Yu Yang 已提交
317 318 319 320

    if (ready_var == nullptr) {
      member_->pool_.Wait();  // Wait thread pool;
      continue;
Y
Yu Yang 已提交
321 322
    }

Y
Yu Yang 已提交
323 324
    pending_vars.erase(ready_var);

Y
Yu Yang 已提交
325
    std::vector<OpHandle *> to_run;
Y
Yu Yang 已提交
326 327 328 329 330 331

    for (auto *op : ready_var->pending_ops_) {
      auto &deps = pending_ops[op];
      --deps;
      if (deps == 0) {
        to_run.emplace_back(op);
Y
Yu Yang 已提交
332 333 334 335 336 337
      }
    }

    for (auto *op : to_run) {
      pending_ops.erase(op);

Y
Yu Yang 已提交
338 339 340 341
      std::vector<bool *> ready_buffer;
      for (auto *var : op->outputs_) {
        ready_buffer.emplace_back(&pending_vars[var]);
      }
Y
Yu Yang 已提交
342

Y
Yu Yang 已提交
343 344 345 346 347 348 349
      auto op_run = [ready_buffer, op] {
        // TODO(yy) Check Previous Op has same dev ctx.
        LOG(INFO) << "Run " << op->DebugString();
        for (auto *ready : ready_buffer) {
          *ready = true;
        }
      };
Y
Yu Yang 已提交
350

Y
Yu Yang 已提交
351
      member_->pool_.Run(op_run);
Y
Yu Yang 已提交
352 353 354 355 356
    }
  }
  return std::vector<LoDTensor>();
}
}  // namespace framework
Y
Yang Yang 已提交
357
}  // namespace paddle