parallel_executor.cc 33.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_bool(use_ngraph);

37 38
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
39
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
40
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
41
#endif
Y
Yu Yang 已提交
42
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
43 44
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
45
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
46
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
47

Y
Yang Yang 已提交
48
namespace paddle {
Y
Yu Yang 已提交
49 50
namespace framework {

Y
Yu Yang 已提交
51
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
52
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
53
static bool gProfileStarted = false;
Y
Yu Yang 已提交
54
#endif
55

Y
Yu Yang 已提交
56 57 58
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
59
      : places_(places) {
Y
Yu Yang 已提交
60
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
61 62
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
63
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
64 65 66
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
67
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
68 69 70 71
#endif
      });
    }
  }
Y
Yu Yang 已提交
72

73 74 75 76 77 78 79 80 81 82 83
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
84

85
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
86 87 88

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  /**
   * NOTE(zengjinle): the feeded variables of users should not be reused,
   * because users may feed them into another network. Changing the feeded
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
   *  - FeedTensorsIntoLocalScopes: this method would share memory of feeded
   *                                variables, so we have to skip these.
   *
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of feeded
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
129 130
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
131 132 133 134 135 136 137 138 139 140 141 142
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
143
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
144 145 146
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
147 148
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
149 150 151 152
      }

      flat_nccl_ids.push_back(nccl_id);

153 154
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
155 156 157 158 159 160
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
161 162
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
163 164 165 166 167 168 169 170 171 172 173
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

174 175
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
176 177

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
178 179 180 181 182 183 184 185
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
186 187 188 189 190 191 192 193 194

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
195

196 197 198 199
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
200 201
    }
  }
202

203
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
204 205 206 207 208 209 210 211 212 213 214
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

230 231
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
232
    InitNCCLCtxs(scope, *bst);
233
  }
234 235
#endif

236 237 238 239 240
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
241
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
242 243
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
244
  std::vector<Scope *> local_exec_scopes_;
245
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
246
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
247

248 249
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
250
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
251
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
252
#endif
C
chengduoZH 已提交
253 254
  bool own_local_scope_;
  bool use_cuda_;
255
  bool use_all_reduce_;
256
  size_t nranks_;
S
sneaxiy 已提交
257

258
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
259
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
260 261
};

262
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
263 264 265 266 267 268 269
  if (FLAGS_use_ngraph) {
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, memory optimization strategy is "
           "disabled in ParallelExecutor";
    return graph;
  }

Z
Zeng Jinle 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
307 308
    LOG_FIRST_N(INFO, 1) << "Inplace strategy is enabled, when "
                            "build_strategy.enable_inplace = True";
309 310
  }

311
  if (build_strategy_.memory_optimize_.get()) {
312 313 314 315 316 317 318 319 320 321
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
322 323 324
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
325
  }
326

327
  if (!is_gc_enabled) {
328 329 330 331
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
332 333 334 335 336
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
337
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
338
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
339 340
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
341 342
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
343
      } else {
S
sneaxiy 已提交
344 345
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
346 347
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
348
    } else {
S
sneaxiy 已提交
349
#endif
S
sneaxiy 已提交
350 351 352 353 354 355 356
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
357 358 359 360
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
361
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
362 363
  }

S
sneaxiy 已提交
364
  if (!gcs_.empty()) {
S
sneaxiy 已提交
365 366
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
367 368
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
369 370
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
371
                                     &last_live_ops_of_vars);
372
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
373
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
374
    VLOG(10) << "EagerDeletionPass Applied";
375 376 377
    LOG_FIRST_N(INFO, 1) << "Garbage collection strategy is enabled, when "
                         << "FLAGS_eager_delete_tensor_gb = "
                         << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
378 379 380 381
  }
  return graph;
}

382 383 384 385
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
400 401 402 403 404 405 406 407
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
408
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
409
  member_->global_scope_ = scope;
410
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
411
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
412 413
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
414
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
415 416 417 418 419 420 421
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
422 423 424 425 426
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
427

428
  LOG(INFO) << string::Sprintf(
429 430 431
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
432

433
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
434
  // Create local scopes
435
  if (local_scopes.empty()) {
C
chengduoZH 已提交
436
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
437 438
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
439
      member_->local_scopes_.emplace_back(&scope->NewScope());
440 441
    }
  } else {
C
chengduoZH 已提交
442
    member_->own_local_scope_ = false;
443 444
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
445
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
446
    }
Y
Yu Yang 已提交
447 448
  }

Q
Qiao Longfei 已提交
449
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
450
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
451 452
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
453
    graphs.push_back(graph);
D
dongdaxiang 已提交
454
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
455 456 457 458
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
459
  }
Q
Qiao Longfei 已提交
460

Y
Yancey1989 已提交
461 462 463
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
464 465 466 467
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
468 469 470 471
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
472

473
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
474
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
475
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
476

W
Wu Yi 已提交
477 478 479
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
480
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
481 482 483
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
484 485
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
486
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
487 488 489
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
490
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
491
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
492
    }
Y
Yu Yang 已提交
493
#endif
C
chengduoZH 已提交
494
  }
Y
Yan Xu 已提交
495 496
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
497
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
498 499 500 501 502 503 504 505 506
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
507
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
508
  if (need_broadcast()) {
C
chengduo 已提交
509
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
510
  }
511

Q
Qiao Longfei 已提交
512
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
513

Q
Qiao Longfei 已提交
514 515 516
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
517
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
518
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
519
    VLOG(3) << "use local async mode";
C
chengduo 已提交
520 521 522 523
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
524
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
525 526 527 528
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
529
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
530
    }
Q
Qiao Longfei 已提交
531
  } else {
C
chengduo 已提交
532 533 534
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
535
  }
C
chengduoZH 已提交
536
#else
C
chengduo 已提交
537
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
538
    VLOG(3) << "use local async mode";
C
chengduo 已提交
539 540 541
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
542
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
543
      graphs[i] = member_->build_strategy_.Apply(
544
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
545
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
546
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
547
    }
Q
can run  
Qiao Longfei 已提交
548
  } else {
C
chengduo 已提交
549 550 551
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
552
  }
Y
Yu Yang 已提交
553
#endif
554

555
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
556

Q
Qiao Longfei 已提交
557 558
  async_graphs[0] = graph;

559 560
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
561
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
562 563 564 565 566 567
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
568 569 570

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
571 572
    }
  }
Y
Yancey1989 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
586
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
587 588
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
589 590 591
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
592
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
593
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
594
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
595 596
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
597 598 599 600 601
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
602 603 604 605
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
606
  } else {
Y
Yancey1989 已提交
607
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
608
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
609
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
610 611
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
612
    } else {
Q
can run  
Qiao Longfei 已提交
613
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
614
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
615 616
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
617
    }
618
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
619
  }
Y
yuyang18 已提交
620

Q
can run  
Qiao Longfei 已提交
621
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
622
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
623
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
624 625 626 627 628 629 630 631 632
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
633
  }
Y
Yu Yang 已提交
634 635
}

Y
Yancey1989 已提交
636
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
637
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
638
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
639
  // the initializing bcast, all vars would be bcast from device(0).
640
  for (auto &var : vars) {
X
Xin Pan 已提交
641
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
642
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
643 644 645 646
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
647
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
648
      VLOG(3) << "one in var not inited, return!";
649 650
      continue;
    }
651 652
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
653
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
654
      std::vector<void *> buffers;
C
chengduo 已提交
655
      buffers.reserve(member_->places_.size());
656 657 658 659 660
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
661

Y
Yan Xu 已提交
662
        if (i == 0 && trainer_id == 0) {
663 664
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
665
          auto local_scope = member_->local_scopes_[i];
666
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
667
          t->Resize(dims);
668
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
669
        }
670
        buffers.push_back(buffer);
671
      }
672

673 674 675
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
676
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
677 678
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
679
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
680 681
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
682
        }
683
        nccl_ctxs->WaitAll();
684
      }
C
chengduoZH 已提交
685
#endif
686 687
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
688
      for (size_t i = 1; i < member_->places_.size(); ++i) {
689 690
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
691

Q
Qiao Longfei 已提交
692
        auto copy_memory = [&] {
693 694 695
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
696 697
        };

Q
Qiao Longfei 已提交
698
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
699 700 701 702 703 704 705

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
706
        } else {
Q
can run  
Qiao Longfei 已提交
707
          share_memory();
708
        }
Y
Yu Yang 已提交
709
      }
Y
Stash  
Yu Yang 已提交
710 711
    }
  }
Y
Yu Yang 已提交
712
}
Y
Yu Yang 已提交
713

714 715
FeedFetchList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
716
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
717 718 719
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
720 721
  }
#endif
Y
Yu Yang 已提交
722

X
Xin Pan 已提交
723
  platform::RecordBlock b(0);
724 725 726

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
727 728

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
729
  auto fetch_data = member_->executor_->Run(fetch_tensors);
730
  return fetch_data;
Y
Yu Yang 已提交
731
}
Y
Yu Yang 已提交
732

Y
Yu Yang 已提交
733 734 735 736 737 738 739
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
740
      bool is_persistable = member_->IsPersistable(pair.first);
741 742 743
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
744 745 746 747 748
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
749 750 751 752 753 754 755 756
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
757
  size_t num_places = member_->places_.size();
758
  for (auto &pair : tensors) {
759 760 761 762
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
763
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
764 765
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
    if (!is_persistable && num_places != lod_tensors.size()) {
C
chengduo 已提交
766
      auto error_info = string::Sprintf(
767 768 769
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
770 771 772 773 774 775 776
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
      if (lod_tensors.size() != num_places) {
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
803
    }
804

805
    for (size_t j = 0; j < num_places; ++j) {
806 807 808 809 810
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
811 812
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
813 814 815 816
    }
  }
}

X
Xin Pan 已提交
817 818 819 820 821 822 823
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

824
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
825
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
826
    const BuildStrategy &build_strategy) const {
827 828 829
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
830

Y
Yancey1989 已提交
831
  bool enable_parallel_graph = true;
832

X
Xin Pan 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
846 847 848
    }
  }

849
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
850
    if (build_strategy.enable_sequential_execution_ ||
851
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
852
      enable_parallel_graph = false;
853 854 855 856 857 858 859 860 861
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
862
  return enable_parallel_graph;
863 864
}

Y
Yu Yang 已提交
865
}  // namespace framework
Y
Yang Yang 已提交
866
}  // namespace paddle
S
sneaxiy 已提交
867

S
sneaxiy 已提交
868
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
869
USE_PASS(eager_deletion_pass);
870
USE_PASS(buffer_shared_inplace_pass);
871
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);