parallel_executor.cc 22.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

78
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
91
      }
S
sneaxiy 已提交
92
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
93 94 95
    }
  }

D
dzhwinter 已提交
96
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
97 98
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
99
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
100
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
101

P
peizhilin 已提交
102
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
103
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
104
#endif
C
chengduoZH 已提交
105 106
  bool own_local_scope_;
  bool use_cuda_;
107
  bool use_all_reduce_;
108
  size_t nranks_;
S
sneaxiy 已提交
109

S
sneaxiy 已提交
110 111 112 113 114 115
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
116 117
};

118 119
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
120 121 122 123 124
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
125
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
126
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
127 128
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
129 130
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
131
      } else {
S
sneaxiy 已提交
132 133
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134 135
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
136
    } else {
S
sneaxiy 已提交
137
#endif
S
sneaxiy 已提交
138 139 140 141 142 143 144
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
145 146 147 148
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
149
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
150 151
  }

S
sneaxiy 已提交
152
  if (!gcs_.empty()) {
S
sneaxiy 已提交
153 154 155 156 157 158 159 160
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
161
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
162 163 164 165 166 167 168 169 170 171
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
172
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
173 174 175 176 177
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

178 179 180 181
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
182 183 184 185 186 187 188 189
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
190
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
191
  member_->global_scope_ = scope;
192
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
193
  member_->build_strategy_ = build_strategy;
194 195
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
196
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
197 198 199 200
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
201 202
  }

203
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
204
  // Create local scopes
205
  if (local_scopes.empty()) {
C
chengduoZH 已提交
206
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
207 208
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
209
      member_->local_scopes_.emplace_back(&scope->NewScope());
210 211
    }
  } else {
C
chengduoZH 已提交
212
    member_->own_local_scope_ = false;
213 214
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
215
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
216
    }
Y
Yu Yang 已提交
217 218
  }

Q
Qiao Longfei 已提交
219
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
220 221 222
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
223
    graphs.push_back(graph);
D
dongdaxiang 已提交
224
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
225 226 227 228
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
229
  }
Q
Qiao Longfei 已提交
230

Y
Yancey1989 已提交
231 232 233
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
234 235
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
236 237 238 239
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
240

C
chengduoZH 已提交
241
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
242
// Bcast Parameters to all GPUs
P
peizhilin 已提交
243
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
244 245 246
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
247
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
248
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
249
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
250
    }
251
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
252 253 254 255
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
256
      }
C
chengduoZH 已提交
257
    }
Y
Yancey1989 已提交
258

C
chengduoZH 已提交
259
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
260 261
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
262

W
Wu Yi 已提交
263 264 265
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
266
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
267 268 269 270 271 272 273
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
274 275 276 277 278
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
279 280 281 282 283 284 285
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
286
    }
C
chengduoZH 已提交
287 288
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
289
#endif
C
chengduoZH 已提交
290
  }
Y
Yan Xu 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
306
  }
Q
Qiao Longfei 已提交
307
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
308

Q
Qiao Longfei 已提交
309 310 311
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
312
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
313
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
314
    VLOG(3) << "use local async mode";
315 316 317
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_, member_->nccl_ctxs_.get());
D
dongdaxiang 已提交
318
    for (size_t i = 1; i < member_->places_.size(); ++i) {
319 320 321
      graphs[i] =
          build_strategy.Apply(graphs[i], {member_->places_[i]}, loss_var_name,
                               {member_->local_scopes_[i]}, 1,
Q
Qiao Longfei 已提交
322
                               member_->use_cuda_, member_->nccl_ctxs_.get());
323
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
324
    }
Q
Qiao Longfei 已提交
325
  } else {
326 327 328
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_, member_->nccl_ctxs_.get());
Q
Qiao Longfei 已提交
329
  }
C
chengduoZH 已提交
330
#else
Q
Qiao Longfei 已提交
331
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
332
    VLOG(3) << "use local async mode";
333 334 335
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_);
336
    for (size_t i = 1; i < member_->places_.size(); ++i) {
337 338
      graphs[i] = build_strategy.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
339
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
340
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
341
    }
Q
can run  
Qiao Longfei 已提交
342
  } else {
343 344 345
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
346
  }
X
Xin Pan 已提交
347

Y
Yu Yang 已提交
348
#endif
Y
Yancey1989 已提交
349
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
350 351
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
352
  if (max_memory_size >= 0) {
353 354
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
355 356
  }

Q
Qiao Longfei 已提交
357 358
  async_graphs[0] = graph;

359 360
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
361
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
362 363 364 365 366 367
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
368 369
    }
  }
Y
Yancey1989 已提交
370

W
Wu Yi 已提交
371 372
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
373
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
374 375 376 377
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
378
          << ir::GraphNum(*graph)
C
chengduo 已提交
379 380 381 382 383
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
384 385
  }

Q
Qiao Longfei 已提交
386
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
387 388
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
389
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
390 391
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
392
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
393 394
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
395
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
396
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
397 398 399 400
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
401
  } else {
Y
Yancey1989 已提交
402
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
403
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
404
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
405
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
406
    } else {
Q
can run  
Qiao Longfei 已提交
407
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
408
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
409
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
410
    }
C
chengduoZH 已提交
411
  }
Y
yuyang18 已提交
412

Q
can run  
Qiao Longfei 已提交
413
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
414 415 416 417 418
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
419 420
}

Y
Yancey1989 已提交
421
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
422
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
423
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
424
  // the initializing bcast, all vars would be bcast from device(0).
425
  for (auto &var : vars) {
X
Xin Pan 已提交
426
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
427
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
428 429 430 431
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
432
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
433
      VLOG(3) << "one in var not inited, return!";
434 435
      continue;
    }
436 437
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
438
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
439
      std::vector<void *> buffers;
C
chengduo 已提交
440
      buffers.reserve(member_->places_.size());
441 442 443 444 445
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
446

Y
Yan Xu 已提交
447
        if (i == 0 && trainer_id == 0) {
448 449
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
450
          auto local_scope = member_->local_scopes_[i];
451
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
452
          t->Resize(dims);
453
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
454
        }
455
        buffers.push_back(buffer);
456
      }
457

458 459 460 461 462 463
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
464 465
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
466
        }
467
        member_->nccl_ctxs_->WaitAll();
468
      }
C
chengduoZH 已提交
469 470 471
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
472 473
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
474
      for (size_t i = 1; i < member_->places_.size(); ++i) {
475 476
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
477

Q
Qiao Longfei 已提交
478
        auto copy_memory = [&] {
479 480 481
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
482 483
        };

Q
Qiao Longfei 已提交
484
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
485 486 487 488 489 490 491

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
492
        } else {
Q
can run  
Qiao Longfei 已提交
493
          share_memory();
494
        }
Y
Yu Yang 已提交
495
      }
Y
Stash  
Yu Yang 已提交
496 497
    }
  }
Y
Yu Yang 已提交
498
}
Y
Yu Yang 已提交
499

Y
Yu Yang 已提交
500 501
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
502 503 504
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
505 506
  }
#endif
Y
Yu Yang 已提交
507

X
Xin Pan 已提交
508
  platform::RecordBlock b(0);
S
sneaxiy 已提交
509 510
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
511
  }
S
sneaxiy 已提交
512 513 514
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
515
}
Y
Yu Yang 已提交
516

Y
Yu Yang 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
536 537 538 539 540
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
541 542
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
543
      auto t =
Y
Yu Yang 已提交
544
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
545 546
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
547 548 549 550
    }
  }
}

X
Xin Pan 已提交
551 552 553 554 555 556 557
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

558
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
559
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
560
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
561
  if (!FLAGS_enable_parallel_graph) return false;
562

Y
Yancey1989 已提交
563
  bool enable_parallel_graph = true;
564

X
Xin Pan 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
578 579 580 581 582
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
583 584 585
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
586
  return enable_parallel_graph;
587 588
}

Y
Yu Yang 已提交
589
}  // namespace framework
Y
Yang Yang 已提交
590
}  // namespace paddle
S
sneaxiy 已提交
591

S
sneaxiy 已提交
592
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
593
USE_PASS(eager_deletion_pass);