parallel_executor.cc 41.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
34
#include "paddle/fluid/platform/event.h"
35
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
36

37 38
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
39
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
40
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
41
#endif
Y
Yu Yang 已提交
42
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
43 44
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
45
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
46
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
47

Y
Yang Yang 已提交
48
namespace paddle {
Y
Yu Yang 已提交
49 50
namespace framework {

Y
Yu Yang 已提交
51
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
52
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
53
static bool gProfileStarted = false;
Y
Yu Yang 已提交
54
#endif
55

Y
Yu Yang 已提交
56 57
class ParallelExecutorPrivate {
 public:
58 59 60
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
61
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
62 63
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
64
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
65 66 67
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
68
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
69 70 71 72
#endif
      });
    }
  }
Y
Yu Yang 已提交
73

74 75 76 77 78 79 80 81 82 83 84
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
85

86 87 88 89
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

90
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
91 92 93

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

94
  /**
T
tianshuo78520a 已提交
95 96
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
97 98 99 100 101 102
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
103
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
104 105
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
106
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
107 108 109 110 111 112 113 114 115 116
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

117
#if defined(PADDLE_WITH_NCCL)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
134 135
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
136 137 138 139 140 141 142 143 144 145 146 147
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
148
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
149 150
      } else {
        nccl_id = new ncclUniqueId();
151 152 153
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
154 155
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
156 157 158 159
      }

      flat_nccl_ids.push_back(nccl_id);

160 161
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
162 163 164 165 166 167
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
168 169
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
170 171 172 173 174 175
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
176 177 178
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
179 180 181 182
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

183 184
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
185 186

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
187 188 189 190
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
191 192 193
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
194 195 196
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
197 198 199 200 201

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
202 203 204
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
205 206 207
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
208

209 210 211 212
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
213 214
    }
  }
215

216
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
217 218 219
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
220 221 222
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
223 224 225 226 227 228
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

229
    if (bst->use_hierarchical_allreduce_) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
245 246 247 248 249

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

250 251
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
252
    InitNCCLCtxs(scope, *bst);
253
  }
254 255
#endif

256 257 258 259 260
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
261
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
262 263
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
264
  std::vector<Scope *> local_exec_scopes_;
265
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
266
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
267

268 269
  std::unordered_map<std::string, bool> is_persistable_;

270
#if defined(PADDLE_WITH_NCCL)
271
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
272
#endif
C
chengduoZH 已提交
273 274
  bool own_local_scope_;
  bool use_cuda_;
275
  bool use_all_reduce_;
276
  size_t nranks_;
S
sneaxiy 已提交
277

278
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
279
  ir::GarbageCollectorMap gcs_;
280 281

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
282 283
};

284 285 286 287 288 289 290 291 292 293
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

294
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
332 333
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
334 335
  }

336
  if (build_strategy_.memory_optimize_.get()) {
337 338 339 340 341 342 343 344 345 346
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
347 348 349
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
350
  }
351

352
  if (!is_gc_enabled) {
353 354 355 356
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
357 358 359 360 361
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
362
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
363
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
364 365
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
366
        gc.reset(new UnsafeFastGPUGarbageCollector(
367
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
368
      } else {
S
sneaxiy 已提交
369
        gc.reset(new StreamGarbageCollector(
370
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
371 372
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
373
    } else {
S
sneaxiy 已提交
374
#endif
S
sneaxiy 已提交
375
      if (platform::is_cpu_place(place)) {
376 377
        gc.reset(new CPUGarbageCollector(
            BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
S
sneaxiy 已提交
378 379
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
380 381
        PADDLE_THROW(platform::errors::PreconditionNotMet(
            "Unsupported place for garbage collection"));
S
sneaxiy 已提交
382
      }
S
sneaxiy 已提交
383 384 385 386
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
387
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
388 389
  }

S
sneaxiy 已提交
390
  if (!gcs_.empty()) {
S
sneaxiy 已提交
391 392
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
393 394
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
395 396
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
397
                                     &last_live_ops_of_vars);
398
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
399
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
400
    VLOG(10) << "EagerDeletionPass Applied";
401 402 403
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
404 405 406 407
  }
  return graph;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

423 424
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

425 426 427 428
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
443 444 445 446 447 448 449 450
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
451
    : member_(new ParallelExecutorPrivate(places, scope)) {
452 453
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
454
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
455
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
456 457
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
458
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
459 460 461 462 463 464 465
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
466 467
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
468 469 470
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
471 472
  }
#endif
Y
Yancey1989 已提交
473

474 475 476 477 478 479 480 481 482 483
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

484
  VLOG(1) << string::Sprintf(
485 486 487
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
488

489
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
490
  // Create local scopes
491
  if (local_scopes.empty()) {
C
chengduoZH 已提交
492
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
493 494
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
495
      member_->local_scopes_.emplace_back(&scope->NewScope());
496 497
    }
  } else {
C
chengduoZH 已提交
498
    member_->own_local_scope_ = false;
499 500 501 502 503
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
504
    for (size_t i = 0; i < member_->places_.size(); ++i) {
505
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
506
    }
Y
Yu Yang 已提交
507 508
  }

Q
Qiao Longfei 已提交
509
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
510
  if (member_->build_strategy_.async_mode_) {
511 512 513
    PADDLE_ENFORCE_EQ(member_->use_cuda_, false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
514
    graphs.push_back(graph);
D
dongdaxiang 已提交
515
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
516 517 518 519
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
520
  }
Q
Qiao Longfei 已提交
521

Y
Yancey1989 已提交
522 523 524
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
525 526 527 528
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
529 530 531 532
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
533

534
  if (member_->use_cuda_ && member_->nranks_ > 1) {
535
#if defined(PADDLE_WITH_NCCL)
536
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
537

W
Wu Yi 已提交
538 539 540
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
541
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
542 543 544
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
545 546
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
547
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
548 549 550
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
551
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
552
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
553
    }
Y
Yu Yang 已提交
554
#endif
C
chengduoZH 已提交
555
  }
Y
Yan Xu 已提交
556 557
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
558
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
559 560 561 562 563 564 565 566 567
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
568
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
569
  if (need_broadcast()) {
C
chengduo 已提交
570
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
571
  }
572

Q
Qiao Longfei 已提交
573
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
574

Q
Qiao Longfei 已提交
575 576 577
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
578
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
579
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
580
    VLOG(3) << "use local async mode";
C
chengduo 已提交
581 582 583 584
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
585
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
586 587 588 589
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
590
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
591
    }
Q
Qiao Longfei 已提交
592
  } else {
C
chengduo 已提交
593 594 595
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
596
  }
C
chengduoZH 已提交
597
#else
C
chengduo 已提交
598
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
599
    VLOG(3) << "use local async mode";
C
chengduo 已提交
600 601 602
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
603
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
604
      graphs[i] = member_->build_strategy_.Apply(
605
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
606
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
607
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
608
    }
Q
can run  
Qiao Longfei 已提交
609
  } else {
C
chengduo 已提交
610 611 612
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
613
  }
Y
Yu Yang 已提交
614
#endif
615

616
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
617

Q
Qiao Longfei 已提交
618 619
  async_graphs[0] = graph;

620 621
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
622
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
623 624 625 626 627 628
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
629 630 631

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
632 633
    }
  }
Y
Yancey1989 已提交
634

635 636 637 638 639 640 641
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

642 643 644 645 646 647
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
648 649 650

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
651
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
652 653
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
654 655 656
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
657
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
658
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
659
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
660 661
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
662 663 664
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

665 666 667 668 669
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
670 671 672 673 674 675 676 677

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
678
#else
679 680
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
681
#endif
Y
yuyang18 已提交
682
  } else {
683 684 685 686 687 688
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
689
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
690 691 692 693 694 695 696 697
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
698
    } else {
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
714
    }
C
chengduoZH 已提交
715
  }
Y
yuyang18 已提交
716

Q
can run  
Qiao Longfei 已提交
717
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
718
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
719
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
720 721 722 723 724 725 726 727 728
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
729
  }
730 731 732 733 734 735 736 737

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
738 739
}

Y
Yancey1989 已提交
740
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
741
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
742
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
743
  // the initializing bcast, all vars would be bcast from device(0).
744
  for (auto &var : vars) {
X
Xin Pan 已提交
745
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
746
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
747 748 749 750
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
751
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
752
      VLOG(3) << "one in var not inited, return!";
753 754
      continue;
    }
755 756
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
757
#if defined(PADDLE_WITH_NCCL)
758
      std::vector<void *> buffers;
C
chengduo 已提交
759
      buffers.reserve(member_->places_.size());
760 761 762 763 764
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
765

Y
Yan Xu 已提交
766
        if (i == 0 && trainer_id == 0) {
767 768
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
769
          auto local_scope = member_->local_scopes_[i];
770
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
771
          t->Resize(dims);
772
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
773
        }
774
        buffers.push_back(buffer);
775
      }
776

777
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
778 779 780 781
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
782
      {
783
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
784 785
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
786
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
787 788
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
789
        }
790
        nccl_ctxs->WaitAll();
791
      }
C
chengduoZH 已提交
792
#endif
793 794
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
795
      for (size_t i = 1; i < member_->places_.size(); ++i) {
796 797
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
798

Q
Qiao Longfei 已提交
799
        auto copy_memory = [&] {
800 801 802
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
803 804
        };

Q
Qiao Longfei 已提交
805
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
806 807 808 809 810 811 812

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
813
        } else {
Q
can run  
Qiao Longfei 已提交
814
          share_memory();
815
        }
Y
Yu Yang 已提交
816
      }
Y
Stash  
Yu Yang 已提交
817 818
    }
  }
Y
Yu Yang 已提交
819
}
Y
Yu Yang 已提交
820

Z
Zhen Wang 已提交
821 822
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
823
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
824 825
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
826 827 828
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
829 830
  }
#endif
Y
Yu Yang 已提交
831

X
Xin Pan 已提交
832
  platform::RecordBlock b(0);
833

834 835
  ResetHasFeedGuard reset_has_feed_guard(member_);

836 837
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
838 839

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
840
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
841
  return fetch_data;
Y
Yu Yang 已提交
842
}
Y
Yu Yang 已提交
843

Y
Yu Yang 已提交
844 845
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
861

862
  size_t feed_num = 0;
Y
Yu Yang 已提交
863 864
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
865 866 867 868 869 870
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
871
    for (auto &pair : map) {
872
      bool is_persistable = member_->IsPersistable(pair.first);
873 874 875
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
876 877 878 879 880
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
881 882 883 884
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
885 886 887 888 889 890 891 892 893 894 895 896

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
897 898 899 900
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
901
  size_t num_places = member_->places_.size();
902 903 904 905 906
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

907
  for (auto &pair : tensors) {
908 909 910 911
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
912
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
913
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
914 915
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
916
      auto error_info = string::Sprintf(
917 918 919
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
920 921 922 923 924 925
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
926
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
927 928 929 930
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
931 932 933 934 935 936
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
937 938 939 940 941 942
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
943
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
944 945 946 947 948 949 950 951 952
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
953
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
954
      }
C
chengduo 已提交
955
    }
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
982 983 984 985 986
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
987 988
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
989 990
    }
  }
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1007 1008
}

X
Xin Pan 已提交
1009 1010 1011 1012 1013 1014 1015
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1016
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1017
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1018
    const BuildStrategy &build_strategy) const {
1019 1020 1021
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1022

Y
Yancey1989 已提交
1023
  bool enable_parallel_graph = true;
1024

X
Xin Pan 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1038 1039 1040
    }
  }

1041
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1042
    if (build_strategy.enable_sequential_execution_ ||
1043
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1044
      enable_parallel_graph = false;
1045 1046 1047 1048 1049 1050 1051 1052 1053
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1054
  return enable_parallel_graph;
1055 1056
}

1057 1058 1059 1060
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1061
}  // namespace framework
Y
Yang Yang 已提交
1062
}  // namespace paddle
S
sneaxiy 已提交
1063

S
sneaxiy 已提交
1064
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1065
USE_PASS(eager_deletion_pass);
1066
USE_PASS(buffer_shared_inplace_pass);
1067
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);