parallel_executor.cc 17.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

P
peizhilin 已提交
23
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40 41
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

Y
Yu Yang 已提交
97 98
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
99
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
100
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
101

P
peizhilin 已提交
102
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
103
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
104
#endif
C
chengduoZH 已提交
105 106
  bool own_local_scope_;
  bool use_cuda_;
107
  bool use_all_reduce_;
S
sneaxiy 已提交
108

S
sneaxiy 已提交
109 110 111 112 113 114
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
115 116
};

S
sneaxiy 已提交
117 118 119 120 121 122 123
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
124
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
125
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
126 127
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
128 129
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
130
      } else {
S
sneaxiy 已提交
131 132
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133 134
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
135
    } else {
S
sneaxiy 已提交
136
#endif
S
sneaxiy 已提交
137 138 139 140 141 142 143
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
144 145 146 147
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
148
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
149 150
  }

S
sneaxiy 已提交
151
  if (!gcs_.empty()) {
S
sneaxiy 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

178 179 180 181
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
182
ParallelExecutor::ParallelExecutor(
183
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
184
    const std::unordered_set<std::string> &params,
185 186
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
187
    Scope *scope, const std::vector<Scope *> &local_scopes,
188
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
189
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
190
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
191
  member_->global_scope_ = scope;
192
  member_->use_cuda_ = exec_strategy.use_cuda_;
193 194 195 196 197 198 199
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
200 201
    PADDLE_ENFORCE(exec_strategy.type_ != ExecutionStrategy::kParallelGraph,
                   "You should set build_strategy.reduce with 'AllReduce' for "
202
                   "the ParallelGraph executor type");
203
  }
Y
Yu Yang 已提交
204

205
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
206
  // Create local scopes
207
  if (local_scopes.empty()) {
C
chengduoZH 已提交
208
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
209 210
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
211
      member_->local_scopes_.emplace_back(&scope->NewScope());
212 213
    }
  } else {
C
chengduoZH 已提交
214
    member_->own_local_scope_ = false;
215 216
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
217
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
218
    }
Y
Yu Yang 已提交
219 220
  }

C
chengduoZH 已提交
221
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
222
// Bcast Parameters to all GPUs
P
peizhilin 已提交
223
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
224
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
225
    ncclUniqueId *nccl_id = nullptr;
Y
Yancey1989 已提交
226
    bool need_group_call = true;
Y
Yancey1989 已提交
227 228 229 230 231 232 233 234 235 236 237
    if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
      // parallel graph mode should initialize nccl by ncclCommInitRank since
      // it call nccl operator per device per thread.
      if (nccl_id_var == nullptr) {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
        *member_->global_scope_->Var(NCCL_ID_VARNAME)
             ->GetMutable<ncclUniqueId>() = *nccl_id;
      } else {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      }
Y
Yancey1989 已提交
238
      need_group_call = false;
Y
Yancey1989 已提交
239 240 241 242
    } else if (nccl_id_var != nullptr) {  // the other executor type.
      // the distributed training with nccl mode would initialize the nccl id in
      // startup_program.
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
243
    } else {
Y
Yancey1989 已提交
244
      // initlize NCCL by ncclCommInitAll, do not need nccl_id.
C
chengduoZH 已提交
245
    }
Y
Yancey1989 已提交
246

C
chengduoZH 已提交
247
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
Y
Yancey1989 已提交
248
        member_->places_, nccl_id, num_trainers, trainer_id, need_group_call));
C
chengduoZH 已提交
249 250
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
251
#endif
C
chengduoZH 已提交
252 253
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
254
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
255
  }
Y
Yancey1989 已提交
256
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
257

Y
Yancey1989 已提交
258 259 260
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
261
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275
  if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name, params,
          {member_->local_scopes_[i]}, member_->use_cuda_,
          member_->nccl_ctxs_.get());
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, params,
        member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
    graphs.push_back(std::move(graph));
  }
C
chengduoZH 已提交
276
#else
277 278 279
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yancey1989 已提交
280
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
281
#endif
X
Xin Pan 已提交
282

283 284
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
285 286 287 288 289 290 291 292 293 294 295
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
296

W
Wu Yi 已提交
297 298
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
299
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
300 301 302 303
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
304
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
305 306 307 308 309
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
310 311
  }

Y
yuyang18 已提交
312 313
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
314 315
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
Y
Yancey1989 已提交
316 317
  } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
318 319
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
320 321
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
322 323
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
C
chengduoZH 已提交
324
  }
Y
yuyang18 已提交
325 326

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
327
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
328
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
329 330
}

Y
Yancey1989 已提交
331
void ParallelExecutor::BCastParamsToDevices(
332
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
333
  // the initializing bcast, all vars would be bcast from device(0).
334
  for (auto &var : vars) {
X
Xin Pan 已提交
335
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
336
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
337 338 339 340
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
341
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
342
      VLOG(3) << "one in var not inited, return!";
343 344
      continue;
    }
345 346
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
347
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
348
      std::vector<void *> buffers;
349 350 351 352 353
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
354

X
Xin Pan 已提交
355
        if (i == 0) {
356 357
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
358
          auto local_scope = member_->local_scopes_[i];
359
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
360
          t->Resize(dims);
361
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
362
        }
363
        buffers.push_back(buffer);
364
      }
365

366 367 368 369 370 371
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
372 373
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
374
        }
375
        member_->nccl_ctxs_->WaitAll();
376
      }
C
chengduoZH 已提交
377 378 379
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
380 381
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
382
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
383
        if (i == 0) continue;
Y
Yancey1989 已提交
384

385 386
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
387 388 389 390

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
391 392 393 394 395 396
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
397
      }
Y
Stash  
Yu Yang 已提交
398 399
    }
  }
Y
Yu Yang 已提交
400
}
Y
Yu Yang 已提交
401

Y
Yu Yang 已提交
402 403
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
404 405 406
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
407 408
  }
#endif
Y
Yu Yang 已提交
409

X
Xin Pan 已提交
410
  platform::RecordBlock b(0);
S
sneaxiy 已提交
411 412
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
413
  }
S
sneaxiy 已提交
414 415 416
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
417
}
Y
Yu Yang 已提交
418

Y
Yu Yang 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
438 439 440 441 442
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
443 444
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
445
      auto t =
Y
Yu Yang 已提交
446
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
447 448
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
449 450 451 452
    }
  }
}

453
ParallelExecutor::~ParallelExecutor() {
454 455
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
456
  }
S
sneaxiy 已提交
457
  delete member_;
458 459
}

Y
Yu Yang 已提交
460
}  // namespace framework
Y
Yang Yang 已提交
461
}  // namespace paddle
S
sneaxiy 已提交
462

S
sneaxiy 已提交
463
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
464
USE_PASS(eager_deletion_pass);