parallel_executor.cc 29.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
51

Y
Yu Yang 已提交
52 53 54
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
55
      : places_(places) {
Y
Yu Yang 已提交
56
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
57 58
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
60 61 62
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
63
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
64 65 66 67
#endif
      });
    }
  }
Y
Yu Yang 已提交
68

69 70 71 72 73 74 75 76 77 78 79
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
80

81
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
82 83 84

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
102 103
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
104 105 106 107 108 109 110 111 112 113 114 115
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
116
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
117 118 119
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
120 121
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
122 123 124 125
      }

      flat_nccl_ids.push_back(nccl_id);

126 127
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
128 129 130 131 132 133
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
134 135
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
136 137 138 139 140 141 142 143 144 145 146
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

147 148
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
149 150

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
151 152 153 154 155 156 157 158
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
159 160 161 162 163 164 165 166 167

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
168

169 170 171 172
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
173 174
    }
  }
175

176
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
177 178 179 180 181 182 183 184 185 186 187
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

203 204
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
205
    InitNCCLCtxs(scope, *bst);
206
  }
207 208
#endif

209 210 211 212 213
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
214
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
215 216
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
217
  std::vector<Scope *> local_exec_scopes_;
218
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
219
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
220

221 222
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
223
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
224
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
225
#endif
C
chengduoZH 已提交
226 227
  bool own_local_scope_;
  bool use_cuda_;
228
  bool use_all_reduce_;
229
  size_t nranks_;
S
sneaxiy 已提交
230

231
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
232
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
233 234
};

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
  }

  // TODO(zjl): refactor MemoryOptimizePass as well!!!

  if (GetEagerDeletionThreshold() < 0) {
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
262 263 264 265 266
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
267
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
268
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
269 270
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
271 272
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
273
      } else {
S
sneaxiy 已提交
274 275
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
276 277
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
278
    } else {
S
sneaxiy 已提交
279
#endif
S
sneaxiy 已提交
280 281 282 283 284 285 286
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
287 288 289 290
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
291
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
292 293
  }

S
sneaxiy 已提交
294
  if (!gcs_.empty()) {
S
sneaxiy 已提交
295 296
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
297 298
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
299 300
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
301
                                     &last_live_ops_of_vars);
302
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
303
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
304 305 306 307 308
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

309 310 311 312
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
327 328 329 330 331 332 333 334
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
335
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
336
  member_->global_scope_ = scope;
337
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
338
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
339 340
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
341
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
342 343 344 345 346 347 348
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
349 350 351 352 353
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
354

355
  LOG(INFO) << string::Sprintf(
C
chengduo 已提交
356 357 358 359 360
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

361
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
362
  // Create local scopes
363
  if (local_scopes.empty()) {
C
chengduoZH 已提交
364
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
365 366
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
367
      member_->local_scopes_.emplace_back(&scope->NewScope());
368 369
    }
  } else {
C
chengduoZH 已提交
370
    member_->own_local_scope_ = false;
371 372
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
373
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
374
    }
Y
Yu Yang 已提交
375 376
  }

Q
Qiao Longfei 已提交
377
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
378
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
379 380
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
381
    graphs.push_back(graph);
D
dongdaxiang 已提交
382
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
383 384 385 386
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
387
  }
Q
Qiao Longfei 已提交
388

Y
Yancey1989 已提交
389 390 391
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
392 393 394 395
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
396 397 398 399
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
400

401
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
402
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
403
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
404

W
Wu Yi 已提交
405 406 407
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
408
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
409 410 411
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
412 413
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
414
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
415 416 417
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
418
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
419
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
420
    }
Y
Yu Yang 已提交
421
#endif
C
chengduoZH 已提交
422
  }
Y
Yan Xu 已提交
423 424
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
425
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
426 427 428 429 430 431 432 433 434
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
435
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
436
  if (need_broadcast()) {
C
chengduo 已提交
437
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
438
  }
439

Q
Qiao Longfei 已提交
440
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
441

Q
Qiao Longfei 已提交
442 443 444
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
445
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
446
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
447
    VLOG(3) << "use local async mode";
C
chengduo 已提交
448 449 450 451
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
452
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
453 454 455 456
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
457
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
458
    }
Q
Qiao Longfei 已提交
459
  } else {
C
chengduo 已提交
460 461 462
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
463
  }
C
chengduoZH 已提交
464
#else
C
chengduo 已提交
465
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
466
    VLOG(3) << "use local async mode";
C
chengduo 已提交
467 468 469
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
470
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
471
      graphs[i] = member_->build_strategy_.Apply(
472
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
473
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
474
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
475
    }
Q
can run  
Qiao Longfei 已提交
476
  } else {
C
chengduo 已提交
477 478 479
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
480
  }
Y
Yu Yang 已提交
481
#endif
482

483
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
484

Q
Qiao Longfei 已提交
485 486
  async_graphs[0] = graph;

487 488
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
489
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
490 491 492 493 494 495
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
496 497 498

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
499 500
    }
  }
Y
Yancey1989 已提交
501

W
Wu Yi 已提交
502 503
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
504
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
505 506 507 508
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
509
          << ir::GraphNum(*graph)
C
chengduo 已提交
510 511 512 513 514
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
515 516
  }

517 518 519 520 521 522 523 524 525 526 527 528
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
529
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
530 531
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
532 533 534
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
535
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
536
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
537
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
538 539
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
540 541 542 543 544
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
545 546 547 548
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
549
  } else {
Y
Yancey1989 已提交
550
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
551
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
552
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
553 554
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
555
    } else {
Q
can run  
Qiao Longfei 已提交
556
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
557
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
558 559
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
560
    }
561
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
562
  }
Y
yuyang18 已提交
563

Q
can run  
Qiao Longfei 已提交
564
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
565
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
566
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
567 568 569 570 571 572 573 574 575
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
576
  }
Y
Yu Yang 已提交
577 578
}

Y
Yancey1989 已提交
579
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
580
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
581
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
582
  // the initializing bcast, all vars would be bcast from device(0).
583
  for (auto &var : vars) {
X
Xin Pan 已提交
584
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
585
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
586 587 588 589
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
590
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
591
      VLOG(3) << "one in var not inited, return!";
592 593
      continue;
    }
594 595
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
596
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
597
      std::vector<void *> buffers;
C
chengduo 已提交
598
      buffers.reserve(member_->places_.size());
599 600 601 602 603
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
604

Y
Yan Xu 已提交
605
        if (i == 0 && trainer_id == 0) {
606 607
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
608
          auto local_scope = member_->local_scopes_[i];
609
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
610
          t->Resize(dims);
611
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
612
        }
613
        buffers.push_back(buffer);
614
      }
615

616 617 618
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
619
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
620 621
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
622
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
623 624
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
625
        }
626
        nccl_ctxs->WaitAll();
627
      }
C
chengduoZH 已提交
628
#endif
629 630
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
631
      for (size_t i = 1; i < member_->places_.size(); ++i) {
632 633
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
634

Q
Qiao Longfei 已提交
635
        auto copy_memory = [&] {
636 637 638
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
639 640
        };

Q
Qiao Longfei 已提交
641
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
642 643 644 645 646 647 648

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
649
        } else {
Q
can run  
Qiao Longfei 已提交
650
          share_memory();
651
        }
Y
Yu Yang 已提交
652
      }
Y
Stash  
Yu Yang 已提交
653 654
    }
  }
Y
Yu Yang 已提交
655
}
Y
Yu Yang 已提交
656

Y
Yu Yang 已提交
657 658
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
659
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
660 661 662
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
663 664
  }
#endif
Y
Yu Yang 已提交
665

X
Xin Pan 已提交
666
  platform::RecordBlock b(0);
667 668 669

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
670 671

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
672 673 674
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
675
}
Y
Yu Yang 已提交
676

Y
Yu Yang 已提交
677 678 679 680 681 682 683
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
684 685 686 687 688 689
      bool is_persistable = member_->IsPersistable(pair.first);
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
690 691 692 693 694 695 696 697
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
698
  for (auto &pair : tensors) {
Y
Yu Yang 已提交
699
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
C
chengduo 已提交
700 701 702 703 704 705
    if (member_->places_.size() != lod_tensors.size()) {
      bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
      auto error_info = string::Sprintf(
          "The number(%d) of samples of "
          "current batch is less than the count(%d) of "
          "devices(%s), currently, it is not allowed. ",
706
          lod_tensors.size(), member_->places_.size(),
C
chengduo 已提交
707 708 709 710 711 712 713 714
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
    }
715 716

    bool is_persistable = member_->IsPersistable(pair.first);
X
Xin Pan 已提交
717
    for (size_t j = 0; j < member_->places_.size(); ++j) {
718 719 720 721 722
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
723 724
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
725 726 727 728
    }
  }
}

X
Xin Pan 已提交
729 730 731 732 733 734 735
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

736
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
737
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
738
    const BuildStrategy &build_strategy) const {
739 740 741
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
742

Y
Yancey1989 已提交
743
  bool enable_parallel_graph = true;
744

X
Xin Pan 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
758 759 760
    }
  }

761
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
762
    if (build_strategy.enable_sequential_execution_ ||
763
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
764
      enable_parallel_graph = false;
765 766 767 768 769 770 771 772 773
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
774
  return enable_parallel_graph;
775 776
}

Y
Yu Yang 已提交
777
}  // namespace framework
Y
Yang Yang 已提交
778
}  // namespace paddle
S
sneaxiy 已提交
779

S
sneaxiy 已提交
780
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
781
USE_PASS(eager_deletion_pass);
782
USE_PASS(buffer_shared_inplace_pass);