parallel_executor.cc 19.6 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
qingqing01 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
C
chengduo 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
23

X
clean  
Xin Pan 已提交
24
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
25

Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
36
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
37
#endif
Y
Yu Yang 已提交
38
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
39 40
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
41
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
42
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
43

Y
Yang Yang 已提交
44
namespace paddle {
Y
Yu Yang 已提交
45 46
namespace framework {

Y
Yu Yang 已提交
47
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
48
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
49
static bool gProfileStarted = false;
Y
Yu Yang 已提交
50
#endif
Y
Yu Yang 已提交
51 52 53
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
54
      : places_(places) {
Y
Yu Yang 已提交
55
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
56 57
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
58
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
59 60 61
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
62
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
63 64 65 66
#endif
      });
    }
  }
Y
Yu Yang 已提交
67

68 69 70 71 72 73 74 75 76 77 78
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
79

S
sneaxiy 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
94
      }
S
sneaxiy 已提交
95
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
96 97 98
    }
  }

D
dzhwinter 已提交
99
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
100 101
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
102
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
103
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
104

P
peizhilin 已提交
105
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
106
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
107
#endif
C
chengduoZH 已提交
108 109
  bool own_local_scope_;
  bool use_cuda_;
110
  bool use_all_reduce_;
111
  size_t nranks_;
S
sneaxiy 已提交
112

S
sneaxiy 已提交
113 114 115 116 117 118
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
119 120
};

S
sneaxiy 已提交
121 122 123 124 125 126 127
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
128
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
129
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
130 131
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
132 133
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134
      } else {
S
sneaxiy 已提交
135 136
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
137 138
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
139
    } else {
S
sneaxiy 已提交
140
#endif
S
sneaxiy 已提交
141 142 143 144 145 146 147
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
148 149 150 151
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
152
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
153 154
  }

S
sneaxiy 已提交
155
  if (!gcs_.empty()) {
S
sneaxiy 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

182 183 184 185
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
186 187 188 189 190 191 192 193
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
194
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
195
  member_->global_scope_ = scope;
196
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
197
  member_->build_strategy_ = build_strategy;
198 199
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
200
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
201 202 203 204
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
205 206
  }

207
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
208
  // Create local scopes
209
  if (local_scopes.empty()) {
C
chengduoZH 已提交
210
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
211 212
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
213
      member_->local_scopes_.emplace_back(&scope->NewScope());
214 215
    }
  } else {
C
chengduoZH 已提交
216
    member_->own_local_scope_ = false;
217 218
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
219
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
220
    }
Y
Yu Yang 已提交
221 222
  }

X
Xin Pan 已提交
223 224
  std::unique_ptr<ir::Graph> temp_owned_graph(graph);

Y
Yancey1989 已提交
225 226 227
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
X
Xin Pan 已提交
228 229
  build_strategy.enable_parallel_graph_ = EnableParallelGraphExecution(
      *temp_owned_graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
230 231 232 233
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
234

C
chengduoZH 已提交
235
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
236
// Bcast Parameters to all GPUs
P
peizhilin 已提交
237
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
238 239 240
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
241
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
242
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
243
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
244
    }
X
Xin Pan 已提交
245
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
246 247 248 249
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
250
      }
C
chengduoZH 已提交
251
    }
Y
Yancey1989 已提交
252

C
chengduoZH 已提交
253
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
254 255
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269

    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    // Initialize device context's nccl comm
    // Note, more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto &nccl_ctx = dev_nccl_ctxs->at(dev_id);
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
C
chengduoZH 已提交
270 271
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
272
#endif
C
chengduoZH 已提交
273
  }
Y
Yan Xu 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
289
  }
Y
Yan Xu 已提交
290

X
Xin Pan 已提交
291
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
292

X
Xin Pan 已提交
293 294
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
P
peizhilin 已提交
295
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
296

X
Xin Pan 已提交
297 298 299 300
  temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graph), member_->places_, loss_var_name,
      member_->local_scopes_, member_->nranks_, member_->use_cuda_,
      member_->nccl_ctxs_.get());
X
Xin Pan 已提交
301
#else
X
Xin Pan 已提交
302 303
  temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graph), member_->places_, loss_var_name,
X
Xin Pan 已提交
304
      member_->local_scopes_, member_->nranks_, member_->use_cuda_);
X
Xin Pan 已提交
305

Y
Yu Yang 已提交
306
#endif
Y
Yancey1989 已提交
307
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
308 309
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
310
  if (max_memory_size >= 0) {
X
Xin Pan 已提交
311 312 313 314 315 316
    graph = member_
                ->PrepareGCAndRefCnts(std::move(temp_owned_graph),
                                      static_cast<size_t>(max_memory_size))
                .release();
  } else {
    graph = temp_owned_graph.release();
Y
Yancey1989 已提交
317 318
  }

319 320
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
321
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
322 323 324 325 326 327
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
328 329
    }
  }
Y
Yancey1989 已提交
330

W
Wu Yi 已提交
331 332
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
333
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
334 335 336 337
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
338
          << ir::GraphNum(*graph)
C
chengduo 已提交
339 340 341 342 343
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
344 345
  }

Y
Yancey1989 已提交
346
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
347
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
348 349
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
350
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
351
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
352 353 354 355
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
X
Xin Pan 已提交
356 357 358 359 360 361 362
  } else {
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
363
    }
C
chengduoZH 已提交
364
  }
Y
yuyang18 已提交
365 366

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
367
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
368
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
369 370
}

Y
Yancey1989 已提交
371
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
372
    const std::vector<std::string> &vars, int trainer_id) const {
X
Xin Pan 已提交
373
  // the initializing bcast, all vars would be bcast from device(0).
374
  for (auto &var : vars) {
X
Xin Pan 已提交
375
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
376
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
377 378 379 380
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
381
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
382
      VLOG(3) << "one in var not inited, return!";
383 384
      continue;
    }
385 386
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
387
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
388
      std::vector<void *> buffers;
C
chengduo 已提交
389
      buffers.reserve(member_->places_.size());
390 391 392 393 394
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
395

Y
Yan Xu 已提交
396
        if (i == 0 && trainer_id == 0) {
397 398
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
399
          auto local_scope = member_->local_scopes_[i];
400
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
401
          t->Resize(dims);
402
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
403
        }
404
        buffers.push_back(buffer);
405
      }
406

407 408 409 410 411 412
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
413 414
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
415
        }
416
        member_->nccl_ctxs_->WaitAll();
417
      }
C
chengduoZH 已提交
418 419 420
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
421 422
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
423
      for (size_t i = 1; i < member_->places_.size(); ++i) {
424 425
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
426 427 428 429

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
430 431 432 433 434 435
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
436
      }
Y
Stash  
Yu Yang 已提交
437 438
    }
  }
Y
Yu Yang 已提交
439
}
Y
Yu Yang 已提交
440

Y
Yu Yang 已提交
441 442
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
443 444 445
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
446 447
  }
#endif
Y
Yu Yang 已提交
448

X
Xin Pan 已提交
449
  platform::RecordBlock b(0);
S
sneaxiy 已提交
450 451
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
452
  }
S
sneaxiy 已提交
453 454 455
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
456
}
Y
Yu Yang 已提交
457

Y
Yu Yang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
477 478 479 480 481
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
482 483
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
484
      auto t =
Y
Yu Yang 已提交
485
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
486 487
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
488 489 490 491
    }
  }
}

X
Xin Pan 已提交
492 493 494 495 496 497 498
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

X
Xin Pan 已提交
499 500 501
bool ParallelExecutor::EnableParallelGraphExecution(
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
502
  if (!FLAGS_enable_parallel_graph) return false;
503

Y
Yancey1989 已提交
504
  bool enable_parallel_graph = true;
505

X
Xin Pan 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
519 520 521
    }
  }

Y
Yancey1989 已提交
522
  if (!member_->use_all_reduce_ || !member_->use_cuda_)
523

Y
Yancey1989 已提交
524 525 526
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
527
  return enable_parallel_graph;
528 529
}

Y
Yu Yang 已提交
530
}  // namespace framework
Y
Yang Yang 已提交
531
}  // namespace paddle
S
sneaxiy 已提交
532

S
sneaxiy 已提交
533
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
534
USE_PASS(eager_deletion_pass);