pybind.cc 69.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
21
#include <unordered_set>
C
chengduoZH 已提交
22 23
#include <utility>
#include <vector>
24

Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
30
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/framework/op_info.h"
35
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
36
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
41
#include "paddle/fluid/framework/version.h"
42
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
43
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
45
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
46
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
54
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
62

W
wopeizl 已提交
63
#ifndef _WIN32
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
65
#endif
66 67
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
68
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/tensor_py.h"
71
#include "paddle/fluid/string/to_string.h"
72

D
Dong Zhihong 已提交
73
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
74
#ifndef _WIN32
Y
Yi Wang 已提交
75
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
76
#endif
Y
Yi Wang 已提交
77 78
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
79 80
#endif

81 82 83 84
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
85 86
#include "pybind11/stl.h"

87 88 89 90
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
91 92 93
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

94
namespace paddle {
95
namespace pybind {
96
bool IsCompiledWithCUDA() {
97
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
98 99 100 101 102 103
  return false;
#else
  return true;
#endif
}

104 105 106 107 108 109 110 111
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

112 113 114 115 116 117 118 119
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

120
bool IsCompiledWithBrpc() {
121
#ifndef PADDLE_WITH_DISTRIBUTE
122 123
  return false;
#endif
124 125 126 127 128 129

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
130 131
}

Y
update  
Yancey1989 已提交
132
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
133
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
134 135 136 137 138 139
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

150
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
151 152 153
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
154
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
155

156
  m.doc() = "C++ core of PaddlePaddle";
157

158 159 160 161
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

162
  BindException(&m);
Y
Yu Yang 已提交
163

S
sneaxiy 已提交
164
  m.def(
S
sneaxiy 已提交
165
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
166 167 168 169
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
170 171 172
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
173 174 175
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
176
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
177

178
  m.def("_set_fuse_parameter_group_size",
179
        &paddle::framework::ir::SetFuseParameterGroupsSize);
180
  m.def("_set_fuse_parameter_memory_size",
181
        &paddle::framework::ir::SetFuseParameterMemorySize);
182

S
sneaxiy 已提交
183 184 185
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

186 187 188 189 190 191 192
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

193 194 195 196 197 198 199 200 201 202 203 204
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
      m, "BackwardStrategy", R"DOC()DOC");
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

M
minqiyang 已提交
205
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
206 207
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
208
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
209

M
minqiyang 已提交
210
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
211 212 213 214 215 216 217 218
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
219
      .def("_run_backward",
220 221 222 223
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst) {
             self.RunBackward(bckst);
           })
M
minqiyang 已提交
224
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
225
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
226
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
227
      .def("_grad_ivar",
M
minqiyang 已提交
228
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
229
           py::return_value_policy::reference)
M
minqiyang 已提交
230
      .def("_copy_to",
P
Paddle CI 已提交
231
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
232 233 234 235 236
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
237
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
238
      .def("_copy_to",
P
Paddle CI 已提交
239
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
240 241 242 243 244
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
245
           py::return_value_policy::take_ownership)
246 247
      .def("value",
           [](const imperative::VarBase &self) { return self.var_.get(); },
M
minqiyang 已提交
248
           py::return_value_policy::reference)
249 250 251
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
252
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
253 254 255 256
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
257

258
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
259
      .def(py::init<const std::string &>())
260
      .def("register_backward_hooks",
Y
Yan Xu 已提交
261 262 263
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
264 265 266 267 268 269 270 271 272 273
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
274 275 276 277 278 279
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
280
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
281
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
282 283 284 285 286 287
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
288 289
          py::return_value_policy::reference);

X
Xin Pan 已提交
290
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
291
  layer.def(py::init<>())
X
Xin Pan 已提交
292
      .def("forward", [](imperative::Layer &self,
293
                         const std::vector<imperative::VarBase *> &inputs) {
X
Xin Pan 已提交
294
        return self.Forward(inputs);
X
Xin Pan 已提交
295
      });
X
Xin Pan 已提交
296

X
polish  
Xin Pan 已提交
297
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
298
      .def(py::init<>())
X
Xin Pan 已提交
299 300
      .def_static(
          "apply",
X
Xin Pan 已提交
301
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
302
              -> std::vector<imperative::VarBase *> {
303 304 305 306 307
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  // TODO(minqiyang): use unique_name generator to set a name
308 309
                  outputs.emplace_back(new imperative::VarBase(
                      "", std::move(ret_vars[i]), nullptr, true));
310 311 312
                }

                return outputs;
X
Xin Pan 已提交
313 314
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
315 316 317 318 319
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
320

321
  BindImperative(&m);
322

323
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
324
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
325 326
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
327
      .def("_get_dims",
328
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
329
      .def("_set_dims",
Q
qijun 已提交
330
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
331
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
332
           })
Y
yuyang18 已提交
333
      .def("_set_layout",
D
dzhwinter 已提交
334 335 336
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
337
      .def("_alloc_float",
D
dzhwinter 已提交
338
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
339
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
340
           })
Y
yuyang18 已提交
341
      .def("_alloc_float",
Y
Yu Yang 已提交
342
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
343
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
344
           })
Y
yuyang18 已提交
345
      .def("_alloc_int",
Y
Yu Yang 已提交
346
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
347
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
348
           })
Y
yuyang18 已提交
349
      .def("_alloc_int",
D
dzhwinter 已提交
350
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
351
             self.mutable_data<int>(place);
Q
qijun 已提交
352
           })
Y
yuyang18 已提交
353
      .def("_alloc_int",
C
chengduoZH 已提交
354 355 356
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
357
      .def("_alloc_float",
C
chengduoZH 已提交
358 359 360
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
361
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
362 363
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
364
      .def("set", PyCPUTensorSetFromArray<double>)
365
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
366
      .def("set", PyCPUTensorSetFromArray<bool>)
367
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
368
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
369
      .def("set", PyCPUTensorSetFromArray<int8_t>)
370
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
371 372
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
373
      .def("set", PyCUDATensorSetFromArray<double>)
374
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
375
      .def("set", PyCUDATensorSetFromArray<bool>)
376
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
377
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
378
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
379 380 381 382 383 384
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
385
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
386
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
387
#endif
388
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
389 390 391 392
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
393
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
394
      .def("_dtype", [](Tensor &self) { return self.type(); })
395 396 397 398 399 400
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
401

X
Xin Pan 已提交
402 403 404 405 406 407 408 409 410
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
411 412 413
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
414

Z
Zeng Jinle 已提交
415 416 417
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
418

Z
Zeng Jinle 已提交
419 420 421
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
422

Z
Zeng Jinle 已提交
423
    x.shape = [5, 2]
X
Xin Pan 已提交
424

Z
Zeng Jinle 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
442 443 444 445 446 447 448 449 450 451 452 453

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
454
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
455 456 457 458 459 460 461 462 463 464 465 466 467 468
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
469
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
470 471 472 473 474
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
475
      .def("set_lod",
476
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
477
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
478
             LoD new_lod;
479 480
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
481 482
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
483
             self.set_lod(new_lod);
S
sneaxiy 已提交
484 485 486 487 488 489
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
490 491 492 493 494 495 496 497 498 499

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
500
           )DOC")
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
516 517 518 519
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
520
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
521 522
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
523 524

           Args:
525
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
526 527 528 529 530 531 532 533 534 535

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
536
           )DOC")
537 538 539 540 541 542 543 544
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
545 546 547 548 549 550
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
551 552 553 554 555 556 557 558 559 560 561

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
562
           )DOC")
G
gongweibao 已提交
563
      // Set above comments of set_lod.
564 565 566 567 568 569 570 571
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
572 573 574 575 576
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
577
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
578 579 580 581 582 583 584 585 586 587 588

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
589 590 591 592 593 594 595 596 597 598 599 600
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
601 602 603 604 605 606 607 608 609 610 611

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
612 613 614 615 616 617 618
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
619 620 621 622 623 624
           )DOC")
      .def("__str__", [](const LoDTensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
D
dangqingqing 已提交
625

Q
qijun 已提交
626 627 628 629 630 631 632 633 634 635 636
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
637 638
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
639 640
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
641 642 643 644 645 646 647 648 649
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
650
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
651
      .def("rows", [](SelectedRows &self) {
652 653 654 655 656
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
657
      });
Q
qijun 已提交
658

659
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
660 661 662

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
663
      .def(py::init<>())
664
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
665
      .def("set_int",
666 667
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
668 669 670 671 672 673 674
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
675
      .def("get_tensor",
676 677
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
678 679
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
680 681 682
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
683 684 685 686 687
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
688 689 690
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
691
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
692 693 694 695 696
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
697
#endif
Y
Refine  
Yu Yang 已提交
698 699 700 701 702
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
703
           py::return_value_policy::reference);
704

S
sneaxiy 已提交
705
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
706

S
sneaxiy 已提交
707 708 709 710
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
711

S
sneaxiy 已提交
712 713
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
714
      .def("push",
S
sneaxiy 已提交
715
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
716
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
717
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
718
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
719
           })
S
sneaxiy 已提交
720 721 722 723
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
724

S
sneaxiy 已提交
725
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
726 727
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
728
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
729 730 731 732
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
733
        py::return_value_policy::copy);
S
sneaxiy 已提交
734

S
sneaxiy 已提交
735
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
755 756
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
757
      .def("var",
758
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
759
             return self.Var(name);
Y
Yu Yang 已提交
760
           },
S
sneaxiy 已提交
761 762
           py::arg("name"),
           R"DOC(
763
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
764

765
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
766
           current scope, the variable would be created. Otherwise,
767
           return the existing variable.
S
sneaxiy 已提交
768 769

           Args:
770 771
               name (str): the variable name.

S
sneaxiy 已提交
772
           Returns:
773
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
774 775 776 777
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
778
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
779
           its parent scope. Return None if not found.
780

S
sneaxiy 已提交
781 782
           Args:
               name (str): the variable name.
783

S
sneaxiy 已提交
784
           Returns:
785
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
786
           )DOC",
787
           py::return_value_policy::reference)
788
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
789 790 791 792 793 794
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
795
           py::return_value_policy::reference)
S
sneaxiy 已提交
796 797 798
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
799 800
           )DOC")
      .def("_kids", &Scope::kids);
801

S
sneaxiy 已提交
802 803 804 805 806 807
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
808 809
        R"DOC(
        Create a new scope.
810

S
sneaxiy 已提交
811 812 813
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
814 815
        py::return_value_policy::reference);

Y
Yu Yang 已提交
816 817
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
818 819
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
820 821 822 823 824 825 826 827 828 829
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
830 831
    return ret_values;
  });
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
848
  m.def("prune", [](const ProgramDesc &origin,
849
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
850
    ProgramDesc prog_with_targets(origin);
851
    for (const auto &t : targets) {
852
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
853
    }
854
    proto::ProgramDesc pruned_desc;
855
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
856
    return new ProgramDesc(pruned_desc);
857
  });
858 859 860 861
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
862 863 864
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
865 866
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
867
  // clang-format off
Y
Yu Yang 已提交
868
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
869 870
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
871
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
872 873 874
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
875
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
876
                      -> paddle::platform::DeviceContext* {
877
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
878
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
879
#else
Q
qijun 已提交
880
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
881
#endif
C
chengduoZH 已提交
882 883 884 885 886 887 888 889 890 891 892
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
893
// clang-format on
P
peizhilin 已提交
894
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
895 896
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
897 898 899 900
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
901 902 903 904 905 906

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

907
        )DOC")
S
sneaxiy 已提交
908 909 910 911 912 913 914 915 916 917 918 919
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
920 921 922 923 924 925
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
926
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
927

928 929 930
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
931 932 933 934 935 936

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

937
        )DOC")
938
      .def(py::init<>())
S
sneaxiy 已提交
939 940 941 942 943 944
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
945
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
946

947 948 949
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
950 951 952 953 954 955

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

956
        )DOC")
S
sneaxiy 已提交
957
      .def("__init__",
S
sneaxiy 已提交
958
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
959 960 961
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
962
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
963
           })
S
sneaxiy 已提交
964 965 966 967 968 969 970 971
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
972 973
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
974 975
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
976 977 978 979 980
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
981 982
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
983 984 985 986 987 988
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
989 990 991 992
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
993 994
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
995 996 997 998 999
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1000
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1001
             self = gpu_place;
C
chengduoZH 已提交
1002 1003
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1004 1005
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1006
      });
Y
Yu Yang 已提交
1007

Y
Yu Yang 已提交
1008 1009 1010
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
1011
                    proto::OpDesc desc;
Y
Yu Yang 已提交
1012 1013 1014 1015 1016
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
1017
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
1018
                  })
1019
      .def("run",
1020
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1021 1022 1023
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1024
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1025 1026 1027 1028 1029
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1030 1031 1032 1033 1034 1035 1036
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1037 1038
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1039
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1040
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1041 1042 1043 1044
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1045

1046 1047 1048
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
1049
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1050
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1051
      .def("close", &Executor::Close)
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1066 1067 1068 1069 1070 1071 1072 1073
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1074 1075
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1076
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1077 1078
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1079
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1080 1081
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1082
      });
S
sneaxiy 已提交
1083

D
dzhwinter 已提交
1084
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1085
  m.def("init_glog", framework::InitGLOG);
1086
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1087 1088
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1089

1090
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1091
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1092
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1093
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1094
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1095 1096 1097 1098 1099 1100
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1101

1102
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1103
  m.def("get_fetch_variable", framework::GetFetchVariable);
1104
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1105

X
Xin Pan 已提交
1106 1107
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1108 1109 1110 1111 1112
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1113

Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1133 1134
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1145 1146 1147 1148 1149 1150
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1165

D
dzhwinter 已提交
1166 1167 1168
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1169
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1170
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1171
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1172

P
peizhilin 已提交
1173
#ifndef _WIN32
D
dangqingqing 已提交
1174 1175 1176
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1177
#endif
P
peizhilin 已提交
1178
#endif
Y
Yu Yang 已提交
1179

1180 1181 1182 1183
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1184
      .value("kAll", platform::ProfilerState::kAll)
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1198
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1199
  m.def("reset_profiler", platform::ResetProfiler);
1200
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1201 1202 1203
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1204

1205 1206
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1207
      .def("has", &ir::Pass::Has)
1208 1209 1210
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1211
           })
1212
      .def(
1213
          "set",
1214 1215 1216
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1217 1218
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1219 1220
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1221
        self.Apply(graph.get());
F
flame 已提交
1222
      });
1223

X
fix  
Xin Pan 已提交
1224 1225
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1240
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1241

Y
yuyang18 已提交
1242
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1243 1244 1245 1246
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1247 1248 1249
    Examples:
        .. code-block:: python

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1260 1261 1262
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1263 1264
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1265 1266
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1267 1268
        )DOC");

Y
yuyang18 已提交
1269
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1270 1271 1272 1273 1274
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1285
      .def_property(
1286 1287 1288 1289
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1290 1291 1292 1293
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1294 1295 1296 1297 1298
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1299 1300 1301 1302
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1303 1304 1305 1306 1307 1308 1309
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1321
              )DOC")
Q
Qiao Longfei 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1333 1334 1335 1336 1337
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1338

Y
yuyang18 已提交
1339
  exec_strategy.def_property(
Y
yuyang18 已提交
1340 1341 1342 1343 1344 1345 1346
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1347 1348
      });

C
chengduo 已提交
1349 1350 1351 1352
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1353 1354 1355
    Examples:
        .. code-block:: python

F
flame 已提交
1356 1357 1358
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1359
)DOC");
Y
yuyang18 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1376
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1377
            self.reduce_ = strategy;
C
chengduo 已提交
1378 1379
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
F
flame 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
                'AllReduce' and 'Reduce'. If you want that all the parameters'
                optimization are done on all devices independently, you should choose 'AllReduce';
                if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                to different devices, and then broadcast the optimized parameter to other devices.
                In some models, `Reduce` is faster. Default 'AllReduce'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1393 1394 1395 1396 1397
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1398
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1399
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1400 1401
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
F
flame 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                Default 'CoeffNumDevice'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.gradient_scale_strategy = True
                   )DOC")
Y
yuyang18 已提交
1414 1415 1416 1417
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1418
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1419
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1420 1421
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
F
flame 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.debug_graphviz_path = ""
                    )DOC")
S
sneaxiy 已提交
1432 1433 1434 1435 1436 1437
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1438
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1439 1440
            self.enable_sequential_execution_ = b;
          },
F
flame 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1450 1451 1452 1453 1454 1455
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1456
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1457 1458
            self.remove_unnecessary_lock_ = b;
          },
F
flame 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1468 1469 1470 1471 1472 1473
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
      .def_property("use_hierarchical_allreduce_",
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
      .def_property("hierarchical_allreduce_inter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })
      .def_property("hierarchical_allreduce_exter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_exter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_exter_nranks_ = nranks;
                    })

C
chengduo 已提交
1514 1515 1516 1517 1518 1519
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1520
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1521 1522 1523
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1601 1602 1603
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1614 1615 1616 1617
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1618 1619 1620
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1621
      .def_property(
D
dzhwinter 已提交
1622 1623 1624
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1625 1626 1627 1628
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1629 1630 1631 1632
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1633 1634 1635 1636 1637 1638 1639 1640 1641
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1642
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1643
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1644 1645 1646 1647 1648
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1649 1650

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1651
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1652
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1653
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1654 1655 1656 1657
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1658 1659 1660 1661 1662
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1663 1664 1665
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1666 1667 1668 1669
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1670 1671 1672 1673 1674 1675
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1676

1677
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1678
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1679
  BindFleetWrapper(&m);
W
wopeizl 已提交
1680
#ifndef _WIN32
D
dongdaxiang 已提交
1681
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1682
#endif
F
flame 已提交
1683 1684
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1685
  BindInferenceApi(&m);
1686
  BindDataset(&m);
1687 1688 1689
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1690
}
1691
}  // namespace pybind
1692
}  // namespace paddle