pybind.cc 63.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
21
#include <unordered_set>
C
chengduoZH 已提交
22 23
#include <utility>
#include <vector>
24

Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
30
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/framework/op_info.h"
35
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
36
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
41
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
43
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
47
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/platform/enforce.h"
49
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
52
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
54
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
57
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
58
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/ir.h"
60

W
wopeizl 已提交
61
#ifndef _WIN32
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
63
#endif
64 65
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
66
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/tensor_py.h"
69
#include "paddle/fluid/string/to_string.h"
70

D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

79 80 81 82
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
83 84
#include "pybind11/stl.h"

85 86 87 88
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
89 90 91
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

92
namespace paddle {
93
namespace pybind {
94
bool IsCompiledWithCUDA() {
95
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
96 97 98 99 100 101
  return false;
#else
  return true;
#endif
}

102 103 104 105 106 107 108 109
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

110 111 112 113 114 115 116 117
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

118
bool IsCompiledWithBrpc() {
119
#ifndef PADDLE_WITH_DISTRIBUTE
120 121
  return false;
#endif
122 123 124 125 126 127

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
128 129
}

Y
update  
Yancey1989 已提交
130
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
131
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
132 133 134 135 136 137
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
138 139 140 141 142 143 144 145 146 147
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

148
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
149 150 151
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
152
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
153

154
  m.doc() = "C++ core of PaddlePaddle";
155

156 157 158 159
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

160
  BindException(&m);
Y
Yu Yang 已提交
161

S
sneaxiy 已提交
162
  m.def(
S
sneaxiy 已提交
163
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
164 165 166 167
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
168 169 170
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
171 172 173
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
174
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
175

176
  m.def("_set_fuse_parameter_group_size",
177
        &paddle::framework::ir::SetFuseParameterGroupsSize);
178
  m.def("_set_fuse_parameter_memory_size",
179
        &paddle::framework::ir::SetFuseParameterMemorySize);
180

S
sneaxiy 已提交
181 182 183
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

184 185 186 187 188 189 190
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

191
  BindImperative(&m);
192

193
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
194
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
195 196
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
197
      .def("_get_dims",
198
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
199
      .def("_set_dims",
Q
qijun 已提交
200
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
201
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
202
           })
Y
yuyang18 已提交
203
      .def("_set_layout",
D
dzhwinter 已提交
204 205 206
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
207
      .def("_alloc_float",
D
dzhwinter 已提交
208
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
209
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
210
           })
Y
yuyang18 已提交
211
      .def("_alloc_float",
Y
Yu Yang 已提交
212
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
213
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
214
           })
Y
yuyang18 已提交
215
      .def("_alloc_int",
Y
Yu Yang 已提交
216
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
217
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
218
           })
Y
yuyang18 已提交
219
      .def("_alloc_int",
D
dzhwinter 已提交
220
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
221
             self.mutable_data<int>(place);
Q
qijun 已提交
222
           })
Y
yuyang18 已提交
223
      .def("_alloc_int",
C
chengduoZH 已提交
224 225 226
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
227
      .def("_alloc_float",
C
chengduoZH 已提交
228 229 230
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
231
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
232 233
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
234
      .def("set", PyCPUTensorSetFromArray<double>)
235
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
236
      .def("set", PyCPUTensorSetFromArray<bool>)
237
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
238
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
239
      .def("set", PyCPUTensorSetFromArray<int8_t>)
240
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
241 242
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
243
      .def("set", PyCUDATensorSetFromArray<double>)
244
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
245
      .def("set", PyCUDATensorSetFromArray<bool>)
246
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
247
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
248
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
249 250 251 252 253 254
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
255
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
256
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
257
#endif
258
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
259 260 261 262
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
263
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
264
      .def("_dtype", [](Tensor &self) { return self.type(); })
265 266 267 268 269 270
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
271

X
Xin Pan 已提交
272 273 274 275 276 277 278 279 280
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
281 282 283
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
284

Z
Zeng Jinle 已提交
285 286 287
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
288

Z
Zeng Jinle 已提交
289 290 291
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
292

Z
Zeng Jinle 已提交
293
    x.shape = [5, 2]
X
Xin Pan 已提交
294

Z
Zeng Jinle 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
312 313 314 315 316 317 318 319 320 321 322 323

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
324
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
325 326 327 328 329 330 331 332 333 334 335 336 337 338
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
339
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
340 341 342 343 344
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
345
      .def("set_lod",
346
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
347
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
348
             LoD new_lod;
349 350
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
351 352
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
353
             self.set_lod(new_lod);
S
sneaxiy 已提交
354 355 356 357 358 359
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
360 361 362 363 364 365 366 367 368 369

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
370
           )DOC")
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
386 387 388 389
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
390
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
391 392
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
393 394

           Args:
395
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
396 397 398 399 400 401 402 403 404 405

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
406
           )DOC")
407 408 409 410 411 412 413 414
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
415 416 417 418 419 420
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
421 422 423 424 425 426 427 428 429 430 431

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
432
           )DOC")
G
gongweibao 已提交
433
      // Set above comments of set_lod.
434 435 436 437 438 439 440 441
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
442 443 444 445 446
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
447
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
448 449 450 451 452 453 454 455 456 457 458

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
459 460 461 462 463 464 465 466 467 468 469 470
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
471 472 473 474 475 476 477 478 479 480 481

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
482 483 484 485 486 487 488
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
489 490 491 492 493 494
           )DOC")
      .def("__str__", [](const LoDTensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
D
dangqingqing 已提交
495

Q
qijun 已提交
496 497 498 499 500 501 502 503 504 505 506
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
507 508
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
509 510
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
511 512 513 514 515 516 517 518 519
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
520
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
521
      .def("rows", [](SelectedRows &self) {
522 523 524 525 526
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
527
      });
Q
qijun 已提交
528

529
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
530 531 532

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
533
      .def(py::init<>())
534
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
535
      .def("set_int",
536 537
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
538 539 540 541 542 543 544
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
545
      .def("get_tensor",
546 547
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
548 549
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
550 551 552
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
553 554 555 556 557
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
558 559 560
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
561
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
562 563 564 565 566
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
567
#endif
Y
Refine  
Yu Yang 已提交
568 569 570 571 572
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
573
           py::return_value_policy::reference);
574

S
sneaxiy 已提交
575
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
576

S
sneaxiy 已提交
577 578 579 580
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
581

S
sneaxiy 已提交
582 583
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
584
      .def("push",
S
sneaxiy 已提交
585
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
586
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
587
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
588
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
589
           })
S
sneaxiy 已提交
590 591 592 593
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
594

S
sneaxiy 已提交
595
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
596 597
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
598
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
599 600 601 602
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
603
        py::return_value_policy::copy);
S
sneaxiy 已提交
604

S
sneaxiy 已提交
605
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
625 626
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
627
      .def("var",
628
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
629
             return self.Var(name);
Y
Yu Yang 已提交
630
           },
S
sneaxiy 已提交
631 632
           py::arg("name"),
           R"DOC(
633
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
634

635
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
636
           current scope, the variable would be created. Otherwise,
637
           return the existing variable.
S
sneaxiy 已提交
638 639

           Args:
640 641
               name (str): the variable name.

S
sneaxiy 已提交
642
           Returns:
643
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
644 645 646 647
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
648
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
649
           its parent scope. Return None if not found.
650

S
sneaxiy 已提交
651 652
           Args:
               name (str): the variable name.
653

S
sneaxiy 已提交
654
           Returns:
655
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
656
           )DOC",
657
           py::return_value_policy::reference)
658
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
659 660 661 662 663 664
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
665
           py::return_value_policy::reference)
S
sneaxiy 已提交
666 667 668
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
669 670
           )DOC")
      .def("_kids", &Scope::kids);
671

S
sneaxiy 已提交
672 673 674 675 676 677
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
678 679
        R"DOC(
        Create a new scope.
680

S
sneaxiy 已提交
681 682 683
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
684 685
        py::return_value_policy::reference);

Y
Yu Yang 已提交
686 687
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
688 689
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
690 691 692 693 694 695 696 697 698 699
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
700 701
    return ret_values;
  });
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
718
  m.def("prune", [](const ProgramDesc &origin,
719
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
720
    ProgramDesc prog_with_targets(origin);
721
    for (const auto &t : targets) {
722
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
723
    }
724
    proto::ProgramDesc pruned_desc;
725
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
726
    return new ProgramDesc(pruned_desc);
727
  });
728 729 730 731
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
732 733 734
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
735 736
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
737
  // clang-format off
Y
Yu Yang 已提交
738
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
739 740
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
741
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
742 743 744
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
745
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
746
                      -> paddle::platform::DeviceContext* {
747
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
748
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
749
#else
Q
qijun 已提交
750
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
751
#endif
C
chengduoZH 已提交
752 753 754 755 756 757 758 759 760 761 762
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
763
// clang-format on
P
peizhilin 已提交
764
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
765 766
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
767 768 769 770
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
771 772 773 774 775 776

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

777
        )DOC")
S
sneaxiy 已提交
778 779 780 781 782 783 784 785 786 787 788 789
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
790 791 792 793 794 795
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
796
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
797

798 799 800
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
801 802 803 804 805 806

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

807
        )DOC")
808
      .def(py::init<>())
S
sneaxiy 已提交
809 810 811 812 813 814
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
815
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
816

817 818 819
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
820 821 822 823 824 825

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

826
        )DOC")
S
sneaxiy 已提交
827
      .def("__init__",
S
sneaxiy 已提交
828
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
829 830 831
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
832
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
833
           })
S
sneaxiy 已提交
834 835 836 837 838 839 840 841
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
842 843
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
844 845
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
846 847 848 849 850
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
851 852
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
853 854 855 856 857 858
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
859 860 861 862
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
863 864
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
865 866 867 868 869
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
870
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
871
             self = gpu_place;
C
chengduoZH 已提交
872 873
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
874 875
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
876
      });
Y
Yu Yang 已提交
877

Y
Yu Yang 已提交
878 879 880
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
881
                    proto::OpDesc desc;
Y
Yu Yang 已提交
882 883 884 885 886
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
887
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
888
                  })
889
      .def("run",
890
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
891 892 893
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
894
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
895 896 897 898 899
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
900 901 902 903 904 905 906
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
907 908
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
909
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
910
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
911 912 913 914
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
915

916 917 918
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
919
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
920
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
921
      .def("close", &Executor::Close)
922 923 924 925 926 927 928 929 930 931 932 933 934 935
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
936 937 938 939 940 941 942 943
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
944 945
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
946 947
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
948
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
949 950
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
951
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
952 953
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
954
      });
S
sneaxiy 已提交
955

D
dzhwinter 已提交
956
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
957
  m.def("init_glog", framework::InitGLOG);
958
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
959 960
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
961

962
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
963
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
964
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
965
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
966
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
967 968 969 970 971 972
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
973

974
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
975
  m.def("get_fetch_variable", framework::GetFetchVariable);
976
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
977

X
Xin Pan 已提交
978 979
  m.def("_is_program_version_supported", IsProgramVersionSupported);

980 981 982 983 984
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
985

Y
Yu Yang 已提交
986 987 988 989 990 991 992 993 994
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
995 996 997 998 999 1000 1001 1002 1003 1004
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1005 1006
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1017 1018 1019 1020 1021 1022
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1037

D
dzhwinter 已提交
1038 1039 1040
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1041
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1042
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1043
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1044

P
peizhilin 已提交
1045
#ifndef _WIN32
D
dangqingqing 已提交
1046 1047 1048
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1049
#endif
P
peizhilin 已提交
1050
#endif
Y
Yu Yang 已提交
1051

1052 1053 1054 1055
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1056
      .value("kAll", platform::ProfilerState::kAll)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1070
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1071
  m.def("reset_profiler", platform::ResetProfiler);
1072
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1073 1074 1075
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1076

1077 1078
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1079
      .def("has", &ir::Pass::Has)
1080 1081 1082
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1083
           })
1084
      .def(
1085
          "set",
1086 1087 1088
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1089 1090
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1091 1092
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1093
        self.Apply(graph.get());
F
flame 已提交
1094
      });
1095

X
fix  
Xin Pan 已提交
1096 1097
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1112
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1113

Y
yuyang18 已提交
1114
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1115 1116 1117 1118
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1119 1120 1121
    Examples:
        .. code-block:: python

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1132 1133 1134
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1135 1136
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1137 1138
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1139 1140
        )DOC");

Y
yuyang18 已提交
1141
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1142 1143 1144 1145 1146
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1157
      .def_property(
1158 1159 1160 1161
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1162 1163 1164 1165
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1166 1167 1168 1169 1170
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1171 1172 1173 1174
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1175 1176 1177 1178 1179 1180 1181
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1193
              )DOC")
Q
Qiao Longfei 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1205 1206 1207 1208 1209
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1210

Y
yuyang18 已提交
1211
  exec_strategy.def_property(
Y
yuyang18 已提交
1212 1213 1214 1215 1216 1217 1218
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1219 1220
      });

C
chengduo 已提交
1221 1222 1223 1224
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1225 1226 1227
    Examples:
        .. code-block:: python

F
flame 已提交
1228 1229 1230
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1231
)DOC");
Y
yuyang18 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1248
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1249
            self.reduce_ = strategy;
C
chengduo 已提交
1250 1251
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
F
flame 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
                'AllReduce' and 'Reduce'. If you want that all the parameters'
                optimization are done on all devices independently, you should choose 'AllReduce';
                if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                to different devices, and then broadcast the optimized parameter to other devices.
                In some models, `Reduce` is faster. Default 'AllReduce'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1265 1266 1267 1268 1269
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1270
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1271
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1272 1273
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
F
flame 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
                ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                Default 'CoeffNumDevice'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.gradient_scale_strategy = True
                   )DOC")
Y
yuyang18 已提交
1286 1287 1288 1289
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1290
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1291
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1292 1293
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
F
flame 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.debug_graphviz_path = ""
                    )DOC")
S
sneaxiy 已提交
1304 1305 1306 1307 1308 1309
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1310
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1311 1312
            self.enable_sequential_execution_ = b;
          },
F
flame 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1322 1323 1324 1325 1326 1327
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1328
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1329 1330
            self.remove_unnecessary_lock_ = b;
          },
F
flame 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1340 1341 1342 1343
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1344 1345 1346
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1347 1348
            self.num_trainers_ = num_trainers;
          })
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
      .def_property("use_hierarchical_allreduce_",
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
      .def_property("hierarchical_allreduce_inter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })
      .def_property("hierarchical_allreduce_exter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_exter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_exter_nranks_ = nranks;
                    })

C
chengduo 已提交
1389 1390 1391 1392 1393 1394
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1395
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1396 1397 1398
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1476 1477 1478
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1489 1490 1491
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1492 1493 1494 1495 1496 1497 1498 1499 1500
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1501 1502 1503
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1504
      .def_property(
D
dzhwinter 已提交
1505 1506 1507
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1508 1509 1510 1511
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1512 1513 1514 1515
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1516 1517 1518 1519 1520 1521 1522 1523 1524
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1525
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1526
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1527 1528 1529 1530 1531
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1532 1533

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1534
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1535
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1536
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1537 1538 1539 1540
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1541 1542 1543 1544 1545
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1546 1547 1548
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1549 1550 1551 1552
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1553 1554 1555 1556 1557 1558
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1559

1560
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1561
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1562
  BindFleetWrapper(&m);
W
wopeizl 已提交
1563
#ifndef _WIN32
D
dongdaxiang 已提交
1564
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1565
#endif
F
flame 已提交
1566 1567
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1568
  BindInferenceApi(&m);
1569
  BindDataset(&m);
1570 1571 1572
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1573
}
1574
}  // namespace pybind
1575
}  // namespace paddle