backward.py 85.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
19
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
20
from . import core
F
update  
fengjiayi 已提交
21
import collections
22
import copy
23
import six
24
import logging
M
minqiyang 已提交
25
from .. import compat as cpt
26
from . import unique_name
27
from . import log_helper
L
liym27 已提交
28
import paddle.fluid
29
from .data_feeder import check_type
M
mapingshuo 已提交
30 31 32 33 34
__all__ = [
    'append_backward',
    'gradients',
]

35 36 37
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
38 39 40 41 42 43 44 45 46 47 48

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
49
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
50
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
51 52 53 54 55 56 57 58 59 60 61
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
62
            if op.desc.type() == "seed":
M
mapingshuo 已提交
63 64 65 66 67 68 69 70 71 72 73
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
74 75 76 77 78
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
103

M
mapingshuo 已提交
104 105
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
119
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
120 121 122 123 124 125 126 127 128
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

155 156 157 158
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
159
                _logger.info(
160 161 162 163 164 165 166 167 168 169 170
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
193 194 195 196 197 198 199

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

M
mapingshuo 已提交
200 201 202 203 204
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
205 206
                attrs={'seed': seed,
                       'op_device': op_device})
M
mapingshuo 已提交
207 208 209 210 211 212 213 214
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
228
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
245 246
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
266 267
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
281 282


283 284
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
285
    Traverse all ops in op_descs[begin_idx : end_idx],
286 287
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
288 289 290
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
291
        end_idx = len(op_descs)
292 293 294 295 296 297 298 299 300 301 302 303 304
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
305 306


F
fengjiayi 已提交
307
def _create_op_desc_(op_type, inputs, outputs, attrs):
308 309 310
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
311 312
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
313
    for para, args in six.iteritems(inputs):
314 315 316 317 318
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
319
    for para, args in six.iteritems(outputs):
320 321 322 323 324
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
325 326

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
327
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
328 329 330 331

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
332 333
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
334
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
335 336 337
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
338
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
339 340 341
    return op_desc


M
mapingshuo 已提交
342 343 344 345 346 347 348 349 350 351
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
352 353
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
354 355 356 357
        })
    return op_desc


358
def _infer_var_data_type_shape_(grad_var_name, block):
359
    """
360
    Infer the data type and shape of given grad variable
361
    """
M
minqiyang 已提交
362 363 364 365
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
366
        grad_var.set_dtype(fwd_var.dtype())
367
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
368
    else:
369
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
370 371


F
fengjiayi 已提交
372
def _all_in_set_(cands, s):
373 374 375
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
376 377
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
378 379 380 381 382 383
    for c in cands:
        if not c in s:
            return False
    return True


384 385 386 387 388 389
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
390 391
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
392 393
    for c in literal_cands:
        if c in literal_set:
394 395 396 397
            return True
    return False


F
fengjiayi 已提交
398
def _strip_grad_suffix_(name):
399
    """
M
mapingshuo 已提交
400
    Strip the grad suffix from the given variable name
401 402 403
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
404
    name = cpt.to_text(name)
M
minqiyang 已提交
405
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
406
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
407 408 409


def _append_grad_suffix_(name):
410 411 412 413
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
414
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
415 416


T
tangwei12 已提交
417 418 419 420 421
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
422 423 424 425 426 427
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
428 429 430 431
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
432 433 434
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
435 436 437 438 439
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
456 457
                             {"use_mkldnn": False,
                              "op_device": op_device}))
458 459 460
    renamed_vars[var_name] = [var_name]


461
def _addup_repetitive_outputs_(op_descs, block_idx):
462 463
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
464 465
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
466 467
    `sum_op`s are added to implement the accumulate.
    """
468
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
469 470
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
471
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
472
    renamed_vars = collections.defaultdict(list)
473
    renamed_var_start_idx = collections.defaultdict(list)
474
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
475
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
476 477 478 479 480
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
481
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
482 483
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
484
            if len(renamed_vars[var_name]) > 1:
485
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
486 487 488
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
489
                else:
W
WangXi 已提交
490 491 492
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
493

F
update  
fengjiayi 已提交
494
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
495 496
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
497 498
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
499
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
500
                #    continue
F
fengjiayi 已提交
501 502 503 504 505 506 507
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
508
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
509 510
                else:
                    if len(renamed_vars[var_name]) == 1:
511
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
512 513 514 515
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
516 517 518 519 520 521
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
522 523
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

537
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
538
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
539
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
540 541 542
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
543
                    # record the latest device
544
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
545

M
minqiyang 已提交
546
    for var_name, inputs in six.iteritems(renamed_vars):
547 548
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
549 550 551
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
552
            else:
553 554 555
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
556

F
fengjiayi 已提交
557
    # sum_op descs are sorted according to their insert position
558 559 560 561 562 563 564 565 566 567
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
568 569 570 571 572

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
573 574 575 576
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
577
        2. all grad inputs of the grad op are in 'no_grad_set'
578
    """
F
fengjiayi 已提交
579 580

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
581 582
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
583
            return True
584 585 586 587
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
588
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
589 590 591
            return True
        return False

F
fengjiayi 已提交
592
    # Remove ops whose outputs are all in no_grad_dict
593 594 595 596
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
597 598
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
599
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
600
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
601
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
602
            if core.grad_var_suffix() in arg and arg in no_grad_set:
603
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
604 605
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
606 607
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
608

609
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
610 611 612 613

    return op_descs


C
chengduo 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
629
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
729 730 731
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
732
    # not_need_op_descs will be whole graph, this IF clause avoids it.
733 734 735
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
736 737


Y
Yang Yang 已提交
738 739
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
740
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
741 742 743
    return proto.__str__()


M
mapingshuo 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
759
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
760 761 762 763 764
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
765 766 767
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
768 769
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
770 771
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
772 773
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
774
    """
M
mapingshuo 已提交
775 776

    checkpoints_name = [x.name for x in checkpoints]
777
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
778 779
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
780
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
781
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
782
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
783
    program_stat.build_stats()
M
mapingshuo 已提交
784 785

    # 1) find ops between checkpoints, i.e. recompute_segments
786
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
787 788
    segments = []

789
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
790 791 792 793 794 795 796
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
797
            # only count the last generate op
M
mapingshuo 已提交
798 799 800 801 802 803
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
804
        pre_segment_end_idx = -1
M
mapingshuo 已提交
805 806 807
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
808 809
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
810 811 812 813
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
814 815 816
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
817
                segments.append([min_idx, max_idx + 1])
818 819 820
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
821

M
mapingshuo 已提交
822 823 824 825 826 827
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
828

J
JZ-LIANG 已提交
829
    for i, (idx1, idx2) in enumerate(recompute_segments):
830 831
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
832
        ), ops[idx1].desc.input_arg_names()))
833
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
834
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
835 836
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
837
        ), ops[idx1].desc.input_arg_names()))
838
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
839 840
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
841
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
842
    vars_should_be_hold = []
843
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
844 845 846
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
847 848

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
849
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
850 851
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
852
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
853
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
854
    # c. input variables are checkpoints
M
mapingshuo 已提交
855 856 857
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
858
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
859 860 861 862 863 864
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
865
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
866 867 868 869 870 871 872 873 874
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
875 876 877 878 879
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
894 895 896 897 898
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
921 922 923 924 925 926 927 928 929 930 931

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
932
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
933 934 935 936
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
937
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
938 939 940 941 942 943
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
944
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
945 946 947
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
948 949 950 951 952 953 954

            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
955 956 957 958 959
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
960
    # 3.d. add sum op for repetitive_outputs
961
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
962
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
963 964 965 966 967 968
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


969 970 971 972 973
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
974 975
    """
    Get output vars in subblock which will be assigned to parent block.
976 977 978 979 980 981 982 983 984 985 986 987
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
988
    """
989

990 991 992
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1005
            for op_desc in sub_block.ops:
1006
                if var in op_desc.output_arg_names:
1007
                    for name in op_desc.input_arg_names:
1008
                        sub_outputs.append(sub_block._var_recursive(name))
1009

1010 1011
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1012
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1013
                                           no_grad_set, op_path_dict, is_while)
1014 1015 1016 1017
        return sub_block_op_path
    return sub_block.ops


1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1031 1032
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1033 1034 1035
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1036
                          callbacks=None,
1037 1038
                          input_grad_names_set=None,
                          op_path_dict=None):
1039 1040 1041 1042 1043
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1044
        ops(Op): the forward operators whose backward ops need to be added
1045
        target_block(Block): the block which is going to hold new generated grad ops
1046
        no_grad_dict(dict):
1047
            key(int)  block index
T
tianshuo78520a 已提交
1048
            val(set) a set of variable names. These variables have no gradient
1049 1050 1051
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1052 1053 1054 1055
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1056 1057 1058
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1059
    """
Y
Yang Yang 已提交
1060
    if callbacks is not None:
1061
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1062 1063 1064
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1065

F
fengjiayi 已提交
1066
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1067 1068
    grad_op_descs = []
    program = block.program
1069

1070 1071
    rename_var_map = {}

1072
    # add grad_op_desc by reversed ops
1073
    for op in reversed(ops):
F
fengjiayi 已提交
1074 1075 1076
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1077
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1078
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1079
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1080 1081 1082
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1083
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1084
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1085
                                  no_grad_dict, grad_to_var, callbacks,
1086
                                  input_grad_names_set, op_path_dict)
1087
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1088

W
Wu Yi 已提交
1089
            program._rollback()
F
fengjiayi 已提交
1090 1091
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1092
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1093
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1094
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1095

1096 1097
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1098 1099 1100 1101
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1157

M
mapingshuo 已提交
1158
    # sum parameter's gradients' var given multiple var gradient
1159
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1160

M
mapingshuo 已提交
1161 1162
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1163 1164
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1165

M
mapingshuo 已提交
1166
    # remove some backward ops
C
chengduo 已提交
1167
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1168

C
chengduo 已提交
1169 1170 1171
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1172

F
fengjiayi 已提交
1173
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1174 1175
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1176
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1177 1178
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1179
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1180
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1181
        if callbacks is not None:
1182
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1183 1184
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1185

F
fengjiayi 已提交
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1207
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1208 1209 1210 1211
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1212
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1225
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1226
    """
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1244 1245 1246
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1247
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1248
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1266
        # If the outputs of grad op is empty, just remove it
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1292
                        continue
1293

F
fengjiayi 已提交
1294 1295 1296
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1297 1298
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1299
                continue
M
minqiyang 已提交
1300
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1301
            new_vars.add(grad_var_name)
1302
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1303 1304 1305 1306 1307
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1308

F
fengjiayi 已提交
1309 1310
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1311
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1312

1313 1314 1315
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1316

1317 1318 1319 1320 1321 1322
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1323
                op_desc._rename_input(name, var_map[name])
1324 1325

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1326 1327
            if "@GRAD" not in name:
                continue
1328
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1329
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1330
                op_desc._rename_output(name, new_name)
1331 1332
                var_map[name] = new_name

M
minqiyang 已提交
1333
    for g, ng in six.iteritems(var_map):
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1345
        for var in list(block.vars.values()):
1346 1347 1348 1349 1350 1351 1352
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1384
@framework.static_only
M
mapingshuo 已提交
1385 1386 1387 1388 1389
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1390
    """
1391 1392
    :api_attr: Static Graph

1393
    This function appends backward part to main_program.
F
fengjiayi 已提交
1394

1395 1396
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1397 1398
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1399

1400 1401
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1402

1403
    Parameters:
1404
        loss(Tensor): The loss Tensor of the network.
1405
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1406
                                           that need to be updated by optimizers.
1407
                                           If it is None, all parameters
F
fengjiayi 已提交
1408
                                           will be updated.
1409
                                           Default: None.
1410 1411
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1412
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1413
                               be automatically added into this set.
1414
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1415
                               Default: None.
1416
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1417
                                               The callbacks are used for
1418 1419 1420 1421 1422 1423
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1424
                                               object must have two input
1425 1426
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1427
                                               the new gradient operator will
1428
                                               be added to. The ``context`` is a
1429
                                               map, whose keys are gradient
1430 1431 1432
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1433
                                               has another special key-value pair:
1434
                                               the key is string ``__current_op_desc__``
1435 1436 1437
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1438
                                               Default: None.
F
fengjiayi 已提交
1439 1440

    Returns:
1441 1442
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1443 1444

    Raises:
1445
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1446 1447 1448 1449

    Examples:
        .. code-block:: python

1450 1451
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1452

1453 1454 1455 1456 1457
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1458
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1459 1460
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1461 1462

            # Get all weights in main_program, not include bias.
1463
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1464 1465 1466
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1467
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1468 1469
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1470 1471
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1472 1473 1474
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1475
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1476 1477
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1478 1479
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1480 1481
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1482 1483
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1484 1485 1486
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1487
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1488

1489
    """
1490
    check_type(loss, 'loss', framework.Variable,
1491
               'paddle.static.append_backward')
Y
yuyang18 已提交
1492

Y
Fix bug  
yuyang18 已提交
1493 1494
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1495
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1496

W
Wu Yi 已提交
1497 1498 1499
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1500

Y
Yang Yang 已提交
1501
    if callbacks is not None:
1502
        check_type(callbacks, 'callbacks', (list, tuple),
1503
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1504

F
fengjiayi 已提交
1505
    program = loss.block.program
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1516

F
fengjiayi 已提交
1517
    if no_grad_set is None:
1518
        no_grad_set = set()
1519 1520
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1521
    no_grad_dict = _get_stop_gradients_(program)
1522 1523
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1524
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1545

F
fengjiayi 已提交
1546 1547
    grad_to_var = dict()

M
mapingshuo 已提交
1548
    op_desc = _create_loss_op_desc_(loss)
1549 1550 1551 1552 1553 1554 1555
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1556 1557 1558 1559

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1572
        # TODO(liym27): need a better design.
1573 1574 1575 1576 1577
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1578
        # TODO: support _append_backward_ops_with_checkpoints_ in
1579
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1580
        is_recompute = False
1581 1582 1583
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1584
            is_recompute = True
1585
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1586 1587
                vars_should_be_hold, \
                recompute_segments = \
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1603 1604
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1605 1606 1607 1608 1609 1610 1611 1612 1613

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1614 1615
    # we need rename the internal gradient variables so that they have
    # different names.
1616
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1617

1618 1619
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1620

F
fengjiayi 已提交
1621
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1622
    program._sync_with_cpp()
F
fengjiayi 已提交
1623

1624
    if parameter_list is not None:
1625 1626
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1627 1628
        parameters = []
        for i, param in enumerate(parameter_list):
1629 1630 1631
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1632 1633 1634 1635
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1636
    else:
F
fengjiayi 已提交
1637
        params = program.global_block().all_parameters()
C
chengduo 已提交
1638
        parameters = [param.name for param in params if param.trainable]
1639

1640
    params_and_grads = []
1641
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1642
    for param in parameters:
M
minqiyang 已提交
1643
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1644
            continue
F
update  
fengjiayi 已提交
1645
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1646
        grad_block = grad_info[1]
1647 1648 1649 1650
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1651
        param_var = program.global_block().var(param)
1652
        grad_var = grad_block.var(grad_info[0])
1653 1654 1655 1656 1657
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1658
        else:
1659
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1660 1661 1662 1663

    for p, g in params_and_grads:
        if g is None:
            continue
1664 1665 1666
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1667 1668 1669 1670 1671 1672 1673
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1674
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1675 1676
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1677
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1678

J
JZ-LIANG 已提交
1679 1680 1681 1682
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1683 1684 1685 1686 1687 1688 1689 1690


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1717 1718 1719 1720 1721 1722
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1742 1743 1744
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1745
    those vars belong to no_grad_var.
1746
    """
1747
    output_names = _get_output_names(block, targets)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1762 1763 1764 1765 1766 1767
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1768
    """
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1782
    """
1783

1784
    input_names = set([inp.name for inp in inputs])
1785 1786 1787
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1788 1789 1790 1791 1792 1793

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1794 1795 1796
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1797 1798 1799 1800 1801 1802 1803
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1804 1805 1806 1807 1808 1809 1810 1811 1812
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1813 1814 1815
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1816 1817 1818 1819 1820 1821
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1822 1823 1824 1825 1826
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1827
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1828 1829
                relevant_op_flags[i] = True

1830 1831 1832 1833 1834 1835 1836
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1837
                if name not in input_names and block.vars[name].stop_gradient:
1838 1839 1840 1841 1842 1843 1844
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1845
    Backpropagate the gradients of targets to inputs.
1846 1847

    Args:
1848 1849 1850
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1851 1852
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1853 1854
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1855 1856
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1857
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1858
                               Default: None.
1859 1860

    Return:
1861 1862
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1863 1864 1865 1866 1867 1868 1869 1870
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1871 1872
    # increase appending gradients times
    prog._appending_grad_times += 1
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1884 1885
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1886
    no_grad_dict = _get_stop_gradients_(prog)
1887
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1888 1889 1890

    fwd_op_num = block.desc.op_size()

1891 1892
    input_grad_names_set = set()

1893 1894 1895 1896 1897
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1898 1899 1900 1901 1902
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1903
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1904
                                       {"ShapeTensor": [target_shape]},
1905
                                       {"Out": [grad_name]}, {
1906
                                           "shape": target.shape,
1907 1908 1909
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1910

1911
            block.desc.append_op().copy_from(op_desc)
1912
            input_grad_names_set.add(grad_name)
1913 1914 1915 1916 1917 1918 1919 1920
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1921 1922 1923 1924 1925 1926
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1927 1928 1929 1930 1931 1932

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1933 1934 1935 1936

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1937 1938 1939 1940 1941 1942

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1943
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1944 1945
    grad_to_var = dict()
    grad_info_map = dict()
1946 1947 1948 1949 1950 1951
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1952 1953
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1954 1955 1956 1957 1958 1959 1960

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1961
    prog._sync_with_cpp()
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1977 1978


1979
@framework.static_only
1980 1981
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1982
    :api_attr: Static Graph
T
tangwei12 已提交
1983

1984 1985 1986
    Backpropagate the gradients of targets to inputs.

    Args:
1987 1988 1989
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
1990 1991
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1992 1993 1994
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1995
            in this set will be added to the default set. Default: None.
1996 1997

    Return:
1998 1999
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2000 2001 2002 2003 2004
        will be None.

    Examples:
        .. code-block:: python

2005 2006 2007 2008
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2009

2010
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2011
            x.stop_gradient=False
2012 2013 2014 2015
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
2016
    """
2017
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2018
               'paddle.static.gradients')
2019
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2020
               'paddle.static.gradients')
2021
    check_type(target_gradients, 'target_gradients', (
2022
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2023

2024 2025
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
                      if isinstance(pram, paddle.fluid.framework.Parameter) and
                      grad is not None]

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads