backward.py 51.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
18
from . import core
F
update  
fengjiayi 已提交
19
import collections
20
import copy
21
import six
M
minqiyang 已提交
22
from .. import compat as cpt
23
from . import unique_name
24

M
mapingshuo 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
__all__ = [
    'append_backward',
    'gradients',
]


class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
            if len(self.var_op_deps[name]["var_as_output_ops"]) <= 0 and \
               len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
            if op.desc.type() == "dropout":
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
        return True, min_op_idx, max_op_idx

    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])


def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
            core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
180 181


182 183
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
184
    Traverse all ops in op_descs[begin_idx : end_idx],
185 186
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
187 188 189
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
190
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
191
    for i in range(begin_idx, end_idx):
192
        op_desc = op_descs[i]
F
fengjiayi 已提交
193 194
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
W
Wu Yi 已提交
195 196
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
197 198


F
fengjiayi 已提交
199
def _create_op_desc_(op_type, inputs, outputs, attrs):
200 201 202
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
203 204
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
205
    for para, args in six.iteritems(inputs):
206 207 208 209 210
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
211
    for para, args in six.iteritems(outputs):
212 213 214 215 216
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
217 218 219 220 221 222

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
M
minqiyang 已提交
223
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
224 225 226
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
227
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
228 229 230
    return op_desc


M
mapingshuo 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
        })
    return op_desc


245 246 247 248
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
M
minqiyang 已提交
249 250 251 252
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
253 254
        grad_var.set_dtype(fwd_var.dtype())
    else:
255
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
256 257


F
fengjiayi 已提交
258
def _all_in_set_(cands, s):
259 260 261
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
262 263
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
264 265 266 267 268 269
    for c in cands:
        if not c in s:
            return False
    return True


270 271 272 273 274 275
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
276 277
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
278 279
    for c in literal_cands:
        if c in literal_set:
280 281 282 283
            return True
    return False


F
fengjiayi 已提交
284
def _strip_grad_suffix_(name):
285
    """
M
mapingshuo 已提交
286
    Strip the grad suffix from the given variable name
287 288 289
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
290
    name = cpt.to_text(name)
M
minqiyang 已提交
291
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
292
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
293 294 295


def _append_grad_suffix_(name):
296 297 298 299
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
300
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
301 302


F
fengjiayi 已提交
303
def _addup_repetitive_outputs_(op_descs):
304 305
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
306 307
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
308 309
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
310 311
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
312
    renamed_vars = collections.defaultdict(list)
313
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
314
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
315
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
316 317
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
318
            if len(renamed_vars[var_name]) > 1:
319 320 321
                pending_sum_ops.append((_create_op_desc_(
                    "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
                    {"use_mkldnn": False}), idx))
F
fengjiayi 已提交
322
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
323
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
324 325
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
326 327 328 329
                if "@GRAD" not in var_name:
                    continue
                #if "@RENAME@" in var_name:
                #    continue
F
fengjiayi 已提交
330 331 332 333 334 335 336
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
337
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
338 339 340 341 342 343 344
                else:
                    if len(renamed_vars[var_name]) == 1:
                        new_name = var_name + "@RENAME@" + \
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
345 346 347 348 349 350
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
351 352
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

F
update  
fengjiayi 已提交
366
                    new_name = var_name + "@RENAME@" + \
F
fengjiayi 已提交
367
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
368
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
369 370 371
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
372

M
minqiyang 已提交
373
    for var_name, inputs in six.iteritems(renamed_vars):
F
update  
fengjiayi 已提交
374
        if len(inputs) > 1:
375 376 377
            pending_sum_ops.append(
                (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
                                  {"use_mkldnn": False}), len(op_descs)))
F
fengjiayi 已提交
378
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
379
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
380 381 382 383 384 385
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
386 387 388 389
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
390
        2. all grad inputs of the grad op are in 'no_grad_set'
391
    """
F
fengjiayi 已提交
392 393

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
394 395
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
396
            return True
397 398 399 400
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
401
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
402 403 404
            return True
        return False

F
fengjiayi 已提交
405
    # Remove ops whose outputs are all in no_grad_dict
406 407 408 409
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
410 411
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
412
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
413
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
414
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
415
            if core.grad_var_suffix() in arg and arg in no_grad_set:
416
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
417 418
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
419 420
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
421

422
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
423 424 425 426

    return op_descs


C
chengduo 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
        (list[core.OpDesc]): A list of OpDescs which should be pruned.
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])

    return set(not_need_op_descs)


546
from .proto import framework_pb2
Y
Yang Yang 已提交
547 548 549 550


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
551
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
552 553 554
    return proto.__str__()


M
mapingshuo 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):

    checkpoints_name = [x.name for x in checkpoints]
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
        1) go through all forward ops and induct all checkpoint vars
            a. input variables can be deduced from forward program
            b. input variables are checkpoints
            c. variables that are used across segments will be held in memory
        2) find ops between checkpoints, i.e. recompute_segments
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
            c. add sum_op to merge gradient if needed
            d. add backward ops of current recomputation ops
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
        6) Note2: variables that are used across segments will be held in memory
        7) Note3: all variables with new name should be returned so that _append_backward_vars_ can be called
        8) Note4: current forward recomputation backpropagation does not handle programs with subblock
    """
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()

    program_stat = ProgramStats(block, ops)
    program_stat.build_stats()
    segments = []

    if len(checkpoints) == 1:
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
                segments.append([min_idx, max_idx + 1])
            start_idx += 1

    checkpoints_name = list(set(checkpoints_name))

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
    vars_should_be_hold = []
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

    # find variables that can not be deleted
    grad_should_be_hold = [x + "@GRAD" for x in vars_should_be_hold]
    vars_should_be_hold.extend(grad_should_be_hold)

    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        # add grad op for ops not in any segments
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

        # rename variable names in added_descs
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

        #for op_desc in reversed(buffer_descs):
        for op_desc in reversed(added_descs):

            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])

            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])

            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


719 720
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
721 722 723
                          target_block,
                          no_grad_dict,
                          grad_to_var,
724 725
                          callbacks=None,
                          input_grad_names_set=None):
726 727 728 729 730
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
731
        ops(Op): the forward operators whose backward ops need to be added
732
        target_block(Block): the block which is going to hold new generated grad ops
733
        no_grad_dict(dict):
734 735 736 737 738
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
739 740 741 742
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
743
    """
Y
Yang Yang 已提交
744
    if callbacks is not None:
Y
Yang Yang 已提交
745 746 747 748
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
749

F
fengjiayi 已提交
750
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
751 752
    grad_op_descs = []
    program = block.program
753
    for op in reversed(ops):
F
fengjiayi 已提交
754 755 756
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
757
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
758
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
759
            grad_sub_block._set_forward_block_idx(sub_block.idx)
760 761 762
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
X
Xin Pan 已提交
763
            _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
764 765 766
                                  no_grad_dict, grad_to_var, callbacks,
                                  input_grad_names_set)
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
767

W
Wu Yi 已提交
768
            program._rollback()
F
fengjiayi 已提交
769 770
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
771
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
772
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
773
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
774

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
802

M
mapingshuo 已提交
803 804 805
    # add grad_op_desc by reversed ops

    # sum parameter's gradients' var given multiple var gradient
F
fengjiayi 已提交
806 807
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

M
mapingshuo 已提交
808 809
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
810 811
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
812

M
mapingshuo 已提交
813
    # remove some backward ops
C
chengduo 已提交
814
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
815

C
chengduo 已提交
816 817 818
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
F
fengjiayi 已提交
819
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
820 821
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
822
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
823 824
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
825
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
826
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
827 828 829 830
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
831

F
fengjiayi 已提交
832 833

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
834 835 836 837 838 839 840 841 842 843 844 845
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
846
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
847
    """
F
fengjiayi 已提交
848 849 850
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
851
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
852 853 854 855
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
856 857
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
858
                continue
M
minqiyang 已提交
859
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
860
            new_vars.add(grad_var_name)
861
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
862 863 864 865 866 867 868 869
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
870 871


872 873 874 875 876 877
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
878
                op_desc._rename_input(name, var_map[name])
879 880

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
881 882
            if "@GRAD" not in name:
                continue
883
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
884
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
885
                op_desc._rename_output(name, new_name)
886 887
                var_map[name] = new_name

M
minqiyang 已提交
888
    for g, ng in six.iteritems(var_map):
889 890 891 892 893 894 895 896 897 898 899
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
900
        for var in list(block.vars.values()):
901 902 903 904 905 906 907
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


M
mapingshuo 已提交
908 909 910 911 912
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
913
    """
F
fengjiayi 已提交
914 915
    Append backward part to main_program.

916 917 918
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
    specify its forwrd part. The backward part is generated automatically
F
fengjiayi 已提交
919 920
    according to the forward part by this function.

921
    In most cases, users do not need to invoke this function manually. It
F
fengjiayi 已提交
922
    will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
923 924

    Args:
F
fengjiayi 已提交
925
        loss(Variable): The loss variable of the network.
926 927 928
        parameter_list(list[string]|None): Names of parameters that need
                                           to be updated by optimizers.
                                           If it is None, all parameters
F
fengjiayi 已提交
929 930
                                           will be updated.
                                           Default: None
931 932
        no_grad_set(set|None): Variables in the Block 0 whose gradients
                               should be ignored. All variables with
933
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
934 935
                               be automatically added into this set.
                               Default: None
936 937 938 939 940 941 942 943 944 945 946 947 948 949
        callbacks(list[callable object]|None): The callbacks are used for
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
                                               object must has two input
                                               parameters: 'block' and 'context'.
                                               The 'block' is the block which
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
F
fengjiayi 已提交
950
                                               corresponding original variables.
951 952 953 954 955 956
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
F
fengjiayi 已提交
957 958

    Returns:
959 960
        list[(Variable,Variable)]: Pairs of parameter and its
        corresponding gradients. The key is the parameter and the
F
fengjiayi 已提交
961 962 963 964 965 966 967 968
        value is gradient variable.

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
969
            # network configuration code
L
lujun 已提交
970
            # loss from ...
971
            import paddle.fluid as fluid
L
lujun 已提交
972 973 974 975 976 977
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')

            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            loss = fluid.layers.square_error_cost(input=y_predict, label=y)

F
fengjiayi 已提交
978 979
            avg_loss = fluid.layers.mean(loss)
            param_grad_list = fluid.backward.append_backward(loss=avg_loss)
980 981
    """
    assert isinstance(loss, framework.Variable)
Y
yuyang18 已提交
982

Y
Fix bug  
yuyang18 已提交
983 984
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
985
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
986

W
Wu Yi 已提交
987 988 989
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
990

Y
Yang Yang 已提交
991 992
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
993

F
fengjiayi 已提交
994
    program = loss.block.program
995 996
    program._appending_grad_times += 1

F
fengjiayi 已提交
997
    if no_grad_set is None:
998 999 1000
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
1001
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1002

F
update  
fengjiayi 已提交
1003
    grad_info_map = dict()
F
fengjiayi 已提交
1004
    root_block = program.block(0)
F
fengjiayi 已提交
1005

F
fengjiayi 已提交
1006 1007
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
1008 1009
    grad_to_var = dict()

M
mapingshuo 已提交
1010
    op_desc = _create_loss_op_desc_(loss)
1011 1012 1013 1014
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
1015 1016 1017
    no_grad_vars = _find_no_grad_vars(root_block, op_path, [loss],
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)
1018
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1019

1020 1021 1022 1023 1024 1025
    input_grad_names_set = None
    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if program._appending_grad_times > 1:
        input_grad_names_set = set([_append_grad_suffix_(loss.name)])

M
mapingshuo 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

    if checkpoints != None and \
       isinstance(checkpoints, list) and \
       len(checkpoints) > 0:
        program_stat, checkpoint_names, \
        vars_should_be_hold, \
        recompute_segments = \
                        _append_backward_ops_with_checkpoints_(
                            root_block,
                            op_path,
                            root_block,
                            no_grad_dict,
                            grad_to_var,
                            checkpoints)
    else:
        _append_backward_ops_(
            root_block,
            op_path,
            root_block,
            no_grad_dict,
            grad_to_var,
            callbacks,
            input_grad_names_set=input_grad_names_set)
1049 1050 1051 1052 1053 1054

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
1055
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
1056

F
fengjiayi 已提交
1057
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1058
    program._sync_with_cpp()
F
fengjiayi 已提交
1059

1060 1061 1062
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
1063
        params = program.global_block().all_parameters()
C
chengduo 已提交
1064
        parameters = [param.name for param in params if param.trainable]
1065

1066 1067
    params_and_grads = []
    for param in parameters:
M
minqiyang 已提交
1068
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1069
            continue
F
update  
fengjiayi 已提交
1070
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1071
        grad_block = grad_info[1]
1072 1073 1074 1075
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1076
        param_var = program.global_block().var(param)
1077 1078 1079 1080 1081
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
Y
yuyang18 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
    for p, g in params_and_grads:
        if g is None:
            continue
        for op in reversed(program.global_block().ops):
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1095
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1096 1097
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1098
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1099

1100
    return params_and_grads
1101 1102 1103 1104 1105 1106 1107 1108


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
    those var belong to no_grad_var.
    """
    output_names = set([out.name for out in targets])
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1163
                if name not in input_names and block.vars[name].stop_gradient:
1164 1165 1166 1167 1168 1169 1170
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1171
    Backpropagate the gradients of targets to inputs.
1172 1173 1174 1175

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
1176 1177 1178
        target_gradients (Variable|list[Variable]|None): The gradient variables
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1179 1180 1181 1182 1183
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
1184
        (list[Variable]): A list of gradients for inputs
1185 1186 1187 1188 1189 1190 1191 1192 1193
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1194 1195
    # increase appending gradients times
    prog._appending_grad_times += 1
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
1209
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1210 1211 1212

    fwd_op_num = block.desc.op_size()

1213 1214
    input_grad_names_set = set()

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
1230
            input_grad_names_set.add(grad_name)
1231 1232 1233 1234 1235 1236 1237 1238
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1239 1240 1241 1242 1243 1244
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1245 1246 1247 1248 1249 1250 1251

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
1252
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1253 1254
    grad_to_var = dict()
    grad_info_map = dict()
1255 1256 1257 1258 1259 1260 1261
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set)
1262 1263 1264 1265 1266 1267 1268

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1269
    prog._sync_with_cpp()
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321


def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the gradients of targets to inputs.

    Args:
        targets (Variable|list[Variable]): The target variables.
        inputs (Variable|list[Variable]): The input variables.
        target_gradients (Variable|list[Variable]|None): The gradient variables
            of targets which has the same shape with targets, If None, ones will
            be created for them.
        no_grad_set (set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[2,8,8], dtype='float32')
            x.stop_gradient=False
            y = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            y = fluid.layers.conv2d(y, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            z = fluid.gradients([y], x)
            print(z)
    """
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)