backward.py 77.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
18
from . import core
F
update  
fengjiayi 已提交
19
import collections
20
import copy
21
import six
22
import logging
M
minqiyang 已提交
23
from .. import compat as cpt
24
from . import unique_name
25
from . import log_helper
L
liym27 已提交
26
import paddle.fluid
27
from .data_feeder import check_type
M
mapingshuo 已提交
28 29 30 31 32
__all__ = [
    'append_backward',
    'gradients',
]

33 34 35
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
36 37 38 39 40 41 42 43 44 45 46

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
47
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
48
                len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
49 50 51 52 53 54 55 56 57 58 59
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
60
            if op.desc.type() == "seed":
M
mapingshuo 已提交
61 62 63 64 65 66 67 68 69 70 71
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
72 73 74 75 76
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
        return True, min_op_idx, max_op_idx

    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
                _logger.debug(
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
            core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
243 244


245 246
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
247
    Traverse all ops in op_descs[begin_idx : end_idx],
248 249
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
250 251 252
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
253
        end_idx = len(op_descs)
254 255 256 257 258 259 260 261 262 263 264 265 266
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
267 268


F
fengjiayi 已提交
269
def _create_op_desc_(op_type, inputs, outputs, attrs):
270 271 272
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
273 274
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
275
    for para, args in six.iteritems(inputs):
276 277 278 279 280
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
281
    for para, args in six.iteritems(outputs):
282 283 284 285 286
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
287 288

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
289
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
290 291 292 293

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
294 295
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
296
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
297 298 299
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
300
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
301 302 303
    return op_desc


M
mapingshuo 已提交
304 305 306 307 308 309 310 311 312 313
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
314 315
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
316 317 318 319
        })
    return op_desc


320
def _infer_var_data_type_shape_(grad_var_name, block):
321
    """
322
    Infer the data type and shape of given grad variable
323
    """
M
minqiyang 已提交
324 325 326 327
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
328
        grad_var.set_dtype(fwd_var.dtype())
329
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
330
    else:
331
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
332 333


F
fengjiayi 已提交
334
def _all_in_set_(cands, s):
335 336 337
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
338 339
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
340 341 342 343 344 345
    for c in cands:
        if not c in s:
            return False
    return True


346 347 348 349 350 351
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
352 353
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
354 355
    for c in literal_cands:
        if c in literal_set:
356 357 358 359
            return True
    return False


F
fengjiayi 已提交
360
def _strip_grad_suffix_(name):
361
    """
M
mapingshuo 已提交
362
    Strip the grad suffix from the given variable name
363 364 365
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
366
    name = cpt.to_text(name)
M
minqiyang 已提交
367
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
368
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
369 370 371


def _append_grad_suffix_(name):
372 373 374 375
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
376
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
377 378


379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
def _accumulate_gradients_by_sum_op_(var_name, renamed_vars, pending_sum_ops,
                                     op_idx):
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
        _create_op_desc_("sum", {"X": renamed_vars[var_name]},
                         {"Out": [var_name]}, {"use_mkldnn": False}))
    renamed_vars[var_name] = [var_name]


def _accumulate_gradients_by_add_ops_(var_name, renamed_vars, pending_sum_ops,
                                      op_idx):
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
                             {"use_mkldnn": False}))
    renamed_vars[var_name] = [var_name]


414
def _addup_repetitive_outputs_(op_descs, block_idx):
415 416
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
417 418
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
419 420
    `sum_op`s are added to implement the accumulate.
    """
421 422 423
    _MAX_ADD_NUM_ = core.globals()['FLAGS_max_inplace_grad_add']
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
424
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
425
    renamed_vars = collections.defaultdict(list)
426
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
427
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
428
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
429 430
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
431
            if len(renamed_vars[var_name]) > 1:
432 433 434 435 436 437 438
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx)
                else:
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx)

F
update  
fengjiayi 已提交
439
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
440 441
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
442 443 444 445
                if "@GRAD" not in var_name:
                    continue
                #if "@RENAME@" in var_name:
                #    continue
F
fengjiayi 已提交
446 447 448 449 450 451 452
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
453
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
454 455
                else:
                    if len(renamed_vars[var_name]) == 1:
456
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
457 458 459 460
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
461 462 463 464 465 466
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
467 468
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

482
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
483
                               str(var_rename_count[var_name])
F
fengjiayi 已提交
484
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
485 486 487
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
488

M
minqiyang 已提交
489
    for var_name, inputs in six.iteritems(renamed_vars):
490 491 492 493 494 495 496 497 498
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs))
            else:
                _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                  pending_sum_ops,
                                                  len(op_descs))

F
fengjiayi 已提交
499
    # sum_op descs are sorted according to their insert position
500 501 502 503 504 505 506 507 508 509
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
510 511 512 513 514

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
515 516 517 518
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
519
        2. all grad inputs of the grad op are in 'no_grad_set'
520
    """
F
fengjiayi 已提交
521 522

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
523 524
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
525
            return True
526 527 528 529
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
530
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
531 532 533
            return True
        return False

F
fengjiayi 已提交
534
    # Remove ops whose outputs are all in no_grad_dict
535 536 537 538
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
539 540
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
541
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
542
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
543
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
544
            if core.grad_var_suffix() in arg and arg in no_grad_set:
545
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
546 547
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
548 549
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
550

551
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
552 553 554 555

    return op_descs


C
chengduo 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
571
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
671 672 673
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
674
    # not_need_op_descs will be whole graph, this IF clause avoids it.
675 676 677
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
678 679


680
from .proto import framework_pb2
Y
Yang Yang 已提交
681 682 683 684


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
685
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
686 687 688
    return proto.__str__()


M
mapingshuo 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
704
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
705 706 707 708 709
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
710 711 712
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
713 714
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
715 716
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
717 718
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
719
    """
M
mapingshuo 已提交
720 721

    checkpoints_name = [x.name for x in checkpoints]
722
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
723 724
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
725
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
726
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
727
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
728
    program_stat.build_stats()
M
mapingshuo 已提交
729 730

    # 1) find ops between checkpoints, i.e. recompute_segments
731
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
732 733
    segments = []

734
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
                segments.append([min_idx, max_idx + 1])
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
762 763

    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
764
    vars_should_be_hold = []
765
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
766 767 768
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
M
mapingshuo 已提交
769
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
770
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
771
    # c. input variables are checkpoints
M
mapingshuo 已提交
772 773 774
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
775
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
776 777 778 779 780 781 782
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
783
        # if there is no recompute segment, add backward ops like
M
mapingshuo 已提交
784
        # _append_backward_ops_ function
M
mapingshuo 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        # add grad op for ops not in any segments
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
M
mapingshuo 已提交
830
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
831 832 833 834
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
835
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
836 837 838 839 840 841
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

M
mapingshuo 已提交
842
        # 3.c. add backward ops of current recomputation ops
M
mapingshuo 已提交
843 844 845 846 847 848 849 850
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
851
    # 3.d. add sum op for repetitive_outputs
852
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
853
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
854 855 856 857 858 859
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


860 861 862 863 864
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
865 866
    """
    Get output vars in subblock which will be assigned to parent block.
867 868 869 870 871 872 873 874 875 876 877 878
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
879
    """
880

881 882 883
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
884 885 886 887 888 889 890 891 892 893 894 895
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
896
            for op_desc in sub_block.ops:
897
                if var in op_desc.output_arg_names:
898
                    for name in op_desc.input_arg_names:
899
                        sub_outputs.append(sub_block._var_recursive(name))
900

901 902
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
903
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
904
                                           no_grad_set, op_path_dict, is_while)
905 906 907 908
        return sub_block_op_path
    return sub_block.ops


909 910 911 912 913 914 915 916 917 918 919 920 921
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


922 923
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
924 925 926
                          target_block,
                          no_grad_dict,
                          grad_to_var,
927
                          callbacks=None,
928 929
                          input_grad_names_set=None,
                          op_path_dict=None):
930 931 932 933 934
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
935
        ops(Op): the forward operators whose backward ops need to be added
936
        target_block(Block): the block which is going to hold new generated grad ops
937
        no_grad_dict(dict):
938
            key(int)  block index
T
tianshuo78520a 已提交
939
            val(set) a set of variable names. These variables have no gradient
940 941 942
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
943 944 945 946
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
947 948 949
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
950
    """
Y
Yang Yang 已提交
951
    if callbacks is not None:
Y
Yang Yang 已提交
952 953 954 955
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
956

F
fengjiayi 已提交
957
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
958 959
    grad_op_descs = []
    program = block.program
960

961 962
    rename_var_map = {}

963
    # add grad_op_desc by reversed ops
964
    for op in reversed(ops):
F
fengjiayi 已提交
965 966 967
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
968
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
969
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
970
            grad_sub_block._set_forward_block_idx(sub_block.idx)
971 972 973
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
974
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
975
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
976
                                  no_grad_dict, grad_to_var, callbacks,
977
                                  input_grad_names_set, op_path_dict)
978
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
979

W
Wu Yi 已提交
980
            program._rollback()
F
fengjiayi 已提交
981 982
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
983
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
984
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
985
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
986

987 988
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
989 990 991 992
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1048

M
mapingshuo 已提交
1049
    # sum parameter's gradients' var given multiple var gradient
1050
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1051

M
mapingshuo 已提交
1052 1053
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1054 1055
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1056

M
mapingshuo 已提交
1057
    # remove some backward ops
C
chengduo 已提交
1058
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1059

C
chengduo 已提交
1060 1061 1062
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1063

F
fengjiayi 已提交
1064
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1065 1066
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1067
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1068 1069
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1070
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1071
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1072 1073 1074 1075
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1076

F
fengjiayi 已提交
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1098
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1099 1100 1101 1102
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1103
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1116
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1117
    """
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1135 1136 1137
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1138
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1139
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1157
        # If the outputs of grad op is empty, just remove it
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1183
                        continue
1184

F
fengjiayi 已提交
1185 1186 1187
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1188 1189
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1190
                continue
M
minqiyang 已提交
1191
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1192
            new_vars.add(grad_var_name)
1193
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1194 1195 1196 1197 1198
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1199

F
fengjiayi 已提交
1200 1201
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1202
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1203

1204 1205 1206
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1207

1208 1209 1210 1211 1212 1213
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1214
                op_desc._rename_input(name, var_map[name])
1215 1216

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1217 1218
            if "@GRAD" not in name:
                continue
1219
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1220
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1221
                op_desc._rename_output(name, new_name)
1222 1223
                var_map[name] = new_name

M
minqiyang 已提交
1224
    for g, ng in six.iteritems(var_map):
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1236
        for var in list(block.vars.values()):
1237 1238 1239 1240 1241 1242 1243
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


M
mapingshuo 已提交
1275 1276 1277 1278 1279
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1280
    """
1281 1282
    :api_attr: Static Graph

1283
    This function appends backward part to main_program.
F
fengjiayi 已提交
1284

1285 1286
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1287 1288
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1289

1290 1291
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1292

1293 1294
    Parameters:
        loss( :ref:`api_guide_Variable_en` ): The loss variable of the network.
1295 1296
        parameter_list(list[Variable|str], optional): List of Parameters or Parameter.names
                                           that need to be updated by optimizers.
1297
                                           If it is None, all parameters
F
fengjiayi 已提交
1298
                                           will be updated.
1299
                                           Default: None.
1300
        no_grad_set(set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients
1301
                               should be ignored. All variables with
1302
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1303
                               be automatically added into this set.
1304
                               If this parameter is not None, the Variables or Variable.names in this set will be added to the default set.
1305
                               Default: None.
1306
        callbacks(list[callable object], optional): List of callback functions.
1307
                                               The callbacks are used for
1308 1309 1310 1311 1312 1313
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1314
                                               object must have two input
1315
                                               parameters: 'block' and 'context'.
1316
                                               The 'block' is the :ref:`api_guide_Block_en` which
1317 1318 1319 1320
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
1321
                                               corresponding original :ref:`api_guide_Variable_en` .
1322 1323 1324 1325 1326 1327
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1328
                                               Default: None.
F
fengjiayi 已提交
1329 1330

    Returns:
1331 1332
        list of tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient variable.
F
fengjiayi 已提交
1333 1334 1335 1336 1337 1338 1339

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

1340
            import paddle.fluid as fluid
L
lujun 已提交
1341

1342 1343 1344 1345
            x = fluid.data(name='x', shape=[None, 13], dtype='int64')
            y = fluid.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = fluid.embedding(x, size=[100, 256])
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None, name='my_fc')
L
lujun 已提交
1346
            loss = fluid.layers.square_error_cost(input=y_predict, label=y)
F
fengjiayi 已提交
1347
            avg_loss = fluid.layers.mean(loss)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

            # Get all weights in main_program, not include bias.
            all_weights = [param for param in fluid.default_main_program().block(0).all_parameters() if 'w_' in param.name]
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
            p_g_list1 = fluid.backward.append_backward(loss=avg_loss)
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

            # return the param_grads corresponding to parameter_list that can be list of param (Variable).
            p_g_list2 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights)
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
            p_g_list3 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights_name)
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # no_grad_set can be set of Variables that means grad will be cut off from these Variables.
            p_g_list4 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

            # no_grad_set can be set of Variable.name when the Variable is created inside layers and can't be specified explicitly.
            p_g_list5 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
            p_g_list6 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1375

1376
    """
1377 1378
    check_type(loss, 'loss', framework.Variable,
               'fluid.backward.append_backward')
Y
yuyang18 已提交
1379

Y
Fix bug  
yuyang18 已提交
1380 1381
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1382
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1383

W
Wu Yi 已提交
1384 1385 1386
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1387

Y
Yang Yang 已提交
1388
    if callbacks is not None:
1389 1390
        check_type(callbacks, 'callbacks', list,
                   'fluid.backward.append_backward')
Y
Yu Yang 已提交
1391

F
fengjiayi 已提交
1392
    program = loss.block.program
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1403

F
fengjiayi 已提交
1404
    if no_grad_set is None:
1405
        no_grad_set = set()
1406 1407
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1408
    no_grad_dict = _get_stop_gradients_(program)
1409 1410
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1411
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1432

F
fengjiayi 已提交
1433 1434
    grad_to_var = dict()

M
mapingshuo 已提交
1435
    op_desc = _create_loss_op_desc_(loss)
1436 1437 1438 1439 1440 1441 1442
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1443 1444 1445 1446

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1459
        # TODO(liym27): need a better design.
1460 1461 1462 1463 1464
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1465
        # TODO: support _append_backward_ops_with_checkpoints_ in
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        #  sub-block (control flow)
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
            program_stat, checkpoint_names, \
            vars_should_be_hold, \
            recompute_segments = \
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1488 1489
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1490 1491 1492 1493 1494 1495 1496 1497 1498

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1499 1500
    # we need rename the internal gradient variables so that they have
    # different names.
1501
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1502

1503 1504
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1505

F
fengjiayi 已提交
1506
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1507
    program._sync_with_cpp()
F
fengjiayi 已提交
1508

1509
    if parameter_list is not None:
1510 1511
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1512 1513
        parameters = []
        for i, param in enumerate(parameter_list):
1514 1515 1516
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1517 1518 1519 1520
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1521
    else:
F
fengjiayi 已提交
1522
        params = program.global_block().all_parameters()
C
chengduo 已提交
1523
        parameters = [param.name for param in params if param.trainable]
1524

1525
    params_and_grads = []
1526
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1527
    for param in parameters:
M
minqiyang 已提交
1528
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1529
            continue
F
update  
fengjiayi 已提交
1530
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1531
        grad_block = grad_info[1]
1532 1533 1534 1535
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1536
        param_var = program.global_block().var(param)
1537
        grad_var = grad_block.var(grad_info[0])
1538 1539 1540 1541 1542
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1543
        else:
1544
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1545 1546 1547 1548

    for p, g in params_and_grads:
        if g is None:
            continue
1549 1550 1551
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1552 1553 1554 1555 1556 1557 1558
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1559
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1560 1561
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1562
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1563

1564
    return params_and_grads
1565 1566 1567 1568 1569 1570 1571 1572


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1599 1600 1601 1602 1603 1604
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1624 1625 1626
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1627
    those vars belong to no_grad_var.
1628
    """
1629
    output_names = _get_output_names(block, targets)
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1644 1645 1646 1647 1648 1649
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1650
    """
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1664
    """
1665

1666
    input_names = set([inp.name for inp in inputs])
1667 1668 1669
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1670 1671 1672 1673 1674 1675

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1676 1677 1678
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1679 1680 1681 1682 1683 1684 1685
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1686 1687 1688 1689 1690 1691 1692 1693 1694
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1695 1696 1697
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1698 1699 1700 1701 1702 1703
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1704 1705 1706 1707 1708 1709 1710 1711
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
                    and _some_in_set_(op.desc.output_arg_names(),output_names):
                relevant_op_flags[i] = True

1712 1713 1714 1715 1716 1717 1718
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1719
                if name not in input_names and block.vars[name].stop_gradient:
1720 1721 1722 1723 1724 1725 1726
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1727
    Backpropagate the gradients of targets to inputs.
1728 1729 1730 1731

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
1732
        target_gradients (Variable|list[Variable], optional): The gradient variables
1733 1734
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1735 1736 1737 1738 1739 1740
        no_grad_set(set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All variables with
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
                               If this parameter is not None, the Variables or Variable.names in this set will be added to the default set.
                               Default: None.
1741 1742

    Return:
1743
        (list[Variable]): A list of gradients for inputs
1744 1745 1746 1747 1748 1749 1750 1751 1752
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1753 1754
    # increase appending gradients times
    prog._appending_grad_times += 1
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1766 1767
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1768
    no_grad_dict = _get_stop_gradients_(prog)
1769
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1770 1771 1772

    fwd_op_num = block.desc.op_size()

1773 1774
    input_grad_names_set = set()

1775 1776 1777 1778 1779
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1780 1781 1782 1783 1784
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1785
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1786
                                       {"ShapeTensor": [target_shape]},
1787
                                       {"Out": [grad_name]}, {
1788
                                           "shape": target.shape,
1789 1790 1791
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1792

1793
            block.desc.append_op().copy_from(op_desc)
1794
            input_grad_names_set.add(grad_name)
1795 1796 1797 1798 1799 1800 1801 1802
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1803 1804 1805 1806 1807 1808
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1809 1810 1811 1812 1813 1814

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1815 1816 1817 1818

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1819 1820 1821 1822 1823 1824

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1825
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1826 1827
    grad_to_var = dict()
    grad_info_map = dict()
1828 1829 1830 1831 1832 1833
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1834 1835
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1836 1837 1838 1839 1840 1841 1842

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1843
    prog._sync_with_cpp()
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1859 1860 1861 1862


def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1863 1864
    :api_attr: Static Graph
    
1865 1866 1867 1868 1869
    Backpropagate the gradients of targets to inputs.

    Args:
        targets (Variable|list[Variable]): The target variables.
        inputs (Variable|list[Variable]): The input variables.
1870
        target_gradients (Variable|list[Variable], optional): The gradient variables
1871 1872
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1873 1874 1875 1876
        no_grad_set (set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All variables with `stop_gradient=True` from all blocks will
            be automatically added into this set. If this parameter is not None, the Variables or Variable.names
            in this set will be added to the default set. Default: None.
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

    Return:
        (list[Variable]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

1888
            x = fluid.data(name='x', shape=[None,2,8,8], dtype='float32')
1889 1890 1891 1892 1893 1894 1895 1896
            x.stop_gradient=False
            y = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            y = fluid.layers.conv2d(y, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            z = fluid.gradients([y], x)
            print(z)
    """
1897 1898 1899 1900 1901 1902 1903
    check_type(targets, 'targets', (framework.Variable, list),
               'fluid.backward.gradients')
    check_type(inputs, 'inputs', (framework.Variable, list),
               'fluid.backward.gradients')
    check_type(target_gradients, 'target_gradients', (
        framework.Variable, list, type(None)), 'fluid.backward.gradients')

1904 1905
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)