backward.py 80.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
102

M
mapingshuo 已提交
103 104
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
118
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
119 120 121 122 123 124 125 126 127
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

154 155 156 157
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
158
                _logger.info(
159 160 161 162 163 164 165 166 167 168 169
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
219
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
268 269


270 271
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
272
    Traverse all ops in op_descs[begin_idx : end_idx],
273 274
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
275 276 277
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
278
        end_idx = len(op_descs)
279 280 281 282 283 284 285 286 287 288 289 290 291
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
292 293


F
fengjiayi 已提交
294
def _create_op_desc_(op_type, inputs, outputs, attrs):
295 296 297
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
298 299
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
300
    for para, args in six.iteritems(inputs):
301 302 303 304 305
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
306
    for para, args in six.iteritems(outputs):
307 308 309 310 311
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
312 313

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
314
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
315 316 317 318

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
319 320
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
321
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
322 323 324
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
325
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
326 327 328
    return op_desc


M
mapingshuo 已提交
329 330 331 332 333 334 335 336 337 338
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
339 340
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
341 342 343 344
        })
    return op_desc


345
def _infer_var_data_type_shape_(grad_var_name, block):
346
    """
347
    Infer the data type and shape of given grad variable
348
    """
M
minqiyang 已提交
349 350 351 352
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
353
        grad_var.set_dtype(fwd_var.dtype())
354
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
355
    else:
356
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
357 358


F
fengjiayi 已提交
359
def _all_in_set_(cands, s):
360 361 362
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
363 364
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
365 366 367 368 369 370
    for c in cands:
        if not c in s:
            return False
    return True


371 372 373 374 375 376
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
377 378
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
379 380
    for c in literal_cands:
        if c in literal_set:
381 382 383 384
            return True
    return False


F
fengjiayi 已提交
385
def _strip_grad_suffix_(name):
386
    """
M
mapingshuo 已提交
387
    Strip the grad suffix from the given variable name
388 389 390
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
391
    name = cpt.to_text(name)
M
minqiyang 已提交
392
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
393
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
394 395 396


def _append_grad_suffix_(name):
397 398 399 400
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
401
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
402 403


T
tangwei12 已提交
404 405 406 407 408
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
409 410 411 412 413 414
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
415 416 417 418
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
419 420 421
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
422 423 424 425 426
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
443 444
                             {"use_mkldnn": False,
                              "op_device": op_device}))
445 446 447
    renamed_vars[var_name] = [var_name]


448
def _addup_repetitive_outputs_(op_descs, block_idx):
449 450
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
451 452
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
453 454
    `sum_op`s are added to implement the accumulate.
    """
455 456 457
    _MAX_ADD_NUM_ = core.globals()['FLAGS_max_inplace_grad_add']
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
458
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
459
    renamed_vars = collections.defaultdict(list)
460
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
461
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
462 463 464 465 466
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
467
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
468 469
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
470
            if len(renamed_vars[var_name]) > 1:
471
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
T
tangwei12 已提交
472 473
                    _accumulate_gradients_by_sum_op_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
474
                else:
T
tangwei12 已提交
475 476
                    _accumulate_gradients_by_add_ops_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
477

F
update  
fengjiayi 已提交
478
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
479 480
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
481 482
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
483
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
484
                #    continue
F
fengjiayi 已提交
485 486 487 488 489 490 491
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
492
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
493 494
                else:
                    if len(renamed_vars[var_name]) == 1:
495
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
496 497 498 499
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
500 501 502 503 504 505
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
506 507
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

521
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
522
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
523
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
524 525 526
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
527

M
minqiyang 已提交
528
    for var_name, inputs in six.iteritems(renamed_vars):
529 530 531 532 533 534 535 536 537
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs))
            else:
                _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                  pending_sum_ops,
                                                  len(op_descs))

F
fengjiayi 已提交
538
    # sum_op descs are sorted according to their insert position
539 540 541 542 543 544 545 546 547 548
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
549 550 551 552 553

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
554 555 556 557
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
558
        2. all grad inputs of the grad op are in 'no_grad_set'
559
    """
F
fengjiayi 已提交
560 561

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
562 563
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
564
            return True
565 566 567 568
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
569
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
570 571 572
            return True
        return False

F
fengjiayi 已提交
573
    # Remove ops whose outputs are all in no_grad_dict
574 575 576 577
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
578 579
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
580
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
581
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
582
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
583
            if core.grad_var_suffix() in arg and arg in no_grad_set:
584
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
585 586
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
587 588
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
589

590
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
591 592 593 594

    return op_descs


C
chengduo 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
610
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
710 711 712
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
713
    # not_need_op_descs will be whole graph, this IF clause avoids it.
714 715 716
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
717 718


Y
Yang Yang 已提交
719 720
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
721
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
722 723 724
    return proto.__str__()


M
mapingshuo 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
740
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
741 742 743 744 745
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
746 747 748
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
749 750
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
751 752
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
753 754
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
755
    """
M
mapingshuo 已提交
756 757

    checkpoints_name = [x.name for x in checkpoints]
758
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
759 760
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
761
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
762
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
763
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
764
    program_stat.build_stats()
M
mapingshuo 已提交
765 766

    # 1) find ops between checkpoints, i.e. recompute_segments
767
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
768 769
    segments = []

770
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
771 772 773 774 775 776 777
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
778
            # only count the last generate op
M
mapingshuo 已提交
779 780 781 782 783 784
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
785
        pre_segment_end_idx = -1
M
mapingshuo 已提交
786 787 788
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
789 790
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
791 792 793 794
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
795 796 797
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
798
                segments.append([min_idx, max_idx + 1])
799 800 801
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
802

M
mapingshuo 已提交
803 804 805 806 807 808
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
809

J
JZ-LIANG 已提交
810
    for i, (idx1, idx2) in enumerate(recompute_segments):
811 812
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
813
        ), ops[idx1].desc.input_arg_names()))
814
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
815
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
816 817
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
818
        ), ops[idx1].desc.input_arg_names()))
819
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
820 821
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
822
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
823
    vars_should_be_hold = []
824
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
825 826 827
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
828 829

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
830
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
831 832
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
833
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
834
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
835
    # c. input variables are checkpoints
M
mapingshuo 已提交
836 837 838
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
839
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
891 892 893 894 895 896 897 898 899 900 901

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
902
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
903 904 905 906
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
907
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
908 909 910 911 912 913
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
914
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
915 916 917 918 919 920 921 922
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
923
    # 3.d. add sum op for repetitive_outputs
924
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
925
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
926 927 928 929 930 931
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


932 933 934 935 936
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
937 938
    """
    Get output vars in subblock which will be assigned to parent block.
939 940 941 942 943 944 945 946 947 948 949 950
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
951
    """
952

953 954 955
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
956 957 958 959 960 961 962 963 964 965 966 967
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
968
            for op_desc in sub_block.ops:
969
                if var in op_desc.output_arg_names:
970
                    for name in op_desc.input_arg_names:
971
                        sub_outputs.append(sub_block._var_recursive(name))
972

973 974
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
975
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
976
                                           no_grad_set, op_path_dict, is_while)
977 978 979 980
        return sub_block_op_path
    return sub_block.ops


981 982 983 984 985 986 987 988 989 990 991 992 993
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


994 995
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
996 997 998
                          target_block,
                          no_grad_dict,
                          grad_to_var,
999
                          callbacks=None,
1000 1001
                          input_grad_names_set=None,
                          op_path_dict=None):
1002 1003 1004 1005 1006
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1007
        ops(Op): the forward operators whose backward ops need to be added
1008
        target_block(Block): the block which is going to hold new generated grad ops
1009
        no_grad_dict(dict):
1010
            key(int)  block index
T
tianshuo78520a 已提交
1011
            val(set) a set of variable names. These variables have no gradient
1012 1013 1014
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1015 1016 1017 1018
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1019 1020 1021
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1022
    """
Y
Yang Yang 已提交
1023
    if callbacks is not None:
Y
Yang Yang 已提交
1024 1025 1026 1027
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1028

F
fengjiayi 已提交
1029
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1030 1031
    grad_op_descs = []
    program = block.program
1032

1033 1034
    rename_var_map = {}

1035
    # add grad_op_desc by reversed ops
1036
    for op in reversed(ops):
F
fengjiayi 已提交
1037 1038 1039
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1040
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1041
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1042
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1043 1044 1045
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1046
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1047
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1048
                                  no_grad_dict, grad_to_var, callbacks,
1049
                                  input_grad_names_set, op_path_dict)
1050
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1051

W
Wu Yi 已提交
1052
            program._rollback()
F
fengjiayi 已提交
1053 1054
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1055
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1056
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1057
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1058

1059 1060
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1061 1062 1063 1064
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1120

M
mapingshuo 已提交
1121
    # sum parameter's gradients' var given multiple var gradient
1122
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1123

M
mapingshuo 已提交
1124 1125
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1126 1127
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1128

M
mapingshuo 已提交
1129
    # remove some backward ops
C
chengduo 已提交
1130
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1131

C
chengduo 已提交
1132 1133 1134
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1135

F
fengjiayi 已提交
1136
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1137 1138
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1139
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1140 1141
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1142
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1143
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1144 1145 1146 1147
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1148

F
fengjiayi 已提交
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1170
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1171 1172 1173 1174
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1175
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1188
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1189
    """
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1207 1208 1209
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1210
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1211
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1229
        # If the outputs of grad op is empty, just remove it
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1255
                        continue
1256

F
fengjiayi 已提交
1257 1258 1259
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1260 1261
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1262
                continue
M
minqiyang 已提交
1263
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1264
            new_vars.add(grad_var_name)
1265
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1266 1267 1268 1269 1270
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1271

F
fengjiayi 已提交
1272 1273
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1274
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1275

1276 1277 1278
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1279

1280 1281 1282 1283 1284 1285
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1286
                op_desc._rename_input(name, var_map[name])
1287 1288

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1289 1290
            if "@GRAD" not in name:
                continue
1291
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1292
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1293
                op_desc._rename_output(name, new_name)
1294 1295
                var_map[name] = new_name

M
minqiyang 已提交
1296
    for g, ng in six.iteritems(var_map):
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1308
        for var in list(block.vars.values()):
1309 1310 1311 1312 1313 1314 1315
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1347
@framework.static_only
M
mapingshuo 已提交
1348 1349 1350 1351 1352
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1353
    """
1354 1355
    :api_attr: Static Graph

1356
    This function appends backward part to main_program.
F
fengjiayi 已提交
1357

1358 1359
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1360 1361
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1362

1363 1364
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1365

1366
    Parameters:
1367 1368
        loss(Tensor): The loss Tensor of the network.
        parameter_list(list[Tensor|str], optional): List of Parameters or Parameter.names
1369
                                           that need to be updated by optimizers.
1370
                                           If it is None, all parameters
F
fengjiayi 已提交
1371
                                           will be updated.
1372
                                           Default: None.
1373 1374
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1375
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1376
                               be automatically added into this set.
1377
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1378
                               Default: None.
1379
        callbacks(list[callable object], optional): List of callback functions.
1380
                                               The callbacks are used for
1381 1382 1383 1384 1385 1386
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1387
                                               object must have two input
1388 1389
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1390
                                               the new gradient operator will
1391
                                               be added to. The ``context`` is a
1392
                                               map, whose keys are gradient
1393 1394 1395
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1396
                                               has another special key-value pair:
1397
                                               the key is string ``__current_op_desc__``
1398 1399 1400
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1401
                                               Default: None.
F
fengjiayi 已提交
1402 1403

    Returns:
1404 1405
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1406 1407

    Raises:
1408
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1409 1410 1411 1412

    Examples:
        .. code-block:: python

1413 1414
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1415

1416 1417 1418 1419 1420
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1421
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1422 1423
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1424 1425

            # Get all weights in main_program, not include bias.
1426
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1427 1428 1429
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1430
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1431 1432
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1433 1434
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1435 1436 1437
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1438
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1439 1440
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1441 1442
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1443 1444
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1445 1446
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1447 1448 1449
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1450
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1451

1452
    """
1453
    check_type(loss, 'loss', framework.Variable,
1454
               'paddle.static.append_backward')
Y
yuyang18 已提交
1455

Y
Fix bug  
yuyang18 已提交
1456 1457
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1458
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1459

W
Wu Yi 已提交
1460 1461 1462
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1463

Y
Yang Yang 已提交
1464
    if callbacks is not None:
1465
        check_type(callbacks, 'callbacks', list,
1466
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1467

F
fengjiayi 已提交
1468
    program = loss.block.program
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1479

F
fengjiayi 已提交
1480
    if no_grad_set is None:
1481
        no_grad_set = set()
1482 1483
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1484
    no_grad_dict = _get_stop_gradients_(program)
1485 1486
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1487
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1508

F
fengjiayi 已提交
1509 1510
    grad_to_var = dict()

M
mapingshuo 已提交
1511
    op_desc = _create_loss_op_desc_(loss)
1512 1513 1514 1515 1516 1517 1518
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1519 1520 1521 1522

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1535
        # TODO(liym27): need a better design.
1536 1537 1538 1539 1540
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1541
        # TODO: support _append_backward_ops_with_checkpoints_ in
1542
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1543
        is_recompute = False
1544 1545 1546
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1547
            is_recompute = True
1548
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1549 1550
                vars_should_be_hold, \
                recompute_segments = \
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1566 1567
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1568 1569 1570 1571 1572 1573 1574 1575 1576

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1577 1578
    # we need rename the internal gradient variables so that they have
    # different names.
1579
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1580

1581 1582
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1583

F
fengjiayi 已提交
1584
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1585
    program._sync_with_cpp()
F
fengjiayi 已提交
1586

1587
    if parameter_list is not None:
1588 1589
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1590 1591
        parameters = []
        for i, param in enumerate(parameter_list):
1592 1593 1594
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1595 1596 1597 1598
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1599
    else:
F
fengjiayi 已提交
1600
        params = program.global_block().all_parameters()
C
chengduo 已提交
1601
        parameters = [param.name for param in params if param.trainable]
1602

1603
    params_and_grads = []
1604
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1605
    for param in parameters:
M
minqiyang 已提交
1606
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1607
            continue
F
update  
fengjiayi 已提交
1608
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1609
        grad_block = grad_info[1]
1610 1611 1612 1613
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1614
        param_var = program.global_block().var(param)
1615
        grad_var = grad_block.var(grad_info[0])
1616 1617 1618 1619 1620
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1621
        else:
1622
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1623 1624 1625 1626

    for p, g in params_and_grads:
        if g is None:
            continue
1627 1628 1629
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1630 1631 1632 1633 1634 1635 1636
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1637
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1638 1639
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1640
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1641

J
JZ-LIANG 已提交
1642 1643 1644 1645
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1646 1647 1648 1649 1650 1651 1652 1653


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1680 1681 1682 1683 1684 1685
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1705 1706 1707
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1708
    those vars belong to no_grad_var.
1709
    """
1710
    output_names = _get_output_names(block, targets)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1725 1726 1727 1728 1729 1730
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1731
    """
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1745
    """
1746

1747
    input_names = set([inp.name for inp in inputs])
1748 1749 1750
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1751 1752 1753 1754 1755 1756

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1757 1758 1759
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1760 1761 1762 1763 1764 1765 1766
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1767 1768 1769 1770 1771 1772 1773 1774 1775
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1776 1777 1778
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1779 1780 1781 1782 1783 1784
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1785 1786 1787 1788 1789
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1790
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1791 1792
                relevant_op_flags[i] = True

1793 1794 1795 1796 1797 1798 1799
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1800
                if name not in input_names and block.vars[name].stop_gradient:
1801 1802 1803 1804 1805 1806 1807
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1808
    Backpropagate the gradients of targets to inputs.
1809 1810

    Args:
1811 1812 1813
        targets(Tensor|list[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor], optional): The gradient Tensors
1814 1815
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1816 1817
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1818 1819
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1820
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1821
                               Default: None.
1822 1823

    Return:
1824 1825
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1826 1827 1828 1829 1830 1831 1832 1833
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1834 1835
    # increase appending gradients times
    prog._appending_grad_times += 1
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1847 1848
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1849
    no_grad_dict = _get_stop_gradients_(prog)
1850
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1851 1852 1853

    fwd_op_num = block.desc.op_size()

1854 1855
    input_grad_names_set = set()

1856 1857 1858 1859 1860
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1861 1862 1863 1864 1865
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1866
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1867
                                       {"ShapeTensor": [target_shape]},
1868
                                       {"Out": [grad_name]}, {
1869
                                           "shape": target.shape,
1870 1871 1872
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1873

1874
            block.desc.append_op().copy_from(op_desc)
1875
            input_grad_names_set.add(grad_name)
1876 1877 1878 1879 1880 1881 1882 1883
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1884 1885 1886 1887 1888 1889
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1890 1891 1892 1893 1894 1895

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1896 1897 1898 1899

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1900 1901 1902 1903 1904 1905

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1906
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1907 1908
    grad_to_var = dict()
    grad_info_map = dict()
1909 1910 1911 1912 1913 1914
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1915 1916
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1917 1918 1919 1920 1921 1922 1923

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1924
    prog._sync_with_cpp()
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1940 1941


1942
@framework.static_only
1943 1944
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1945
    :api_attr: Static Graph
T
tangwei12 已提交
1946

1947 1948 1949
    Backpropagate the gradients of targets to inputs.

    Args:
1950 1951 1952
        targets (Tensor|list[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor], optional): The gradient Tensor
1953 1954
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1955 1956 1957
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1958
            in this set will be added to the default set. Default: None.
1959 1960

    Return:
1961 1962
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1963 1964 1965 1966 1967
        will be None.

    Examples:
        .. code-block:: python

1968 1969 1970 1971
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
1972

1973
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
1974
            x.stop_gradient=False
1975 1976 1977 1978
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
1979
    """
1980
    check_type(targets, 'targets', (framework.Variable, list),
1981
               'paddle.static.gradients')
1982
    check_type(inputs, 'inputs', (framework.Variable, list),
1983
               'paddle.static.gradients')
1984
    check_type(target_gradients, 'target_gradients', (
1985
        framework.Variable, list, type(None)), 'paddle.static.gradients')
1986

1987 1988
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)