backward.py 74.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
18
from . import core
F
update  
fengjiayi 已提交
19
import collections
20
import copy
21
import six
22
import logging
M
minqiyang 已提交
23
from .. import compat as cpt
24
from . import unique_name
25
from . import log_helper
L
liym27 已提交
26
import paddle.fluid
27
from .data_feeder import check_type
M
mapingshuo 已提交
28 29 30 31 32
__all__ = [
    'append_backward',
    'gradients',
]

33 34 35
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
36 37 38 39 40 41 42 43 44 45 46

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
47
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
48
                len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
49 50 51 52 53 54 55 56 57 58 59
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
60
            if op.desc.type() == "seed":
M
mapingshuo 已提交
61 62 63 64 65 66 67 68 69 70 71
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
72 73 74 75 76
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
        return True, min_op_idx, max_op_idx

    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
                _logger.debug(
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
            core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
243 244


245 246
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
247
    Traverse all ops in op_descs[begin_idx : end_idx],
248 249
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
250 251 252
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
253
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
254
    for i in range(begin_idx, end_idx):
255
        op_desc = op_descs[i]
F
fengjiayi 已提交
256 257
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
W
Wu Yi 已提交
258 259
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
260 261


F
fengjiayi 已提交
262
def _create_op_desc_(op_type, inputs, outputs, attrs):
263 264 265
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
266 267
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
268
    for para, args in six.iteritems(inputs):
269 270 271 272 273
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
274
    for para, args in six.iteritems(outputs):
275 276 277 278 279
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
280 281

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
282
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
283 284 285 286

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
287 288
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
289
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
290 291 292
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
293
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
294 295 296
    return op_desc


M
mapingshuo 已提交
297 298 299 300 301 302 303 304 305 306
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
307 308
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
309 310 311 312
        })
    return op_desc


313
def _infer_var_data_type_shape_(grad_var_name, block):
314
    """
315
    Infer the data type and shape of given grad variable
316
    """
M
minqiyang 已提交
317 318 319 320
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
321
        grad_var.set_dtype(fwd_var.dtype())
322
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
323
    else:
324
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
325 326


F
fengjiayi 已提交
327
def _all_in_set_(cands, s):
328 329 330
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
331 332
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
333 334 335 336 337 338
    for c in cands:
        if not c in s:
            return False
    return True


339 340 341 342 343 344
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
345 346
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
347 348
    for c in literal_cands:
        if c in literal_set:
349 350 351 352
            return True
    return False


F
fengjiayi 已提交
353
def _strip_grad_suffix_(name):
354
    """
M
mapingshuo 已提交
355
    Strip the grad suffix from the given variable name
356 357 358
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
359
    name = cpt.to_text(name)
M
minqiyang 已提交
360
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
361
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
362 363 364


def _append_grad_suffix_(name):
365 366 367 368
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
369
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
370 371


372
def _addup_repetitive_outputs_(op_descs, block_idx):
373 374
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
375 376
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
377 378
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
379 380
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
381
    renamed_vars = collections.defaultdict(list)
382
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
383
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
384
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
385 386
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
387
            if len(renamed_vars[var_name]) > 1:
388 389 390
                pending_sum_ops.append((_create_op_desc_(
                    "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
                    {"use_mkldnn": False}), idx))
F
fengjiayi 已提交
391
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
392
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
393 394
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
395 396 397 398
                if "@GRAD" not in var_name:
                    continue
                #if "@RENAME@" in var_name:
                #    continue
F
fengjiayi 已提交
399 400 401 402 403 404 405
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
406
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
407 408
                else:
                    if len(renamed_vars[var_name]) == 1:
409
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
410 411 412 413
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
414 415 416 417 418 419
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
420 421
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

435
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
436
                               str(var_rename_count[var_name])
F
fengjiayi 已提交
437
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
438 439 440
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
441

M
minqiyang 已提交
442
    for var_name, inputs in six.iteritems(renamed_vars):
F
update  
fengjiayi 已提交
443
        if len(inputs) > 1:
444 445 446
            pending_sum_ops.append(
                (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
                                  {"use_mkldnn": False}), len(op_descs)))
F
fengjiayi 已提交
447
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
448
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
449 450 451 452 453 454
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
455 456 457 458
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
459
        2. all grad inputs of the grad op are in 'no_grad_set'
460
    """
F
fengjiayi 已提交
461 462

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
463 464
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
465
            return True
466 467 468 469
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
470
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
471 472 473
            return True
        return False

F
fengjiayi 已提交
474
    # Remove ops whose outputs are all in no_grad_dict
475 476 477 478
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
479 480
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
481
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
482
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
483
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
484
            if core.grad_var_suffix() in arg and arg in no_grad_set:
485
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
486 487
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
488 489
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
490

491
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
492 493 494 495

    return op_descs


C
chengduo 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
511
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
611 612 613
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
614
    # not_need_op_descs will be whole graph, this IF clause avoids it.
615 616 617
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
618 619


620
from .proto import framework_pb2
Y
Yang Yang 已提交
621 622 623 624


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
625
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
626 627 628
    return proto.__str__()


M
mapingshuo 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
644
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
645 646 647 648 649
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
650 651 652
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
653 654
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
655 656
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
657 658
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
659
    """
M
mapingshuo 已提交
660 661

    checkpoints_name = [x.name for x in checkpoints]
662
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
663 664
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
665
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
666
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
667
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
668
    program_stat.build_stats()
M
mapingshuo 已提交
669 670

    # 1) find ops between checkpoints, i.e. recompute_segments
671
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
672 673
    segments = []

674
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
                segments.append([min_idx, max_idx + 1])
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
702 703

    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
704
    vars_should_be_hold = []
705
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
706 707 708
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
M
mapingshuo 已提交
709
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
710
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
711
    # c. input variables are checkpoints
M
mapingshuo 已提交
712 713 714
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
715
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
716 717 718 719 720 721 722
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
723
        # if there is no recompute segment, add backward ops like
M
mapingshuo 已提交
724
        # _append_backward_ops_ function
M
mapingshuo 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        # add grad op for ops not in any segments
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
M
mapingshuo 已提交
770
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
771 772 773 774
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
775
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
776 777 778 779 780 781
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

M
mapingshuo 已提交
782
        # 3.c. add backward ops of current recomputation ops
M
mapingshuo 已提交
783 784 785 786 787 788 789 790
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
791
    # 3.d. add sum op for repetitive_outputs
792
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
793
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
794 795 796 797 798 799
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


800 801 802 803 804
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
805 806
    """
    Get output vars in subblock which will be assigned to parent block.
807 808 809 810 811 812 813 814 815 816 817 818
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
819
    """
820

821 822 823
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
824 825 826 827 828 829 830 831 832 833 834 835
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
836
            for op_desc in sub_block.ops:
837
                if var in op_desc.output_arg_names:
838
                    for name in op_desc.input_arg_names:
839
                        sub_outputs.append(sub_block._var_recursive(name))
840

841 842
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
843
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
844
                                           no_grad_set, op_path_dict, is_while)
845 846 847 848
        return sub_block_op_path
    return sub_block.ops


849 850 851 852 853 854 855 856 857 858 859 860 861
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


862 863
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
864 865 866
                          target_block,
                          no_grad_dict,
                          grad_to_var,
867
                          callbacks=None,
868 869
                          input_grad_names_set=None,
                          op_path_dict=None):
870 871 872 873 874
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
875
        ops(Op): the forward operators whose backward ops need to be added
876
        target_block(Block): the block which is going to hold new generated grad ops
877
        no_grad_dict(dict):
878
            key(int)  block index
T
tianshuo78520a 已提交
879
            val(set) a set of variable names. These variables have no gradient
880 881 882
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
883 884 885 886
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
887 888 889
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
890
    """
Y
Yang Yang 已提交
891
    if callbacks is not None:
Y
Yang Yang 已提交
892 893 894 895
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
896

F
fengjiayi 已提交
897
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
898 899
    grad_op_descs = []
    program = block.program
900

901 902
    rename_var_map = {}

903
    # add grad_op_desc by reversed ops
904
    for op in reversed(ops):
F
fengjiayi 已提交
905 906 907
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
908
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
909
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
910
            grad_sub_block._set_forward_block_idx(sub_block.idx)
911 912 913
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
914
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
915
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
916
                                  no_grad_dict, grad_to_var, callbacks,
917
                                  input_grad_names_set, op_path_dict)
918
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
919

W
Wu Yi 已提交
920
            program._rollback()
F
fengjiayi 已提交
921 922
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
923
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
924
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
925
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
926

927 928
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
929 930 931 932
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
988

M
mapingshuo 已提交
989
    # sum parameter's gradients' var given multiple var gradient
990
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
991

M
mapingshuo 已提交
992 993
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
994 995
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
996

M
mapingshuo 已提交
997
    # remove some backward ops
C
chengduo 已提交
998
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
999

C
chengduo 已提交
1000 1001 1002
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1003

F
fengjiayi 已提交
1004
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1005 1006
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1007
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1008 1009
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1010
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1011
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1012 1013 1014 1015
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1016

F
fengjiayi 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1038
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1039 1040 1041 1042
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1043
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1056
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1057
    """
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1075 1076 1077
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1078
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1079
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1097
        # If the outputs of grad op is empty, just remove it
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1123
                        continue
1124

F
fengjiayi 已提交
1125 1126 1127
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1128 1129
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1130
                continue
M
minqiyang 已提交
1131
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1132
            new_vars.add(grad_var_name)
1133
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1134 1135 1136 1137 1138
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1139

F
fengjiayi 已提交
1140 1141
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1142
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1143

1144 1145 1146
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1147

1148 1149 1150 1151 1152 1153
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1154
                op_desc._rename_input(name, var_map[name])
1155 1156

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1157 1158
            if "@GRAD" not in name:
                continue
1159
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1160
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1161
                op_desc._rename_output(name, new_name)
1162 1163
                var_map[name] = new_name

M
minqiyang 已提交
1164
    for g, ng in six.iteritems(var_map):
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1176
        for var in list(block.vars.values()):
1177 1178 1179 1180 1181 1182 1183
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


M
mapingshuo 已提交
1215 1216 1217 1218 1219
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1220
    """
1221 1222
    :api_attr: Static Graph

1223
    This function appends backward part to main_program.
F
fengjiayi 已提交
1224

1225 1226
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1227 1228
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1229

1230 1231
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1232

1233 1234
    Parameters:
        loss( :ref:`api_guide_Variable_en` ): The loss variable of the network.
1235 1236
        parameter_list(list[Variable|str], optional): List of Parameters or Parameter.names
                                           that need to be updated by optimizers.
1237
                                           If it is None, all parameters
F
fengjiayi 已提交
1238
                                           will be updated.
1239
                                           Default: None.
1240
        no_grad_set(set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients
1241
                               should be ignored. All variables with
1242
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1243
                               be automatically added into this set.
1244
                               If this parameter is not None, the Variables or Variable.names in this set will be added to the default set.
1245
                               Default: None.
1246
        callbacks(list[callable object], optional): List of callback functions.
1247
                                               The callbacks are used for
1248 1249 1250 1251 1252 1253
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1254
                                               object must have two input
1255
                                               parameters: 'block' and 'context'.
1256
                                               The 'block' is the :ref:`api_guide_Block_en` which
1257 1258 1259 1260
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
1261
                                               corresponding original :ref:`api_guide_Variable_en` .
1262 1263 1264 1265 1266 1267
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1268
                                               Default: None.
F
fengjiayi 已提交
1269 1270

    Returns:
1271 1272
        list of tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient variable.
F
fengjiayi 已提交
1273 1274 1275 1276 1277 1278 1279

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

1280
            import paddle.fluid as fluid
L
lujun 已提交
1281

1282 1283 1284 1285
            x = fluid.data(name='x', shape=[None, 13], dtype='int64')
            y = fluid.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = fluid.embedding(x, size=[100, 256])
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None, name='my_fc')
L
lujun 已提交
1286
            loss = fluid.layers.square_error_cost(input=y_predict, label=y)
F
fengjiayi 已提交
1287
            avg_loss = fluid.layers.mean(loss)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

            # Get all weights in main_program, not include bias.
            all_weights = [param for param in fluid.default_main_program().block(0).all_parameters() if 'w_' in param.name]
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
            p_g_list1 = fluid.backward.append_backward(loss=avg_loss)
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

            # return the param_grads corresponding to parameter_list that can be list of param (Variable).
            p_g_list2 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights)
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
            p_g_list3 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights_name)
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # no_grad_set can be set of Variables that means grad will be cut off from these Variables.
            p_g_list4 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

            # no_grad_set can be set of Variable.name when the Variable is created inside layers and can't be specified explicitly.
            p_g_list5 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
            p_g_list6 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1315

1316
    """
1317 1318
    check_type(loss, 'loss', framework.Variable,
               'fluid.backward.append_backward')
Y
yuyang18 已提交
1319

Y
Fix bug  
yuyang18 已提交
1320 1321
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1322
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1323

W
Wu Yi 已提交
1324 1325 1326
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1327

Y
Yang Yang 已提交
1328
    if callbacks is not None:
1329 1330
        check_type(callbacks, 'callbacks', list,
                   'fluid.backward.append_backward')
Y
Yu Yang 已提交
1331

F
fengjiayi 已提交
1332
    program = loss.block.program
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1343

F
fengjiayi 已提交
1344
    if no_grad_set is None:
1345
        no_grad_set = set()
1346 1347
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1348
    no_grad_dict = _get_stop_gradients_(program)
1349 1350
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1351
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1372

F
fengjiayi 已提交
1373 1374
    grad_to_var = dict()

M
mapingshuo 已提交
1375
    op_desc = _create_loss_op_desc_(loss)
1376 1377 1378 1379 1380 1381 1382
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1383 1384 1385 1386

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1399
        # TODO(liym27): need a better design.
1400 1401 1402 1403 1404
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1405
        # TODO: support _append_backward_ops_with_checkpoints_ in
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        #  sub-block (control flow)
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
            program_stat, checkpoint_names, \
            vars_should_be_hold, \
            recompute_segments = \
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1428 1429
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1430 1431 1432 1433 1434 1435 1436 1437 1438

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1439 1440
    # we need rename the internal gradient variables so that they have
    # different names.
1441
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1442

1443 1444
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1445

F
fengjiayi 已提交
1446
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1447
    program._sync_with_cpp()
F
fengjiayi 已提交
1448

1449
    if parameter_list is not None:
1450 1451
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1452 1453
        parameters = []
        for i, param in enumerate(parameter_list):
1454 1455 1456
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1457 1458 1459 1460
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1461
    else:
F
fengjiayi 已提交
1462
        params = program.global_block().all_parameters()
C
chengduo 已提交
1463
        parameters = [param.name for param in params if param.trainable]
1464

1465
    params_and_grads = []
1466
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1467
    for param in parameters:
M
minqiyang 已提交
1468
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1469
            continue
F
update  
fengjiayi 已提交
1470
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1471
        grad_block = grad_info[1]
1472 1473 1474 1475
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1476
        param_var = program.global_block().var(param)
1477
        grad_var = grad_block.var(grad_info[0])
1478 1479 1480 1481 1482
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1483
        else:
1484
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1485 1486 1487 1488

    for p, g in params_and_grads:
        if g is None:
            continue
1489 1490 1491
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1492 1493 1494 1495 1496 1497 1498
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1499
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1500 1501
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1502
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1503

1504
    return params_and_grads
1505 1506 1507 1508 1509 1510 1511 1512


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1539 1540 1541 1542 1543 1544
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1564 1565 1566
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1567
    those vars belong to no_grad_var.
1568
    """
1569
    output_names = _get_output_names(block, targets)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1584 1585 1586 1587 1588 1589
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1590
    """
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1604
    """
1605

1606
    input_names = set([inp.name for inp in inputs])
1607 1608 1609
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1610 1611 1612 1613 1614 1615

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1616 1617 1618
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1619 1620 1621 1622 1623 1624 1625
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1626 1627 1628 1629 1630 1631 1632 1633 1634
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1635 1636 1637
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1638 1639 1640 1641 1642 1643
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1644 1645 1646 1647 1648 1649 1650 1651
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
                    and _some_in_set_(op.desc.output_arg_names(),output_names):
                relevant_op_flags[i] = True

1652 1653 1654 1655 1656 1657 1658
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1659
                if name not in input_names and block.vars[name].stop_gradient:
1660 1661 1662 1663 1664 1665 1666
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1667
    Backpropagate the gradients of targets to inputs.
1668 1669 1670 1671

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
1672
        target_gradients (Variable|list[Variable], optional): The gradient variables
1673 1674
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1675 1676 1677 1678 1679 1680
        no_grad_set(set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All variables with
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
                               If this parameter is not None, the Variables or Variable.names in this set will be added to the default set.
                               Default: None.
1681 1682

    Return:
1683
        (list[Variable]): A list of gradients for inputs
1684 1685 1686 1687 1688 1689 1690 1691 1692
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1693 1694
    # increase appending gradients times
    prog._appending_grad_times += 1
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1706 1707
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1708
    no_grad_dict = _get_stop_gradients_(prog)
1709
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1710 1711 1712

    fwd_op_num = block.desc.op_size()

1713 1714
    input_grad_names_set = set()

1715 1716 1717 1718 1719
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1720 1721 1722 1723 1724
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1725
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1726
                                       {"ShapeTensor": [target_shape]},
1727
                                       {"Out": [grad_name]}, {
1728
                                           "shape": target.shape,
1729 1730 1731
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1732

1733
            block.desc.append_op().copy_from(op_desc)
1734
            input_grad_names_set.add(grad_name)
1735 1736 1737 1738 1739 1740 1741 1742
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1743 1744 1745 1746 1747 1748
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1749 1750 1751 1752 1753 1754

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1755 1756 1757 1758

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1759
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1760 1761
    grad_to_var = dict()
    grad_info_map = dict()
1762 1763 1764 1765 1766 1767
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1768 1769
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1770 1771 1772 1773 1774 1775 1776

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1777
    prog._sync_with_cpp()
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1793 1794 1795 1796


def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1797 1798
    :api_attr: Static Graph
    
1799 1800 1801 1802 1803
    Backpropagate the gradients of targets to inputs.

    Args:
        targets (Variable|list[Variable]): The target variables.
        inputs (Variable|list[Variable]): The input variables.
1804
        target_gradients (Variable|list[Variable], optional): The gradient variables
1805 1806
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1807 1808 1809 1810
        no_grad_set (set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All variables with `stop_gradient=True` from all blocks will
            be automatically added into this set. If this parameter is not None, the Variables or Variable.names
            in this set will be added to the default set. Default: None.
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

    Return:
        (list[Variable]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

1822
            x = fluid.data(name='x', shape=[None,2,8,8], dtype='float32')
1823 1824 1825 1826 1827 1828 1829 1830
            x.stop_gradient=False
            y = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            y = fluid.layers.conv2d(y, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            z = fluid.gradients([y], x)
            print(z)
    """
1831 1832 1833 1834 1835 1836 1837
    check_type(targets, 'targets', (framework.Variable, list),
               'fluid.backward.gradients')
    check_type(inputs, 'inputs', (framework.Variable, list),
               'fluid.backward.gradients')
    check_type(target_gradients, 'target_gradients', (
        framework.Variable, list, type(None)), 'fluid.backward.gradients')

1838 1839
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)