backward.py 78.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
        return True, min_op_idx, max_op_idx

    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
                _logger.debug(
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
195
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
244 245


246 247
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
248
    Traverse all ops in op_descs[begin_idx : end_idx],
249 250
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
251 252 253
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
254
        end_idx = len(op_descs)
255 256 257 258 259 260 261 262 263 264 265 266 267
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
268 269


F
fengjiayi 已提交
270
def _create_op_desc_(op_type, inputs, outputs, attrs):
271 272 273
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
274 275
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
276
    for para, args in six.iteritems(inputs):
277 278 279 280 281
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
282
    for para, args in six.iteritems(outputs):
283 284 285 286 287
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
288 289

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
290
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
291 292 293 294

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
295 296
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
297
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
298 299 300
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
301
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
302 303 304
    return op_desc


M
mapingshuo 已提交
305 306 307 308 309 310 311 312 313 314
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
315 316
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
317 318 319 320
        })
    return op_desc


321
def _infer_var_data_type_shape_(grad_var_name, block):
322
    """
323
    Infer the data type and shape of given grad variable
324
    """
M
minqiyang 已提交
325 326 327 328
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
329
        grad_var.set_dtype(fwd_var.dtype())
330
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
331
    else:
332
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
333 334


F
fengjiayi 已提交
335
def _all_in_set_(cands, s):
336 337 338
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
339 340
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
341 342 343 344 345 346
    for c in cands:
        if not c in s:
            return False
    return True


347 348 349 350 351 352
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
353 354
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
355 356
    for c in literal_cands:
        if c in literal_set:
357 358 359 360
            return True
    return False


F
fengjiayi 已提交
361
def _strip_grad_suffix_(name):
362
    """
M
mapingshuo 已提交
363
    Strip the grad suffix from the given variable name
364 365 366
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
367
    name = cpt.to_text(name)
M
minqiyang 已提交
368
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
369
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
370 371 372


def _append_grad_suffix_(name):
373 374 375 376
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
377
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
378 379


T
tangwei12 已提交
380 381 382 383 384
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
385 386 387 388 389 390
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
391 392 393 394
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
395 396 397
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
398 399 400 401 402
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
419 420
                             {"use_mkldnn": False,
                              "op_device": op_device}))
421 422 423
    renamed_vars[var_name] = [var_name]


424
def _addup_repetitive_outputs_(op_descs, block_idx):
425 426
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
427 428
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
429 430
    `sum_op`s are added to implement the accumulate.
    """
431 432 433
    _MAX_ADD_NUM_ = core.globals()['FLAGS_max_inplace_grad_add']
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
434
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
435
    renamed_vars = collections.defaultdict(list)
436
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
437
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
438 439 440 441 442
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
443
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
444 445
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
446
            if len(renamed_vars[var_name]) > 1:
447
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
T
tangwei12 已提交
448 449
                    _accumulate_gradients_by_sum_op_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
450
                else:
T
tangwei12 已提交
451 452
                    _accumulate_gradients_by_add_ops_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
453

F
update  
fengjiayi 已提交
454
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
455 456
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
457 458
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
459
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
460
                #    continue
F
fengjiayi 已提交
461 462 463 464 465 466 467
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
468
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
469 470
                else:
                    if len(renamed_vars[var_name]) == 1:
471
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
472 473 474 475
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
476 477 478 479 480 481
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
482 483
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

497
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
498
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
499
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
500 501 502
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
503

M
minqiyang 已提交
504
    for var_name, inputs in six.iteritems(renamed_vars):
505 506 507 508 509 510 511 512 513
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs))
            else:
                _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                  pending_sum_ops,
                                                  len(op_descs))

F
fengjiayi 已提交
514
    # sum_op descs are sorted according to their insert position
515 516 517 518 519 520 521 522 523 524
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
525 526 527 528 529

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
530 531 532 533
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
534
        2. all grad inputs of the grad op are in 'no_grad_set'
535
    """
F
fengjiayi 已提交
536 537

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
538 539
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
540
            return True
541 542 543 544
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
545
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
546 547 548
            return True
        return False

F
fengjiayi 已提交
549
    # Remove ops whose outputs are all in no_grad_dict
550 551 552 553
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
554 555
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
556
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
557
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
558
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
559
            if core.grad_var_suffix() in arg and arg in no_grad_set:
560
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
561 562
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
563 564
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
565

566
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
567 568 569 570

    return op_descs


C
chengduo 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
586
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
686 687 688
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
689
    # not_need_op_descs will be whole graph, this IF clause avoids it.
690 691 692
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
693 694


Y
Yang Yang 已提交
695 696
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
697
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
698 699 700
    return proto.__str__()


M
mapingshuo 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
716
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
717 718 719 720 721
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
722 723 724
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
725 726
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
727 728
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
729 730
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
731
    """
M
mapingshuo 已提交
732 733

    checkpoints_name = [x.name for x in checkpoints]
734
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
735 736
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
737
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
738
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
739
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
740
    program_stat.build_stats()
M
mapingshuo 已提交
741 742

    # 1) find ops between checkpoints, i.e. recompute_segments
743
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
744 745
    segments = []

746
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
                segments.append([min_idx, max_idx + 1])
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
774 775

    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
776
    vars_should_be_hold = []
777
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
778 779 780
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
M
mapingshuo 已提交
781
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
782
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
783
    # c. input variables are checkpoints
M
mapingshuo 已提交
784 785 786
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
787
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
788 789 790 791 792 793 794
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
795
        # if there is no recompute segment, add backward ops like
M
mapingshuo 已提交
796
        # _append_backward_ops_ function
M
mapingshuo 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        # add grad op for ops not in any segments
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
M
mapingshuo 已提交
842
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
843 844 845 846
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
847
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
848 849 850 851 852 853
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

M
mapingshuo 已提交
854
        # 3.c. add backward ops of current recomputation ops
M
mapingshuo 已提交
855 856 857 858 859 860 861 862
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
863
    # 3.d. add sum op for repetitive_outputs
864
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
865
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
866 867 868 869 870 871
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


872 873 874 875 876
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
877 878
    """
    Get output vars in subblock which will be assigned to parent block.
879 880 881 882 883 884 885 886 887 888 889 890
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
891
    """
892

893 894 895
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
896 897 898 899 900 901 902 903 904 905 906 907
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
908
            for op_desc in sub_block.ops:
909
                if var in op_desc.output_arg_names:
910
                    for name in op_desc.input_arg_names:
911
                        sub_outputs.append(sub_block._var_recursive(name))
912

913 914
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
915
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
916
                                           no_grad_set, op_path_dict, is_while)
917 918 919 920
        return sub_block_op_path
    return sub_block.ops


921 922 923 924 925 926 927 928 929 930 931 932 933
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


934 935
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
936 937 938
                          target_block,
                          no_grad_dict,
                          grad_to_var,
939
                          callbacks=None,
940 941
                          input_grad_names_set=None,
                          op_path_dict=None):
942 943 944 945 946
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
947
        ops(Op): the forward operators whose backward ops need to be added
948
        target_block(Block): the block which is going to hold new generated grad ops
949
        no_grad_dict(dict):
950
            key(int)  block index
T
tianshuo78520a 已提交
951
            val(set) a set of variable names. These variables have no gradient
952 953 954
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
955 956 957 958
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
959 960 961
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
962
    """
Y
Yang Yang 已提交
963
    if callbacks is not None:
Y
Yang Yang 已提交
964 965 966 967
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
968

F
fengjiayi 已提交
969
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
970 971
    grad_op_descs = []
    program = block.program
972

973 974
    rename_var_map = {}

975
    # add grad_op_desc by reversed ops
976
    for op in reversed(ops):
F
fengjiayi 已提交
977 978 979
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
980
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
981
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
982
            grad_sub_block._set_forward_block_idx(sub_block.idx)
983 984 985
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
986
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
987
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
988
                                  no_grad_dict, grad_to_var, callbacks,
989
                                  input_grad_names_set, op_path_dict)
990
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
991

W
Wu Yi 已提交
992
            program._rollback()
F
fengjiayi 已提交
993 994
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
995
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
996
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
997
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
998

999 1000
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1001 1002 1003 1004
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1060

M
mapingshuo 已提交
1061
    # sum parameter's gradients' var given multiple var gradient
1062
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1063

M
mapingshuo 已提交
1064 1065
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1066 1067
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1068

M
mapingshuo 已提交
1069
    # remove some backward ops
C
chengduo 已提交
1070
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1071

C
chengduo 已提交
1072 1073 1074
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1075

F
fengjiayi 已提交
1076
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1077 1078
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1079
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1080 1081
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1082
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1083
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1084 1085 1086 1087
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1088

F
fengjiayi 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1110
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1111 1112 1113 1114
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1115
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1128
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1129
    """
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1147 1148 1149
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1150
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1151
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1169
        # If the outputs of grad op is empty, just remove it
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1195
                        continue
1196

F
fengjiayi 已提交
1197 1198 1199
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1200 1201
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1202
                continue
M
minqiyang 已提交
1203
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1204
            new_vars.add(grad_var_name)
1205
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1206 1207 1208 1209 1210
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1211

F
fengjiayi 已提交
1212 1213
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1214
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1215

1216 1217 1218
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1219

1220 1221 1222 1223 1224 1225
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1226
                op_desc._rename_input(name, var_map[name])
1227 1228

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1229 1230
            if "@GRAD" not in name:
                continue
1231
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1232
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1233
                op_desc._rename_output(name, new_name)
1234 1235
                var_map[name] = new_name

M
minqiyang 已提交
1236
    for g, ng in six.iteritems(var_map):
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1248
        for var in list(block.vars.values()):
1249 1250 1251 1252 1253 1254 1255
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1287
@framework.static_only
M
mapingshuo 已提交
1288 1289 1290 1291 1292
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1293
    """
1294 1295
    :api_attr: Static Graph

1296
    This function appends backward part to main_program.
F
fengjiayi 已提交
1297

1298 1299
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1300 1301
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1302

1303 1304
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1305

1306
    Parameters:
1307 1308
        loss(Tensor): The loss Tensor of the network.
        parameter_list(list[Tensor|str], optional): List of Parameters or Parameter.names
1309
                                           that need to be updated by optimizers.
1310
                                           If it is None, all parameters
F
fengjiayi 已提交
1311
                                           will be updated.
1312
                                           Default: None.
1313 1314
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1315
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1316
                               be automatically added into this set.
1317
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1318
                               Default: None.
1319
        callbacks(list[callable object], optional): List of callback functions.
1320
                                               The callbacks are used for
1321 1322 1323 1324 1325 1326
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1327
                                               object must have two input
1328 1329
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1330
                                               the new gradient operator will
1331
                                               be added to. The ``context`` is a
1332
                                               map, whose keys are gradient
1333 1334 1335
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1336
                                               has another special key-value pair:
1337
                                               the key is string ``__current_op_desc__``
1338 1339 1340
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1341
                                               Default: None.
F
fengjiayi 已提交
1342 1343

    Returns:
1344 1345
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1346 1347

    Raises:
1348
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1349 1350 1351 1352

    Examples:
        .. code-block:: python

1353 1354
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1355

1356 1357 1358 1359 1360
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1361
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1362 1363
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1364 1365

            # Get all weights in main_program, not include bias.
1366
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1367 1368 1369
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1370
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1371 1372
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1373 1374
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1375 1376 1377
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1378
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1379 1380
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1381 1382
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1383 1384
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1385 1386
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1387 1388 1389
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1390
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1391

1392
    """
1393
    check_type(loss, 'loss', framework.Variable,
1394
               'paddle.static.append_backward')
Y
yuyang18 已提交
1395

Y
Fix bug  
yuyang18 已提交
1396 1397
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1398
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1399

W
Wu Yi 已提交
1400 1401 1402
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1403

Y
Yang Yang 已提交
1404
    if callbacks is not None:
1405
        check_type(callbacks, 'callbacks', list,
1406
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1407

F
fengjiayi 已提交
1408
    program = loss.block.program
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1419

F
fengjiayi 已提交
1420
    if no_grad_set is None:
1421
        no_grad_set = set()
1422 1423
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1424
    no_grad_dict = _get_stop_gradients_(program)
1425 1426
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1427
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1448

F
fengjiayi 已提交
1449 1450
    grad_to_var = dict()

M
mapingshuo 已提交
1451
    op_desc = _create_loss_op_desc_(loss)
1452 1453 1454 1455 1456 1457 1458
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1459 1460 1461 1462

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1475
        # TODO(liym27): need a better design.
1476 1477 1478 1479 1480
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1481
        # TODO: support _append_backward_ops_with_checkpoints_ in
1482 1483 1484 1485 1486
        #  sub-block (control flow)
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1487 1488
                vars_should_be_hold, \
                recompute_segments = \
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1504 1505
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1506 1507 1508 1509 1510 1511 1512 1513 1514

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1515 1516
    # we need rename the internal gradient variables so that they have
    # different names.
1517
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1518

1519 1520
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1521

F
fengjiayi 已提交
1522
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1523
    program._sync_with_cpp()
F
fengjiayi 已提交
1524

1525
    if parameter_list is not None:
1526 1527
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1528 1529
        parameters = []
        for i, param in enumerate(parameter_list):
1530 1531 1532
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1533 1534 1535 1536
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1537
    else:
F
fengjiayi 已提交
1538
        params = program.global_block().all_parameters()
C
chengduo 已提交
1539
        parameters = [param.name for param in params if param.trainable]
1540

1541
    params_and_grads = []
1542
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1543
    for param in parameters:
M
minqiyang 已提交
1544
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1545
            continue
F
update  
fengjiayi 已提交
1546
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1547
        grad_block = grad_info[1]
1548 1549 1550 1551
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1552
        param_var = program.global_block().var(param)
1553
        grad_var = grad_block.var(grad_info[0])
1554 1555 1556 1557 1558
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1559
        else:
1560
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1561 1562 1563 1564

    for p, g in params_and_grads:
        if g is None:
            continue
1565 1566 1567
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1568 1569 1570 1571 1572 1573 1574
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1575
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1576 1577
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1578
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1579

1580
    return params_and_grads
1581 1582 1583 1584 1585 1586 1587 1588


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1615 1616 1617 1618 1619 1620
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1640 1641 1642
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1643
    those vars belong to no_grad_var.
1644
    """
1645
    output_names = _get_output_names(block, targets)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1660 1661 1662 1663 1664 1665
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1666
    """
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1680
    """
1681

1682
    input_names = set([inp.name for inp in inputs])
1683 1684 1685
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1686 1687 1688 1689 1690 1691

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1692 1693 1694
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1695 1696 1697 1698 1699 1700 1701
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1702 1703 1704 1705 1706 1707 1708 1709 1710
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1711 1712 1713
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1714 1715 1716 1717 1718 1719
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1720 1721 1722 1723 1724
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1725
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1726 1727
                relevant_op_flags[i] = True

1728 1729 1730 1731 1732 1733 1734
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1735
                if name not in input_names and block.vars[name].stop_gradient:
1736 1737 1738 1739 1740 1741 1742
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1743
    Backpropagate the gradients of targets to inputs.
1744 1745

    Args:
1746 1747 1748
        targets(Tensor|list[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor], optional): The gradient Tensors
1749 1750
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1751 1752
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1753 1754
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1755
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1756
                               Default: None.
1757 1758

    Return:
1759 1760
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1761 1762 1763 1764 1765 1766 1767 1768
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1769 1770
    # increase appending gradients times
    prog._appending_grad_times += 1
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1782 1783
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1784
    no_grad_dict = _get_stop_gradients_(prog)
1785
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1786 1787 1788

    fwd_op_num = block.desc.op_size()

1789 1790
    input_grad_names_set = set()

1791 1792 1793 1794 1795
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1796 1797 1798 1799 1800
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1801
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1802
                                       {"ShapeTensor": [target_shape]},
1803
                                       {"Out": [grad_name]}, {
1804
                                           "shape": target.shape,
1805 1806 1807
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1808

1809
            block.desc.append_op().copy_from(op_desc)
1810
            input_grad_names_set.add(grad_name)
1811 1812 1813 1814 1815 1816 1817 1818
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1819 1820 1821 1822 1823 1824
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1825 1826 1827 1828 1829 1830

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1831 1832 1833 1834

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1835 1836 1837 1838 1839 1840

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1841
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1842 1843
    grad_to_var = dict()
    grad_info_map = dict()
1844 1845 1846 1847 1848 1849
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1850 1851
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1852 1853 1854 1855 1856 1857 1858

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1859
    prog._sync_with_cpp()
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1875 1876


1877
@framework.static_only
1878 1879
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1880
    :api_attr: Static Graph
T
tangwei12 已提交
1881

1882 1883 1884
    Backpropagate the gradients of targets to inputs.

    Args:
1885 1886 1887
        targets (Tensor|list[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor], optional): The gradient Tensor
1888 1889
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1890 1891 1892
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1893
            in this set will be added to the default set. Default: None.
1894 1895

    Return:
1896 1897
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1898 1899 1900 1901 1902
        will be None.

    Examples:
        .. code-block:: python

1903 1904 1905 1906
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
1907

1908
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
1909
            x.stop_gradient=False
1910 1911 1912 1913
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
1914
    """
1915
    check_type(targets, 'targets', (framework.Variable, list),
1916
               'paddle.static.gradients')
1917
    check_type(inputs, 'inputs', (framework.Variable, list),
1918
               'paddle.static.gradients')
1919
    check_type(target_gradients, 'target_gradients', (
1920
        framework.Variable, list, type(None)), 'paddle.static.gradients')
1921

1922 1923
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)