backward.py 30.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
18
from . import core
F
update  
fengjiayi 已提交
19
import collections
20
import copy
21
import six
M
minqiyang 已提交
22
from .. import compat as cpt
23
from . import unique_name
24

Y
yuyang18 已提交
25
__all__ = ['append_backward']
26 27


28 29
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
30
    Traverse all ops in op_descs[begin_idx : end_idx],
31 32
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
33 34 35
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
36
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
37
    for i in range(begin_idx, end_idx):
38
        op_desc = op_descs[i]
F
fengjiayi 已提交
39 40 41 42
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
43 44


F
fengjiayi 已提交
45
def _create_op_desc_(op_type, inputs, outputs, attrs):
46 47 48
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
49 50
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
51
    for para, args in six.iteritems(inputs):
52 53 54 55 56
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
57
    for para, args in six.iteritems(outputs):
58 59 60 61 62
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
63 64 65 66 67 68

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
M
minqiyang 已提交
69
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
70 71 72 73 74 75 76
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


77 78 79 80
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
M
minqiyang 已提交
81 82 83 84
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
85 86
        grad_var.set_dtype(fwd_var.dtype())
    else:
87
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
88 89


F
fengjiayi 已提交
90
def _all_in_set_(cands, s):
91 92 93
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
94 95
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
96 97 98 99 100 101
    for c in cands:
        if not c in s:
            return False
    return True


102 103 104 105 106 107
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
108 109
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
110 111
    for c in literal_cands:
        if c in literal_set:
112 113 114 115
            return True
    return False


F
fengjiayi 已提交
116
def _strip_grad_suffix_(name):
117 118 119 120 121
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
122
    name = cpt.to_text(name)
M
minqiyang 已提交
123
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
124
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
125 126 127


def _append_grad_suffix_(name):
128 129 130 131
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
132
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
133 134


F
fengjiayi 已提交
135
def _addup_repetitive_outputs_(op_descs):
136 137
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
138 139
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
140 141
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
142 143
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
144 145
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
146
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
147
            if len(renamed_vars[var_name]) > 1:
148 149 150
                pending_sum_ops.append((_create_op_desc_(
                    "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
                    {"use_mkldnn": False}), idx))
F
fengjiayi 已提交
151
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
152
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
                else:
                    if len(renamed_vars[var_name]) == 1:
                        new_name = var_name + "@RENAME@" + \
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
                        _rename_arg_(op_descs, var_name, new_name, 0, idx)
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

F
update  
fengjiayi 已提交
185
                    new_name = var_name + "@RENAME@" + \
F
fengjiayi 已提交
186
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
187
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
188 189 190
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
191

M
minqiyang 已提交
192
    for var_name, inputs in six.iteritems(renamed_vars):
F
update  
fengjiayi 已提交
193
        if len(inputs) > 1:
194 195 196
            pending_sum_ops.append(
                (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
                                  {"use_mkldnn": False}), len(op_descs)))
F
fengjiayi 已提交
197
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
198
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
199 200 201 202 203 204
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
205 206 207 208
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
209
        2. all grad inputs of the grad op are in 'no_grad_set'
210
    """
F
fengjiayi 已提交
211 212

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
213 214
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
215
            return True
216 217 218 219
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
220
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
221 222 223
            return True
        return False

F
fengjiayi 已提交
224
    # Remove ops whose outputs are all in no_grad_dict
225 226 227 228
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
229 230
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
231
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
232
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
233 234 235
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
236
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
237

238
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
239 240 241 242

    return op_descs


243
from .proto import framework_pb2
Y
Yang Yang 已提交
244 245 246 247


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
248
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
249 250 251
    return proto.__str__()


252 253 254 255 256 257 258 259 260 261
def _callback_lookup_(op):
    """
    Only used in _append_backward_ops_
    Build and returns a callback function for certain op. For example

    parallel_do:           AllReduce

    :param op:
    :return: callback function
    """
Y
Yang Yang 已提交
262
    if op.type == 'parallel_do' and op.attr('use_nccl'):
Q
qiaolongfei 已提交
263
        all_vars = op.block.vars
264
        param_names = set(op.input('parameters'))
265 266 267 268
        param_names = [
            name for name in param_names
            if all_vars[name].stop_gradient is False
        ]
269 270 271
        param_grad_names = [n + "@GRAD" for n in param_names]

        class ParallelDoCallBack(object):
Y
Yang Yang 已提交
272
            def __init__(self, param_grad_names, parallel_scopes_name):
273 274
                self.has_inserted_nccl_init = False
                self.param_grad_names = param_grad_names
Y
Yang Yang 已提交
275
                self.parallel_scopes_name = parallel_scopes_name
276 277

            def __call__(self, block, context):
Y
Yang Yang 已提交
278
                if not self.has_inserted_nccl_init:
Y
Yang Yang 已提交
279
                    op_desc = _create_op_desc_(
Y
Yang Yang 已提交
280 281
                        "ncclInit",
                        {"parallel_scopes": self.parallel_scopes_name},
Y
Yang Yang 已提交
282 283 284
                        {"Communicator": ['nccl_com__do_not_change_']}, {})
                    block.program.global_block().desc.append_op().copy_from(
                        op_desc)
Y
Yang Yang 已提交
285 286 287 288 289
                    self.has_inserted_nccl_init = True

                current_op_desc = context["__current_op_desc__"]
                for o_param in current_op_desc.output_names():
                    for o_argu in current_op_desc.output(o_param):
290
                        if o_argu in self.param_grad_names:
Y
Yang Yang 已提交
291 292
                            allreduce_out_name = o_argu + "__nccl_all_reduce__"
                            op_desc = _create_op_desc_(
C
chengduoZH 已提交
293 294
                                "ncclReduce",
                                {
Y
Yang Yang 已提交
295
                                    "X": [o_argu],
Y
Yang Yang 已提交
296 297
                                    "Communicator":
                                    ['nccl_com__do_not_change_']
C
chengduoZH 已提交
298 299 300 301
                                },
                                {"Out": [allreduce_out_name]},
                                {"reduction": "ncclSum",
                                 "root": 0}, )
Y
Yang Yang 已提交
302 303 304 305 306 307
                            block.desc.append_op().copy_from(op_desc)

                            op_desc = _create_op_desc_(
                                "assign", {"X": [allreduce_out_name]},
                                {"Out": [o_argu]}, {})
                            block.desc.append_op().copy_from(op_desc)
308

Y
Yang Yang 已提交
309 310
        return ParallelDoCallBack(param_grad_names,
                                  op.output("parallel_scopes"))
311 312 313 314
    else:
        return None


315 316
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
317 318 319
                          target_block,
                          no_grad_dict,
                          grad_to_var,
Y
Yang Yang 已提交
320
                          callbacks=None):
321 322 323 324 325
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
326
        ops(Op): the forward operators whose backward ops need to be added
327
        target_block(Block): the block which is going to hold new generated grad ops
328
        no_grad_dict(dict):
329 330 331 332 333
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
334
        callback(callable object): a callable object used to decorate new generated grad ops
335
    """
Y
Yang Yang 已提交
336
    if callbacks is not None:
Y
Yang Yang 已提交
337 338 339 340
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
341

F
fengjiayi 已提交
342
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
343 344
    grad_op_descs = []
    program = block.program
345
    for op in reversed(ops):
F
fengjiayi 已提交
346 347 348
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
G
gongweibao 已提交
349
            sub_block = program.block(op.block_attr_id("sub_block"))
Y
Yu Yang 已提交
350
            grad_sub_block = program.create_block()
W
Wu Yi 已提交
351
            grad_sub_block._set_forward_block_idx(sub_block.idx)
Y
Yang Yang 已提交
352 353 354 355 356 357 358 359
            cb = _callback_lookup_(op)
            if cb is not None:
                if callbacks is None:
                    new_callbacks = [cb]
                else:
                    new_callbacks = callbacks + [_callback_lookup_(op)]
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, new_callbacks)
Y
Yang Yang 已提交
360
            else:
Y
Yang Yang 已提交
361 362
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, callbacks)
Y
Yu Yang 已提交
363 364

            program.rollback()
F
fengjiayi 已提交
365 366
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
367
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
368
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
369
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
370

F
fengjiayi 已提交
371 372 373 374 375 376 377
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
378

F
fengjiayi 已提交
379
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
380 381
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
382
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
383 384
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
Y
yuyang18 已提交
385
        new_op_desc.set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
386
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
387 388 389 390
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
391

F
fengjiayi 已提交
392 393

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
394 395 396 397 398 399 400 401 402 403 404 405
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
406
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
407
    """
F
fengjiayi 已提交
408 409 410
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
G
gongweibao 已提交
411
            sub_block = block.program.block(op_desc.block_attr_id("sub_block"))
F
fengjiayi 已提交
412 413 414 415
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
416 417
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
418
                continue
M
minqiyang 已提交
419
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
420
            new_vars.add(grad_var_name)
421
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
422 423 424 425 426
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
Y
Yang Yang 已提交
427 428 429
        # ncclInit dones't need to set data_type
        if op_desc.type() == 'ncclInit':
            continue
F
fengjiayi 已提交
430 431 432
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
433 434


435 436 437 438 439 440 441 442 443 444
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
445
                new_name = unique_name.generate(name)
446 447 448
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

M
minqiyang 已提交
449
    for g, ng in six.iteritems(var_map):
450 451 452 453 454 455 456 457 458 459 460
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
461
        for var in list(block.vars.values()):
462 463 464 465 466 467 468
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


Y
Yang Yang 已提交
469 470
def append_backward(loss, parameter_list=None, no_grad_set=None,
                    callbacks=None):
471
    """
F
fengjiayi 已提交
472 473
    Append backward part to main_program.

474 475 476
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
    specify its forwrd part. The backward part is generated automatically
F
fengjiayi 已提交
477 478
    according to the forward part by this function.

479
    In most cases, users do not need to invoke this function manually. It
F
fengjiayi 已提交
480
    will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
481 482

    Args:
F
fengjiayi 已提交
483
        loss(Variable): The loss variable of the network.
484 485 486
        parameter_list(list[string]|None): Names of parameters that need
                                           to be updated by optimizers.
                                           If it is None, all parameters
F
fengjiayi 已提交
487 488
                                           will be updated.
                                           Default: None
489 490 491
        no_grad_set(set|None): Variables in the Block 0 whose gradients
                               should be ignored. All variables with
                               `step_gradient=True` from all blocks will
F
fengjiayi 已提交
492 493
                               be automatically added into this set.
                               Default: None
494 495 496 497 498 499 500 501 502 503 504 505 506 507
        callbacks(list[callable object]|None): The callbacks are used for
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
                                               object must has two input
                                               parameters: 'block' and 'context'.
                                               The 'block' is the block which
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
F
fengjiayi 已提交
508
                                               corresponding original variables.
509 510 511 512 513 514
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
F
fengjiayi 已提交
515 516

    Returns:
517 518
        list[(Variable,Variable)]: Pairs of parameter and its
        corresponding gradients. The key is the parameter and the
F
fengjiayi 已提交
519 520 521 522 523 524 525 526
        value is gradient variable.

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
527 528 529 530
            # network configuration code
            # ...
            avg_loss = fluid.layers.mean(loss)
            param_grad_list = fluid.backward.append_backward(loss=avg_loss)
531 532
    """
    assert isinstance(loss, framework.Variable)
Y
yuyang18 已提交
533

Y
Fix bug  
yuyang18 已提交
534 535 536 537 538 539 540 541 542 543 544
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
        for op in reversed(loss.block.ops):
            assert isinstance(op, framework.Operator)
            if len(op.output_arg_names) == 1 and op.output_arg_names[
                    0] == loss.name:
                loss.op = op
                break
        if loss.op is None:
            raise ValueError("loss.op is None. Should not happend")

Y
yuyang18 已提交
545 546 547 548
    loss.op.set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                     int(core.op_proto_and_checker_maker.OpRole.Forward) |
                     int(core.op_proto_and_checker_maker.OpRole.Loss))

Y
Yang Yang 已提交
549 550
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
551

F
fengjiayi 已提交
552
    program = loss.block.program
F
fengjiayi 已提交
553
    if no_grad_set is None:
554 555 556
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
557
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
558

F
update  
fengjiayi 已提交
559
    grad_info_map = dict()
F
fengjiayi 已提交
560
    root_block = program.block(0)
F
fengjiayi 已提交
561

F
fengjiayi 已提交
562 563
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
564 565
    grad_to_var = dict()

Y
yuyang18 已提交
566 567 568 569 570 571 572 573 574 575
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
        })
576 577 578 579
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
580
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
581 582

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
Y
Yang Yang 已提交
583
                          grad_to_var, callbacks)
584 585 586 587 588 589

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
590
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
591

F
fengjiayi 已提交
592
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
593
    program._sync_with_cpp()
F
fengjiayi 已提交
594

595 596 597
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
598
        params = program.global_block().all_parameters()
M
minqiyang 已提交
599
        program.global_block().iter_parameters()
600
        parameters = [param.name for param in params]
601

602 603
    params_and_grads = []
    for param in parameters:
M
minqiyang 已提交
604
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
605
            continue
F
update  
fengjiayi 已提交
606
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
607
        grad_block = grad_info[1]
608 609 610 611
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
612
        param_var = program.global_block().var(param)
613 614 615 616 617
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
Y
yuyang18 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630

    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
    for p, g in params_and_grads:
        if g is None:
            continue
        for op in reversed(program.global_block().ops):
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
631
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
632 633 634
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
        g.op.set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
635

636
    return params_and_grads
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
720
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
754
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
755 756 757 758 759 760 761 762 763 764
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
765
    prog._sync_with_cpp()
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars