framework.py 213.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_global_flags_ = core.globals()
76

77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
185
def in_dygraph_mode():
L
lujun 已提交
186
    """
187

188 189 190 191 192 193 194
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
195 196

    Returns:
197
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
198 199 200 201

    Examples:
        .. code-block:: python

202 203 204 205 206 207 208 209
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
210 211

    """
L
lujun 已提交
212
    return _dygraph_tracer_ is not None
213 214


215 216 217
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
218
        ), "We don't support %s in imperative mode" % func.__name__
219 220 221 222 223 224 225 226
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
227 228 229 230 231 232 233 234 235
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
236
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
237 238 239 240 241
        return func(*args, **kwargs)

    return __impl__


242 243 244 245 246 247
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
248
# same base class.
249 250 251
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
252 253 254 255 256
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
257 258 259 260

    return __impl__


T
tangwei12 已提交
261 262
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


280 281
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
282
static_only = wrap_decorator(_static_only_)
283
fake_interface_only = wrap_decorator(_fake_interface_only_)
284 285


L
lujun 已提交
286 287
def _dygraph_tracer():
    return _dygraph_tracer_
288

W
Wu Yi 已提交
289

290 291 292 293
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
294
def _current_expected_place():
295 296 297
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
298 299 300 301 302 303 304 305 306 307 308
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
325 326


L
Leo Chen 已提交
327 328 329 330
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
331

L
Leo Chen 已提交
332 333 334 335 336 337 338 339 340 341 342 343
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
344
def _cpu_num():
345
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
346 347 348 349 350 351 352 353
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
354
        os.environ['CPU_NUM'] = str(1)
355
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
356 357 358 359 360 361 362 363 364 365
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
366 367


368 369 370 371 372 373 374 375 376
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
392 393 394 395
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

396
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
397 398 399 400

    Examples:
        .. code-block:: python

401 402
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
403 404 405 406
    """
    return core.is_compiled_with_cuda()


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
422
def cuda_places(device_ids=None):
L
lujun 已提交
423
    """
424 425 426 427
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
428
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
429 430

    If :code:`device_ids` is None, environment variable of
431
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
432
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
433
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
434
    If :code:`FLAGS_selected_gpus` is not set, all visible
435
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
436 437

    If :code:`device_ids` is not None, it should be the device
438
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
439
    the returned list would be 
C
Chen Weihang 已提交
440
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
441

442
    Parameters:
443
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
444 445

    Returns:
C
Chen Weihang 已提交
446
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
447 448 449 450

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
451 452
            import paddle
            import paddle.static as static
T
tangwei12 已提交
453

454 455
            # required: gpu
            
C
Chen Weihang 已提交
456 457 458
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
459 460

    """
S
sneaxiy 已提交
461 462 463
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
464
        device_ids = _cuda_ids()
S
sneaxiy 已提交
465 466 467 468 469
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
492 493
            # required: xpu

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
509
def cpu_places(device_count=None):
L
lujun 已提交
510
    """
C
Chen Weihang 已提交
511
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
512

S
add doc  
sneaxiy 已提交
513 514
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
515 516
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
517 518
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
519

520 521
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
522 523

    Returns:
C
Chen Weihang 已提交
524
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
525 526 527 528

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
529 530
            import paddle
            import paddle.static as static
T
tangwei12 已提交
531

C
Chen Weihang 已提交
532 533 534
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
535 536
    """

S
sneaxiy 已提交
537 538 539 540 541 542
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
543
    """
544
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
545 546 547

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
548 549 550 551
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
552

553 554
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
555 556

    Returns:
557
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
558 559 560 561

    Examples:
        .. code-block:: python

562
            import paddle.fluid as fluid
L
lujun 已提交
563 564 565 566 567
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
568 569 570
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
571 572
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
573 574


575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
601
@signature_safe_contextmanager
602 603
def name_scope(prefix=None):
    """
604 605
    :api_attr: Static Graph

606
    Generate hierarchical name prefix for the operators in Static Graph.
607

T
Tao Luo 已提交
608 609 610
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
611
        Don't use it in dygraph, since it will cause memory leak.
612 613

    Args:
T
Tao Luo 已提交
614
        prefix(str, optional): prefix. Default is none.
615 616 617

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
618

619 620 621
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
622
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
623
             b = a + 1
624
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
625
                c = b * 1
626
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
627
                d = c / 1
628 629 630
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
631 632 633
                g = f - 1

          # Op are created in the default main program.  
634
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
650 651
    """
    # TODO(panyx0718): Only [0-9a-z].
652
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
653 654 655
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
656
        assert prefix, "namescope prefix can not be empty."
657 658
        global _name_scope
        _name_scope = _name_scope.child(prefix)
659 660 661 662
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
663 664 665 666 667 668 669 670 671 672 673 674


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
675 676 677
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
678 679 680 681


def grad_var_name(var_name):
    """
682 683
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
684 685 686
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
687

688
def convert_np_dtype_to_dtype_(np_dtype):
689 690
    """
    Convert the data type in numpy to the data type in Paddle
691

692
    Args:
693
        np_dtype(np.dtype): the data type in numpy.
694

695 696
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
697 698

    """
699 700
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
701
        return core.VarDesc.VarType.FP32
702
    elif dtype == np.float64:
703
        return core.VarDesc.VarType.FP64
704
    elif dtype == np.float16:
705
        return core.VarDesc.VarType.FP16
706
    elif dtype == np.int32:
707
        return core.VarDesc.VarType.INT32
708
    elif dtype == np.int16:
709
        return core.VarDesc.VarType.INT16
710
    elif dtype == np.int64:
711
        return core.VarDesc.VarType.INT64
712
    elif dtype == np.bool:
713
        return core.VarDesc.VarType.BOOL
714
    elif dtype == np.uint16:
715 716 717
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
718 719
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
720 721
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
722 723 724 725
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
726
    else:
M
minqiyang 已提交
727
        raise ValueError("Not supported numpy dtype %s" % dtype)
728 729 730


def dtype_is_floating(dtype):
731 732 733
    """
    Check the data type is floating or not.
    Args:
734
        dtype(np.dtype|core.VarDesc.VarType): data type.
735 736 737 738 739
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
740
    if not isinstance(dtype, core.VarDesc.VarType):
741 742
        dtype = convert_np_dtype_to_dtype_(dtype)

743 744 745 746
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
747 748


Y
Yang Yang(Tony) 已提交
749
def _debug_string_(proto, throw_on_error=True):
750 751 752 753 754 755 756 757 758 759 760
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
761
    error_fields = list()
Y
Yang Yang(Tony) 已提交
762
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
763 764
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
765 766 767
    return proto.__str__()


768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
805
class Variable(object):
806
    """
J
Jiabin Yang 已提交
807
    **Notes**:
808
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
809

810 811
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
812 813 814
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
815
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
816 817
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
818

819
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
820
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
821

T
tianshuo78520a 已提交
822
    Most of a Variable's member variables can be set to be None. It mean
823
    it is not available or will be specified later.
824

825
    Examples:
826 827
        In Static Graph Mode:

828 829
        .. code-block:: python

830
            import paddle.fluid as fluid
831
            cur_program = fluid.Program()
832 833 834 835
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
836
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
837 838 839 840 841 842 843 844 845

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

846 847
    """

Y
Yu Yang 已提交
848 849
    def __init__(self,
                 block,
Y
Yu Yang 已提交
850
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
851 852 853 854
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
855
                 capacity=None,
Q
QI JUN 已提交
856
                 persistable=None,
F
fengjiayi 已提交
857
                 error_clip=None,
Y
Yu Yang 已提交
858
                 stop_gradient=False,
F
fengjiayi 已提交
859
                 is_data=False,
H
Huihuang Zheng 已提交
860
                 need_check_feed=False,
H
hong 已提交
861
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
862
                 **kwargs):
Y
Yu Yang 已提交
863 864
        self.block = block
        if name is None:
Y
Yu Yang 已提交
865
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
866

Y
Yu Yang 已提交
867
        if dtype is not None:
868
            if not isinstance(dtype, core.VarDesc.VarType):
869
                dtype = convert_np_dtype_to_dtype_(dtype)
870

H
hong 已提交
871 872
        self.belong_to_optimizer = belong_to_optimizer

873 874 875 876 877
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
878

879 880 881
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
882

883 884 885
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
886 887
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
888 889
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
890

891
        if shape is not None:
892
            if is_new_var:
893 894 895 896 897 898
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
899 900
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
901 902 903 904 905 906 907
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
908 909
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
910 911 912 913 914 915 916 917 918
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
919 920
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
921 922 923 924 925 926 927 928 929
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
930 931
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
932 933
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
934

935 936
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
937

938 939 940 941 942 943 944
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
945

946 947
        self.block.vars[name] = self
        self.op = None
948
        self.stop_gradient = stop_gradient
949
        self.is_data = is_data
Y
Yu Yang 已提交
950

951 952 953
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
954 955
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
956

957
        Returns:
J
Jiabin Yang 已提交
958
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
959 960 961 962

        Examples:
            .. code-block:: python

963
                import paddle
964

965 966 967 968
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
969

970 971
                # create a detached Variable
                y = x.detach()
972
        """
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
988

989
    @fake_interface_only
990
    def numpy(self):
991
        """
J
Jiabin Yang 已提交
992
        **Notes**:
T
tianshuo78520a 已提交
993
            **This API is ONLY available in Dygraph mode**
994

J
Jiabin Yang 已提交
995
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
996 997 998 999 1000

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1001
            ndarray: dtype is same as current Variable
1002 1003 1004 1005 1006 1007

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1008
                from paddle.fluid.dygraph import Linear
1009 1010 1011 1012
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1013
                    linear = Linear(32, 64)
1014
                    data = to_variable(data)
1015
                    x = linear(data)
1016 1017 1018
                    print(x.numpy())

        """
1019
        pass
1020

1021
    @fake_interface_only
1022
    def backward(self, retain_graph=False):
1023
        """
J
Jiabin Yang 已提交
1024
        **Notes**:
T
tianshuo78520a 已提交
1025
            **This API is ONLY available in Dygraph mode**
1026

1027
        Run backward of current Graph which starts from current Tensor.
1028

J
Jiabin Yang 已提交
1029
        Args:
1030 1031 1032 1033
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1034

J
Jiabin Yang 已提交
1035 1036
        Returns:
            NoneType: None
1037 1038 1039 1040 1041

        Examples:
            .. code-block:: python

                import numpy as np
1042 1043
                import paddle
                paddle.disable_static()
1044 1045

                x = np.ones([2, 2], np.float32)
1046 1047 1048 1049 1050 1051 1052
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1053 1054
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1055
                loss.backward()
1056 1057

        """
1058
        pass
1059

1060
    @fake_interface_only
1061
    def gradient(self):
1062
        """
J
Jiabin Yang 已提交
1063
        **Notes**:
T
tianshuo78520a 已提交
1064
            **This API is ONLY available in Dygraph mode**
1065 1066 1067

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1068
        Returns:
1069
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1070 1071 1072 1073 1074 1075 1076

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1077
                # example1: return ndarray
1078 1079 1080 1081 1082 1083 1084 1085 1086
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1087
                    loss2.backward()
1088 1089
                    print(loss2.gradient())

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1103
        """
1104
        pass
1105

1106
    @fake_interface_only
1107
    def clear_gradient(self):
1108
        """
J
Jiabin Yang 已提交
1109
        **Notes**:
T
tianshuo78520a 已提交
1110
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1111 1112

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1113

J
Jiabin Yang 已提交
1114
        Clear  (set to ``0`` ) the Gradient of Current Variable
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1133
                    loss2.backward()
1134 1135 1136 1137 1138
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1139
        pass
X
Xin Pan 已提交
1140

1141 1142 1143 1144
    @fake_interface_only
    def register_hook(self, hook):
        pass

1145
    def __str__(self):
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1162 1163
                import paddle
                import paddle.static as static
1164

1165 1166 1167
                paddle.enable_static()

                cur_program = static.Program()
1168 1169 1170 1171 1172 1173
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1174 1175
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1176
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1177 1178
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1179 1180
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1181
        else:
1182 1183
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1184

1185
        if self.is_parameter:
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1197

F
update  
fengjiayi 已提交
1198
    def to_string(self, throw_on_error, with_details=False):
1199 1200 1201
        """
        Get debug string.

J
Jiabin Yang 已提交
1202 1203 1204 1205 1206
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1207

1208 1209
        Returns:
            str: The debug string.
1210 1211 1212 1213 1214

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1215
                import paddle
1216

1217
                paddle.enable_static()
1218 1219 1220 1221 1222
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1223
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1224
                print("=============with detail===============")
1225
                print(new_variable.to_string(True, True))
1226
        """
F
update  
fengjiayi 已提交
1227 1228
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1229
        protostr = self.desc.serialize_to_string()
1230
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1231 1232
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1233
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1234
            for attr_name in additional_attr:
1235 1236 1237
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1238
        return res_str
1239 1240 1241

    __repr__ = __str__

1242
    @property
1243
    def stop_gradient(self):
J
Jiabin Yang 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1259 1260
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1261 1262 1263
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1264 1265
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1266 1267 1268 1269
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1270
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1271 1272
                assert (out1.gradient() == 0).all()
        """
1273
        return self.desc.stop_gradient()
1274

1275 1276
    @stop_gradient.setter
    def stop_gradient(self, s):
1277
        self.desc.set_stop_gradient(s)
1278

1279 1280
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1302
        return self.desc.persistable()
1303

Y
Yu Yang 已提交
1304 1305
    @persistable.setter
    def persistable(self, p):
1306
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1333 1334
    @property
    def name(self):
J
Jiabin Yang 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1351
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1373 1374
    @name.setter
    def name(self, new_name):
1375
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1376

Y
Yu Yang 已提交
1377 1378
    @property
    def shape(self):
J
Jiabin Yang 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1396
        # convert to tuple, make it as same as numpy API.
1397
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1398 1399

    @property
F
fengjiayi 已提交
1400
    def dtype(self):
J
Jiabin Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1417
        return self.desc.dtype()
Y
Yu Yang 已提交
1418 1419 1420

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1442 1443 1444
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1445
        return self.desc.lod_level()
Y
Yu Yang 已提交
1446

Y
Yu Yang 已提交
1447 1448
    @property
    def type(self):
J
Jiabin Yang 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1465
        return self.desc.type()
Y
Yu Yang 已提交
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1501
    def _set_error_clip(self, error_clip):
1502 1503 1504 1505 1506 1507 1508 1509 1510
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1511 1512
        self.error_clip = error_clip

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1553
            raise ValueError("slice step can not be zero")
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1629
    def _cloneVar(self, copy=False):
1630 1631
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1632 1633
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1634 1635 1636 1637
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1638
        new_var = self._cloneVar()
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1649
        new_var = self._cloneVar()
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1660
                return self._cloneVar(True)
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1679
                return self._cloneVar(True)
1680
            index = int(item)
1681
            if (index > 0 and index >= self.shape[axis]) \
1682 1683 1684 1685 1686 1687 1688
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1689
        return _getitem_impl_(self, item)
1690

1691
    def __setitem__(self, item, value):
1692
        return _setitem_impl_(self, item, value)
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

Y
Yu Yang 已提交
1876

F
fengjiayi 已提交
1877 1878 1879
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1880

1881 1882
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1883 1884 1885 1886
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1887
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1888 1889 1890 1891 1892
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1893 1894 1895 1896
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1906
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1907 1908 1909 1910 1911 1912
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1913 1914 1915 1916 1917 1918 1919 1920
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1921 1922
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1923 1924
        return self.op_proto_map[type]

1925 1926
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1927
        custom_op_names = []
1928 1929 1930
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1931 1932 1933
                custom_op_names.append(proto.type)

        return custom_op_names
1934

1935 1936 1937 1938
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1939
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1940
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1941 1942
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1943 1944
        }

F
fengjiayi 已提交
1945

X
Xin Pan 已提交
1946
class Operator(object):
1947
    """
1948 1949 1950 1951 1952 1953 1954
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1955
        type(str): The type of operator. Default None.
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1976
        Block.append_op or Block._prepend_op instead.
1977 1978 1979 1980

    Examples:
        .. code-block:: python

1981
            import paddle.fluid as fluid
1982
            cur_program = fluid.Program()
1983 1984 1985 1986 1987
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1988
    """
1989
    OP_WITHOUT_KERNEL_SET = {
1990 1991
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1992
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
1993 1994
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
1995
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
1996 1997
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
1998
    }
1999

Y
Yu Yang 已提交
2000 2001
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2002
                 desc,
Y
Yu Yang 已提交
2003 2004 2005
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2006
                 attrs=None):
L
lujun 已提交
2007
        if in_dygraph_mode():
2008 2009
            if type is None:
                raise ValueError(
2010
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2011
            self._type = type
M
minqiyang 已提交
2012
            self.attrs = attrs if attrs else {}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2027
                )] = self.block.program._op_role
2028 2029 2030

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2031 2032
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2033 2034 2035 2036 2037 2038 2039 2040

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2041
                    "`type` to initialized an Operator can not be None.")
2042 2043
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2044 2045 2046 2047 2048 2049 2050
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2051 2052 2053 2054 2055 2056 2057

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2089
                        if not isinstance(in_args, (list, tuple)):
2090 2091 2092 2093 2094 2095
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2096
                        for index, arg in enumerate(in_args):
2097 2098 2099 2100
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2101
                            elif isinstance(arg, (Variable, core.VarBase)):
2102
                                in_arg_names.append(cpt.to_text(arg.name))
2103
                            else:
2104 2105 2106 2107
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2108 2109
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2134 2135 2136 2137
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2138
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2139
                        if not in_dygraph_mode():
2140 2141 2142 2143
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2162
    def _has_kernel(self, op_type):
2163 2164
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2165
    def to_string(self, throw_on_error):
2166
        """
2167 2168
        Get debug string.

2169
        Args:
2170 2171
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2172

2173 2174
        Returns:
            str: The debug string.
2175 2176

        """
2177
        protostr = self.desc.serialize_to_string()
2178
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2179 2180
        return _debug_string_(proto, throw_on_error)

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2213
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2268 2269
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2270 2271 2272 2273 2274
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2275
    def __str__(self):
2276
        return self._to_readable_code()
2277 2278 2279

    __repr__ = __str__

F
fengjiayi 已提交
2280 2281
    @property
    def type(self):
2282
        return self.desc.type()
F
fengjiayi 已提交
2283 2284

    def input(self, name):
2285
        r"""
2286
        Get the input arguments according to the input parameter name.
2287

2288 2289
        Args:
            name(str): The input parameter name.
2290

2291 2292 2293
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2294
        """
F
fengjiayi 已提交
2295 2296
        return self.desc.input(name)

W
Wu Yi 已提交
2297
    def _rename_input(self, old_name, new_name):
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2308
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2309

W
Wu Yi 已提交
2310
    def _rename_output(self, old_name, new_name):
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2321
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2322

F
fengjiayi 已提交
2323 2324 2325 2326
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2327 2328 2329 2330 2331 2332 2333 2334
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2335
    def output(self, name):
2336
        r"""
2337
        Get output arguments by the output parameter name.
2338

2339 2340
        Args:
            name(str): The output parameter name.
2341

2342 2343 2344
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2345
        """
F
fengjiayi 已提交
2346 2347 2348 2349 2350 2351
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2352 2353 2354 2355 2356 2357 2358 2359
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2360
    def has_attr(self, name):
2361
        """
2362 2363
        Whether this Operator has the attribute with name or not.

2364
        Args:
2365
            name(str): the attribute name.
2366

2367 2368
        Returns:
            bool: True if has this attribute.
2369 2370

        """
F
fengjiayi 已提交
2371 2372 2373
        return self.desc.has_attr(name)

    def attr_type(self, name):
2374
        """
2375
        Get the type of attribute by attribute's name.
2376

2377 2378
        Args:
            name(str): the attribute name.
2379

2380 2381
        Returns:
            core.AttrType: the attribute type.
2382
        """
F
fengjiayi 已提交
2383 2384
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2385
    def _set_attr(self, name, val):
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2396 2397
        self._update_desc_attr(name, val)

2398 2399 2400
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2412 2413
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2414 2415
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2416
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2417 2418 2419 2420
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2421
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2422

F
fengjiayi 已提交
2423 2424 2425 2426 2427
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2428
        """
2429 2430
        Get the attribute by name.

2431
        Args:
2432
            name(str): the attribute name.
2433

2434 2435
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2436 2437
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2438
        return self.desc.attr(name)
Y
Yu Yang 已提交
2439

W
Wu Yi 已提交
2440
    def _block_attr_id(self, name):
2441
        """
G
gongweibao 已提交
2442
        Get the block attribute's id by name.
2443

2444 2445
        Args:
            name(str): the attribute name.
2446

2447 2448
        Returns:
            int: the block index.
2449
        """
W
Wu Yi 已提交
2450
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2451

W
Wu Yi 已提交
2452
    def _block_attr(self, name):
G
gongweibao 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2463
        id = self._block_attr_id(name)
G
gongweibao 已提交
2464 2465 2466
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2467
    def _blocks_attr(self, name):
G
gongweibao 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2478
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2479 2480 2481 2482 2483
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2484
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2495
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2496

J
JiayiFeng 已提交
2497
    def all_attrs(self):
F
fengjiayi 已提交
2498
        """
2499 2500 2501
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2502
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2503 2504 2505 2506
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2507 2508
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2509
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2510 2511 2512
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2513
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2514 2515 2516 2517
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2518 2519
        return attr_map

2520 2521 2522
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2523 2524 2525 2526

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2527 2528 2529
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2530 2531 2532 2533 2534 2535 2536 2537

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2538 2539
            return False

2540 2541 2542 2543 2544 2545
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2546

Y
Yu Yang 已提交
2547
class Block(object):
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2562
        use `Program._create_block()` to create a block.
2563 2564 2565 2566

    Examples:
        .. code-block:: python

2567 2568 2569
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2570 2571 2572 2573 2574 2575 2576 2577 2578
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2579
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2580
        self.desc = program.desc.block(idx)
2581
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2582
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2583
        self.program = program
2584
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2585

2586
    def __str__(self):
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2621
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2633

F
fengjiayi 已提交
2634 2635
    def to_string(self, throw_on_error, with_details=False):
        """
2636 2637
        Get debug string.

F
fengjiayi 已提交
2638 2639
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2640
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2641
            with_details(bool): more details about variables and parameters
2642 2643
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2644

2645 2646
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2647 2648 2649 2650
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2651
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2652 2653
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2654
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2655
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2656
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2657
            for op in self.ops:
F
fengjiayi 已提交
2658 2659
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2660 2661 2662
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2663 2664
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2665 2666
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2667 2668 2669

    __repr__ = __str__

Y
Yu Yang 已提交
2670 2671
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2672
        return self.desc.parent
Y
Yu Yang 已提交
2673

Y
Yu Yang 已提交
2674 2675 2676 2677
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2678
    def _set_forward_block_idx(self, idx):
2679 2680 2681 2682 2683 2684 2685 2686 2687
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2688
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2689

2690 2691 2692 2693 2694 2695 2696 2697
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2698 2699
    @property
    def idx(self):
Y
Yu Yang 已提交
2700
        return self.desc.id
Y
Yu Yang 已提交
2701

Q
Qiao Longfei 已提交
2702
    def var(self, name):
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2716
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2717 2718 2719
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2720 2721
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2722
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2723
        return v
Q
Qiao Longfei 已提交
2724

X
Xin Pan 已提交
2725
    def _find_var_recursive(self, name):
2726 2727 2728 2729 2730 2731 2732
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2733
            Variable: the Variable with the giving name. Or None if not found.
2734
        """
Y
Yu Yang 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2759
        return None
Y
Yu Yang 已提交
2760

X
Xin Pan 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2780

Q
Qiao Longfei 已提交
2781
    def all_parameters(self):
2782
        return list(self.iter_parameters())
2783

2784
    def iter_parameters(self):
M
minqiyang 已提交
2785
        return (item[1] for item in six.iteritems(self.vars)
2786
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2787

Y
Yu Yang 已提交
2788
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2789 2790 2791
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2792 2793 2794
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2795
        return var
Y
Yu Yang 已提交
2796

Q
Qiao Longfei 已提交
2797 2798 2799
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2800
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2801 2802
        """
        Rename variable in vars and ops' inputs and outputs
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2815
        """
M
minqiyang 已提交
2816 2817
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2818

T
typhoonzero 已提交
2819
        if not self.has_var(name):
2820
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2821 2822
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2823
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2824 2825 2826 2827 2828 2829
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2830
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2831 2832 2833 2834
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2835
        orig_var_type = v.type
M
minqiyang 已提交
2836
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2837
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2838
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2839
        if var_type == "Parameter":
L
Leo Chen 已提交
2840 2841
            if in_dygraph_mode():
                var = ParamBase(
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2852 2853
                var = Parameter(
                    self,
2854 2855 2856 2857 2858 2859 2860 2861 2862
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2863
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2864 2865
            var = Variable(
                self,
T
typhoonzero 已提交
2866
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2867 2868 2869 2870
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2871
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2872 2873 2874
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2875
        self._sync_with_cpp()
2876
        return var
T
typhoonzero 已提交
2877

2878 2879 2880
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2881
        self.desc._remove_var(cpt.to_bytes(name))
2882 2883
        del self.vars[name]

Y
Yu Yang 已提交
2884 2885
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2886
        param = None
L
Leo Chen 已提交
2887
        if in_dygraph_mode():
2888
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2889 2890
        else:
            param = Parameter(global_block, *args, **kwargs)
2891

2892
        if 'initializer' in kwargs:
2893 2894 2895 2896 2897

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2898
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2899
                        # are treated as initialization ops that cause error.
2900
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2901 2902 2903 2904 2905
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2906
                            continue
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2918
                # TODO already inited, do nothing, should log a warning
2919 2920 2921
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2922
        return param
Y
Yu Yang 已提交
2923

Y
Yu Yang 已提交
2924
    def append_op(self, *args, **kwargs):
2925 2926 2927 2928 2929 2930
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2931
        if in_dygraph_mode():
2932
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2933
            type = kwargs.get("type", None)
2934 2935 2936
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2937
                type=type,
M
minqiyang 已提交
2938 2939
                inputs=None,
                outputs=None,
2940
                attrs=attrs)
2941

M
minqiyang 已提交
2942 2943 2944
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2945
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2946 2947

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2948
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2949 2950
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2951
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2952
        else:
2953 2954
            from paddle.fluid.dygraph.base import param_guard

2955
            op_desc = self.desc.append_op()
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
2969

M
minqiyang 已提交
2970
            self.ops.append(op)
M
minqiyang 已提交
2971

2972 2973
        return op

W
Wu Yi 已提交
2974
    def _insert_op(self, index, *args, **kwargs):
2975 2976 2977 2978 2979 2980 2981 2982 2983
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2984
        self._sync_with_cpp()
F
fangshuixun007 已提交
2985
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3004 3005 3006 3007 3008 3009 3010 3011 3012
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3013 3014
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3015
        self.desc._remove_op(index, index + 1)
3016 3017
        del self.ops[index]

W
Wu Yi 已提交
3018
    def _slice_ops(self, start, end):
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3029
        return self.ops[start:end]
Y
Yancey1989 已提交
3030

W
Wu Yi 已提交
3031
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3032
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3033 3034
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3035
            op = Operator(
J
Jiabin Yang 已提交
3036
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3037

J
Jiabin Yang 已提交
3038
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3039
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3040 3041
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3042
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3043
        else:
3044 3045 3046 3047 3048 3049 3050 3051
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3052
            self.ops.insert(0, op)
3053

Y
Yu Yang 已提交
3054 3055
        return op

W
Wu Yi 已提交
3056
    def _sync_with_cpp(self):
3057
        """
3058 3059
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3060
        """
Q
Qiao Longfei 已提交
3061 3062 3063
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3081

3082
        # sync variables removed from c++ end
3083
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3084
            if not self.desc.find_var(cpt.to_bytes(var)):
3085 3086
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3087
        # sync operators from cpp
3088 3089 3090 3091
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3108 3109 3110 3111 3112

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3113
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3114 3115 3116 3117 3118 3119 3120

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3134 3135 3136 3137
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3138
    def _copy_param_info_from(self, other):
3139
        """
3140 3141
        Copy the information of parameters from the other block.

3142
        Args:
3143 3144 3145 3146 3147
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3148 3149 3150 3151 3152

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3153 3154
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3155
        for p in other.iter_parameters():
3156 3157 3158
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3159 3160
                # if the Parameter is pruned, v may be None
                continue
3161
            assert isinstance(v, Variable)
3162
            new_p = None
L
Leo Chen 已提交
3163 3164
            if in_dygraph_mode():
                new_p = ParamBase(
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3176 3177
                new_p = Parameter(
                    block=self,
3178 3179 3180
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3181 3182
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3183 3184 3185 3186 3187 3188
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3189 3190
            self.vars[new_p.name] = new_p

3191
    def _clone_variable(self, var, force_persistable=True):
3192 3193
        """
        Clone a variable into current block.
3194

3195 3196
        Args:
            var: the variable to be cloned.
3197 3198 3199
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3200 3201

        Returns:
3202
            Variable: the new  variable cloned from 'var' in current block.
3203 3204
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3205 3206 3207 3208 3209
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3210 3211
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3212
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3213 3214 3215 3216 3217 3218
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3219
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3220 3221
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3222 3223 3224 3225 3226 3227 3228
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3229
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3230 3231
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3232
        return ret_var
3233

Y
Yu Yang 已提交
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3346
    def remove_input_by_id(self, node_id):
3347 3348 3349 3350 3351 3352
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3353
        self.node.remove_input(node_id)
3354

3355
    def remove_input(self, node):
3356 3357 3358 3359
        """
        Remove a node from inputs.

        Args:
3360
            node(IrNode): the node being removed.
3361
        """
3362
        self.node.remove_input(node.node)
3363

3364
    def append_input(self, node):
3365 3366 3367 3368
        """
        Append a node in inputs.

        Args:
3369
            node(IrNode): the node being appended.
3370
        """
3371
        self.node.append_input(node.node)
3372 3373 3374 3375 3376 3377 3378 3379

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3380
    def remove_output_by_id(self, node_id):
3381 3382 3383 3384 3385 3386
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3387
        self.node.remove_output(node_id)
3388

3389
    def remove_output(self, node):
3390 3391 3392 3393
        """
        Remove a node from outputs.

        Args:
3394
            node(IrNode): the node being removed.
3395
        """
3396
        self.node.remove_output(node.node)
3397

3398
    def append_output(self, node):
3399 3400 3401 3402
        """
        Append a node in outputs.

        Args:
3403
            node(IrNode): the node being appended.
3404
        """
3405
        self.node.append_output(node.node)
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3453
            "The node variable description can not be None."
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3464
            "The node variable description can not be None."
3465 3466
        return self.node.var().persistable()

3467 3468 3469 3470 3471 3472 3473 3474
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3475
            "The node variable description can not be None."
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3486
            "The node variable description can not be None."
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3497
            "The node variable description can not be None."
3498 3499
        return self.node.var().shape()

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3547
            "The node operator description can not be None."
3548 3549
        self.node.op()._rename_input(old_input_name, new_input_name)

3550 3551 3552 3553 3554 3555 3556 3557 3558
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3559
            "The node operator description can not be None."
3560 3561
        self.node.op()._rename_output(old_output_name, new_output_name)

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3573
            "The node operator description can not be None."
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3587
            "The node operator description can not be None."
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3598
            "The node operator description can not be None."
3599 3600
        return self.node.op().set_type(new_type)

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3616
            "The node operator description can not be None."
3617 3618 3619 3620
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3621
                all(isinstance(v, Block) for v in val):
3622 3623
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3624
                isinstance(val, core.ProgramDesc):
3625 3626 3627 3628
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3629 3630 3631 3632 3633 3634 3635 3636
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3637
            "The node operator description can not be None."
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3648
            "The node operator description can not be None."
3649 3650
        return self.node.op().output_arg_names()

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3672 3673
class IrGraph(object):
    """
3674
    Python IrGraph. Beneath it is a core.Graph, which is used for
3675
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3676 3677
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3678 3679 3680 3681
    """

    def __init__(self, graph, for_test=False):
        """
3682 3683
        Construct an IrGraph using core.Graph.

3684 3685 3686 3687 3688 3689 3690 3691 3692
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3693 3694 3695 3696
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3697 3698 3699
        Warns:
            The method only clones the graph structure, not its attributes.

3700 3701 3702
        Returns:
            IrGraph: A new and duplicated graph.
        """
3703
        g = self.graph.clone()
3704 3705
        return IrGraph(g, self._for_test)

3706
    def is_test(self):
3707 3708 3709
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3710 3711
        return self._for_test

W
WangZhen 已提交
3712
    def all_nodes(self):
3713 3714 3715
        """
        Return all nodes included in the graph as a set.
        """
3716
        return {IrNode(node) for node in self.graph.nodes()}
3717

3718
    def all_var_nodes(self):
3719 3720 3721
        """
        Return all variable nodes included in the graph as a set.
        """
3722
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3723

3724
    def all_persistable_nodes(self):
3725 3726 3727
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3728 3729 3730 3731 3732
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3733
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3734

3735
    def all_op_nodes(self):
3736 3737 3738
        """
        Return all operator nodes included in the graph as a set.
        """
3739
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3740

3741
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3753
            IrVarNode: the created persistable variable node.
3754
        """
3755 3756 3757 3758 3759
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3760
        return IrVarNode(self.graph.create_var_node(var_desc))
3761 3762

    def create_var_node(self, name, var_type, shape, var_dtype):
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3774
            IrVarNode: the created variable node.
3775 3776
        """

3777 3778 3779 3780
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3781
        return IrVarNode(self.graph.create_var_node(var_desc))
3782

3783 3784 3785 3786 3787 3788
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3789
    def create_var_node_from_desc(self, var_desc):
3790 3791 3792 3793 3794 3795 3796 3797
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3798
            IrVarNode: the created variable node.
3799
        """
3800
        return IrVarNode(self.graph.create_var_node(var_desc))
3801 3802

    def create_op_node(self, op_type, attrs, inputs, outputs):
3803 3804 3805 3806 3807 3808 3809
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3810
            outputs(dict): the outputs of the operator node.
3811 3812

        Returns:
3813
            IrOpNode: the created operator node.
3814
        """
3815 3816
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3817
        for attr, value in six.iteritems(attrs):
3818
            self._update_desc_attr(op_desc, attr, value)
3819
        for input_name, var_nodes in six.iteritems(inputs):
3820 3821 3822 3823
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3824
        for output_name, var_nodes in six.iteritems(outputs):
3825 3826 3827 3828
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3829
        return IrOpNode(self.graph.create_op_node(op_desc))
3830 3831

    def create_op_node_from_desc(self, op_desc):
3832 3833 3834 3835 3836 3837 3838
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3839
            IrOpNode: the created operator node.
3840
        """
3841
        return IrOpNode(self.graph.create_op_node(op_desc))
3842 3843

    def update_input_link(self, old_input_node, new_input_node, op_node):
3844 3845 3846 3847
        """
        Update the input's link of a operator node.

        Args:
3848 3849 3850
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3851
        """
3852
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3853
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3854
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3855 3856 3857 3858
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3859
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3871
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3872
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3873 3874 3875 3876 3877 3878
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3879
    def link_to(self, node_in, node_out):
3880 3881 3882 3883
        """
        Connect two nodes.

        Args:
3884 3885
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3886
        """
3887
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3888
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3889 3890
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3891 3892

    def safe_remove_nodes(self, remove_nodes):
3893 3894 3895 3896 3897 3898 3899
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3900
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3901 3902 3903 3904
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3905 3906
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3907

Z
Zhen Wang 已提交
3908 3909 3910 3911 3912 3913 3914 3915
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3916
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3917 3918 3919 3920
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3921
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3922 3923 3924
                        ]
                    else:
                        var_nodes[each_var_name].append(
3925 3926
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3927 3928
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3929
    def has_circle(self):
3930 3931 3932 3933 3934 3935
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3936 3937 3938
        return core.has_circle(self.graph)

    def graph_num(self):
3939 3940 3941 3942 3943 3944
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3945 3946 3947
        return core.graph_num(self.graph)

    def topology_sort(self):
3948 3949 3950
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3951
        Notes: the `graph` can not contain a circle.
3952 3953

        Returns:
Z
Zhen Wang 已提交
3954
            list(IrNode): nodes in topology order.
3955
        """
3956
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3957
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3958 3959

    def build_adjacency_list(self):
3960 3961 3962 3963
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3964
            dict{IrNode: set(IrNode)}: the adjacency list.
3965
        """
3966 3967 3968 3969 3970
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3971

3972 3973 3974 3975 3976 3977 3978 3979
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3980
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3981 3982 3983 3984 3985
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3986 3987
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3988 3989 3990
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3991 3992 3993 3994 3995
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3996
        remove_ctr_vars = set()
3997
        if remove_ctr_var:
3998
            for node in self.all_var_nodes():
3999 4000 4001
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4002 4003
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4004 4005
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4006 4007 4008 4009 4010 4011
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4012 4013 4014 4015
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4016 4017
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4018 4019 4020 4021 4022 4023 4024
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4025 4026 4027
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4028
        WARN: When the graph includes backward operator nodes, the
4029 4030 4031 4032 4033 4034
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4035
        convert_pass = core.get_pass('graph_to_program_pass')
4036 4037
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4038 4039 4040 4041
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4069
class Program(object):
D
dzhwinter 已提交
4070
    """
4071
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4072
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4073
    it will contain nested block.
4074

J
Jiabin Yang 已提交
4075 4076 4077
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4078

J
Jiabin Yang 已提交
4079
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4080
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4081 4082 4083 4084 4085 4086 4087
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4088
    **Notes**:
4089 4090 4091
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4092 4093

    Returns:
J
Jiabin Yang 已提交
4094
        Program: An empty Program.
D
dzhwinter 已提交
4095 4096

    Examples:
4097 4098
        .. code-block:: python

4099 4100 4101 4102
            import paddle
            import paddle.static as static

            paddle.enable_static()
4103

4104 4105 4106 4107 4108
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4109
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4110 4111 4112

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4113 4114 4115

    """

4116 4117
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4118 4119
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4120 4121
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4122
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4123
        self.__op_role_var = []
T
tangwei12 已提交
4124

4125 4126
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4127
        self._is_distributed = False
4128
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4129
        self._is_chief = False
4130 4131 4132
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4133
        self._endpoints = []
4134 4135 4136
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4137
        self._trainers_endpoints = []
4138
        # the distributed lookup table names
T
tangwei12 已提交
4139
        self._distributed_lookup_table = None
4140 4141 4142

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4143 4144
        self._use_lamb = False

4145 4146 4147
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4148

4149 4150 4151
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4152
        self._program_config = None
4153

H
hutuxian 已提交
4154 4155 4156
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4157 4158 4159
        # appending gradients times
        self._appending_grad_times = 0

4160 4161 4162 4163
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4164 4165 4166
        # compiled program, i.e. Graph
        self._graph = None

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
    def _find_var_class_kwargs(self, new_desc):
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': new_var_desc.shape(),
                    'dtype': new_var_desc.dtype(),
                    'lod_level': new_var_desc.lod_level(),
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)

        # clear old blocks and desc
        self.blocks = []
        self.desc = None

        # create new blocks and set desc
        self.desc = desc
        self.blocks = [Block(self, idx) for idx in range(block_num)]

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4262 4263
                import paddle
                import paddle.static as static
4264

4265 4266 4267
                paddle.enable_static()

                prog = static.default_main_program()
4268 4269 4270 4271 4272
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4273
                prog1 = static.default_main_program()
4274 4275 4276 4277 4278 4279 4280 4281
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4282
    @property
4283
    def _op_role(self):
Y
yuyang18 已提交
4284 4285 4286 4287 4288 4289 4290 4291
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4292
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4293 4294 4295 4296
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4297 4298
        return self._current_role

4299 4300
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4301 4302 4303
        self._current_role = role

    @property
4304
    def _op_role_var(self):
Y
yuyang18 已提交
4305
        """
4306
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4307

4308
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4309 4310 4311

        Notes: This is a very low-level API. Users should not use it directly.
        """
4312
        return self.__op_role_var
Y
yuyang18 已提交
4313

4314
    @signature_safe_contextmanager
4315 4316 4317 4318 4319
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4320 4321 4322 4323
        try:
            yield
        finally:
            self._current_role = tmp_role
4324

S
rename  
sneaxiy 已提交
4325
    @signature_safe_contextmanager
W
Wu Yi 已提交
4326
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4327 4328 4329 4330 4331 4332 4333
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4334
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4335 4336 4337

        Examples:

4338
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4339
            >>> p, g = backward(...)
W
Wu Yi 已提交
4340
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4341 4342
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4343
        tmp_role = self._current_role
4344
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4345

Y
yuyang18 已提交
4346 4347
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4348
        self.__op_role_var = [
4349 4350 4351
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4352 4353 4354 4355 4356
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4357

S
rename  
sneaxiy 已提交
4358
    @signature_safe_contextmanager
X
Xin Pan 已提交
4359
    def _lr_schedule_guard(self, is_with_opt=False):
4360 4361 4362 4363 4364 4365 4366
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4367 4368 4369 4370
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4371 4372 4373

        Examples:

4374
            >>> import paddle.fluid as fluid
4375 4376 4377 4378
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4379 4380

        tmp_role = self._current_role
4381
        tmp_var = self.__op_role_var
4382

4383 4384
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4385 4386
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4387
        # TODO(typhoonzero): how to set target learning rate var
4388
        self.__op_role_var = []
4389 4390 4391 4392 4393
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4394

4395
    def __str__(self):
Y
yuyang18 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4425 4426
            import paddle
            import paddle.static as static
4427

4428 4429 4430
            paddle.enable_static()

            cur_program = static.Program()
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4442
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4443 4444 4445 4446
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4447
            program_str += '\n'
4448
        return program_str
Y
Yang Yang(Tony) 已提交
4449

F
fengjiayi 已提交
4450 4451 4452
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4453

J
Jiabin Yang 已提交
4454 4455 4456
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4457

J
Jiabin Yang 已提交
4458
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4459

H
haowang101779990 已提交
4460
        Returns:
J
Jiabin Yang 已提交
4461
            str: The debug string describe current Program.
Y
yuyang18 已提交
4462 4463

        Raises:
J
Jiabin Yang 已提交
4464
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4465

4466 4467 4468
        Examples:
            .. code-block:: python

4469 4470 4471 4472
                import paddle
                import paddle.static as static

                paddle.enable_static()
4473

4474 4475 4476
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4477
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4478
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4479
                print("program string without detail: {}".format(prog_string))
4480
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4481
        """
4482 4483 4484 4485 4486 4487 4488 4489 4490
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4491 4492 4493 4494 4495 4496
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4497 4498
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4499 4500
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4501

W
Wu Yi 已提交
4502
    def _get_desc(self):
Y
yuyang18 已提交
4503 4504 4505 4506 4507 4508 4509
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4510 4511
        return self.desc

X
version  
Xin Pan 已提交
4512 4513 4514
    def _version(self):
        return self.desc._version()

4515
    def clone(self, for_test=False):
Y
yuyang18 已提交
4516
        """
4517 4518 4519 4520
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4521

4522
        Create a new Program with forward content of original one when ``for_test=True``.
4523
        Create a new Program as same as the original one when ``for_test=False``.
4524

4525
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4526 4527 4528
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4529

4530 4531
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4532 4533
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4534
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4535

J
Jiabin Yang 已提交
4536
        For Example:
4537
          ::
L
Luo Tao 已提交
4538

4539 4540 4541 4542 4543 4544
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4545
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4546
            loss = paddle.mean(pred)
4547
            # Here we use clone before Momentum
4548 4549
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4550
            optimizer.minimize(loss)
4551

J
Jiabin Yang 已提交
4552
        Args:
4553

4554 4555
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4556

J
Jiabin Yang 已提交
4557
        Returns:
4558
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4559

Y
yuyang18 已提交
4560 4561 4562

        Examples:

4563 4564 4565 4566 4567 4568 4569
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4586
            1. To clone a test program, the sample code is:
4587 4588 4589
                .. code-block:: python

                    import six
4590 4591 4592 4593 4594 4595
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4608 4609
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4610 4611 4612

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4613 4614 4615
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4616
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4617 4618
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4619
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4620 4621
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4622
                            test_program = train_program.clone(for_test=True)
4623
                    print_prog(test_program)
J
Jiabin Yang 已提交
4624 4625 4626 4627

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4628
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4629 4630 4631 4632
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4633 4634 4635
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4636 4637 4638
                            sgd.minimize(avg_loss)


4639
            2. The clone method can be avoid if you create program for training and program for testing individually.
4640 4641 4642
                .. code-block:: python

                    import six
4643 4644 4645 4646 4647 4648
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4660

4661
                    def network():
4662
                        img = static.data(name='image', shape=[None, 784])
4663
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4664 4665
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4666
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4667 4668
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4669 4670
                        return avg_loss

4671 4672 4673 4674 4675
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4676
                            avg_loss = network()
4677
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4678
                            sgd.minimize(avg_loss)
4679
                    # the test startup program is not used.
4680 4681
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4682 4683
                            avg_loss = network()
                    print_prog(test_program_2)
4684

4685
            The two code snippets above will generate and print same programs.
4686
        """
4687

T
tangwei12 已提交
4688
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4689 4690 4691
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4692
        pruned_origin_block_id_map = None
4693
        if for_test:
4694 4695 4696 4697 4698 4699 4700 4701 4702
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4703
        else:
4704
            p = Program()
G
gongweibao 已提交
4705 4706
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4707
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4708 4709 4710
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4711 4712

            p._current_role = self._current_role
4713
            p.__op_role_var = self.__op_role_var
4714
            p._appending_grad_times = self._appending_grad_times
4715 4716
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4717

T
tangwei12 已提交
4718
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4719
            # its desc.
W
Wu Yi 已提交
4720
            p._sync_with_cpp()
4721

W
Wu Yi 已提交
4722
        p._copy_param_info_from(self)
4723
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4724
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4725
        return p
4726

4727
    def _prune(self, targets):
Y
yuyang18 已提交
4728 4729 4730 4731 4732 4733 4734 4735
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4736
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4737 4738 4739 4740
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4741
        """
4742
        return self._prune_with_input([], targets)
4743 4744

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4745
        """
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4756
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4757 4758 4759 4760 4761 4762
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4763
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4764 4765 4766
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4767 4768
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4769 4770
        if not isinstance(targets, list):
            targets = [targets]
4771 4772 4773

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4774 4775 4776
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4777

4778 4779 4780 4781
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4782 4783 4784
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4785
                else:
4786 4787 4788
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4789 4790 4791 4792 4793 4794 4795 4796

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4797 4798 4799 4800 4801 4802 4803 4804 4805
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4806
                        # Skip optimize op except for optimize op in targets,
4807 4808 4809 4810 4811 4812
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4813 4814 4815 4816 4817 4818 4819 4820
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4821

4822
        res = Program()
4823 4824 4825
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4826 4827 4828
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4829
        res._sync_with_cpp()
4830 4831 4832 4833 4834

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4835 4836
        return res

X
Xin Pan 已提交
4837
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4838
        """
F
fengjiayi 已提交
4839 4840 4841 4842 4843
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4844
        3. change the :code:`is_test`
Y
yuyang18 已提交
4845 4846 4847
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4848
        Args:
X
Xin Pan 已提交
4849 4850
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4851

Y
yuyang18 已提交
4852 4853 4854 4855 4856 4857
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4858
        res = Program()
4859
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4860 4861 4862 4863

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4864
        if prune_read_op:
4865 4866 4867 4868 4869 4870 4871 4872 4873
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4874
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4875 4876

        # change all `is_test` attributes to True
M
minqiyang 已提交
4877
        for i in six.moves.range(res.desc.num_blocks()):
4878
            block = res.desc.block(i)
M
minqiyang 已提交
4879
            for j in six.moves.range(block.op_size()):
4880 4881
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4882
                    op._set_attr('is_test', True)
4883 4884 4885
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4886 4887 4888
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4889
        res._sync_with_cpp()
4890 4891
        return res

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
    def _remove_training_info(self):
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
        return res

4919 4920
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4921
        """
4922 4923 4924
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4925

4926 4927
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4928

J
Jiabin Yang 已提交
4929
        Args:
Y
yuyang18 已提交
4930

J
Jiabin Yang 已提交
4931
            binary_str_type (str): the binary prootbuf string.
4932

J
Jiabin Yang 已提交
4933 4934
        Returns:
            Program: A deserialized Program.
4935 4936 4937 4938

        Examples:
            .. code-block:: python

4939 4940 4941 4942
                import paddle
                import paddle.static as static

                paddle.enable_static()
4943

4944 4945 4946 4947
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4948

4949
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4950

4951
                    z = paddle.matmul(x=x, y=y)
4952

4953 4954
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4955

4956
                    print(static.default_main_program())
4957
                    print(prog_restored)
Y
yuyang18 已提交
4958
        """
4959 4960
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4961
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4962
        p._sync_with_cpp()
4963
        return p
Y
Yu Yang 已提交
4964

4965
    @staticmethod
4966
    def _construct_from_desc(desc):
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4982 4983
    @property
    def random_seed(self):
Y
yuyang18 已提交
4984
        """
J
Jiabin Yang 已提交
4985
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4986 4987
        the random seed from random device.

4988 4989
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4990 4991 4992

        Returns:
            int64: Random seed in current Program
4993

4994 4995 4996 4997

        Examples:
            .. code-block:: python

4998 4999 5000
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5001

5002 5003 5004
                paddle.enable_static()

                prog = static.default_main_program()
5005
                random_seed = prog.random_seed
5006
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5007 5008 5009
                print(random_seed)
                ## 0
                ## the default random seed is 0
5010

5011
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5012
                prog.random_seed = 1
5013
                z_var = F.dropout(x_var, 0.7)
5014

5015
                print(prog.random_seed)
5016 5017
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5018
        """
D
dzhwinter 已提交
5019 5020
        return self._seed

Q
qiaolongfei 已提交
5021 5022
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5023
        """
5024 5025
        The number of :ref:`api_guide_Block_en`  in this Program.

5026 5027
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5028 5029 5030

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5031

5032 5033 5034 5035

        Examples:
            .. code-block:: python

5036 5037 5038 5039
                import paddle
                import paddle.static as static

                paddle.enable_static()
5040

5041
                prog = static.default_main_program()
5042 5043
                num_blocks = prog.num_blocks
                print(num_blocks)
5044

5045 5046
                # print result:
                # 1
Y
yuyang18 已提交
5047
        """
Q
qiaolongfei 已提交
5048 5049
        return self.desc.num_blocks()

D
dzhwinter 已提交
5050 5051 5052
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5053 5054 5055
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5056 5057
        self._seed = seed

Y
Yu Yang 已提交
5058
    def __repr__(self):
5059
        return self.__str__()
5060

Y
Yu Yang 已提交
5061
    def global_block(self):
Y
yuyang18 已提交
5062
        """
5063 5064
        .. note::
            This API has no effect in Dygraph mode.
5065 5066 5067

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5068 5069
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5070

5071 5072 5073 5074

        Examples:
            .. code-block:: python

5075 5076 5077 5078
                import paddle
                import paddle.static as static

                paddle.enable_static()
5079

5080
                prog = static.default_main_program()
5081 5082
                gb_block = prog.global_block()
                print(gb_block)
5083

Y
yuyang18 已提交
5084
        """
Y
Yu Yang 已提交
5085 5086
        return self.blocks[0]

Q
Qiao Longfei 已提交
5087
    def block(self, index):
Y
yuyang18 已提交
5088
        """
5089 5090
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5091

5092 5093
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5094 5095
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5096

J
Jiabin Yang 已提交
5097 5098
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5099 5100 5101 5102

        Examples:
            .. code-block:: python

5103 5104 5105 5106
                import paddle
                import paddle.static as static

                paddle.enable_static()
5107

5108
                prog = static.default_main_program()
5109 5110
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5111
        """
Q
Qiao Longfei 已提交
5112 5113
        return self.blocks[index]

Y
Yu Yang 已提交
5114
    def current_block(self):
Y
yuyang18 已提交
5115
        """
5116 5117
        .. note::
            This API has no effect in Dygraph mode.
5118

J
Jiabin Yang 已提交
5119 5120
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5121

J
Jiabin Yang 已提交
5122 5123
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5124

5125 5126 5127
        Examples:
            .. code-block:: python

5128 5129 5130 5131
                import paddle
                import paddle.static as static

                paddle.enable_static()
5132

5133
                prog = static.default_main_program()
5134 5135
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5136
        """
Y
Yu Yang 已提交
5137 5138
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5139
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5140 5141 5142 5143 5144
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5145

Y
yuyang18 已提交
5146 5147 5148 5149 5150
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5151
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5152 5153 5154
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5155 5156 5157 5158
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5159
    def _rollback(self):
Y
yuyang18 已提交
5160 5161 5162 5163 5164
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5165 5166
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5167
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5178 5179 5180
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5181
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5182

W
Wu Yi 已提交
5183
    def _copy_param_info_from(self, other):
5184
        """
5185
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5186

Y
yuyang18 已提交
5187 5188 5189
        Notes: This is a very low level API. Users should not invoke it
        directly.

5190 5191 5192 5193 5194 5195 5196
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5197 5198 5199
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5200

W
Wu Yi 已提交
5201
        self.global_block()._copy_param_info_from(other.global_block())
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5214 5215 5216
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5217 5218
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5219
        self._parameters_on_pservers = other._parameters_on_pservers
5220
        self._endpoints = other._endpoints
5221
        self._ps_endpoint = other._ps_endpoint
5222 5223
        self._distributed_lookup_table = other._distributed_lookup_table

5224
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5225 5226
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5227

Y
yuyang18 已提交
5228 5229 5230
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5231 5232
        Args:
            other(Program): Other program
5233 5234 5235 5236
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5237 5238 5239 5240 5241

        Returns:
            None
        """
        if not isinstance(other, Program):
5242 5243 5244
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5245

5246 5247 5248 5249 5250
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5251 5252 5253

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5254 5255
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5256
            for var in list(block.vars.values()):
5257 5258 5259 5260 5261 5262 5263
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5264

5265
    def list_vars(self):
Y
yuyang18 已提交
5266
        """
5267
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5268

J
Jiabin Yang 已提交
5269
        Returns:
5270
            iterable Tensors: The Generator will yield every Tensor in this program.
5271 5272 5273 5274

        Examples:
            .. code-block:: python

5275 5276
                import paddle
                import paddle.static as static
5277

5278 5279 5280 5281 5282
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5283 5284
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5285

5286 5287
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5288
        """
5289
        for each_block in self.blocks:
5290
            for each_var in list(each_block.vars.values()):
5291 5292
                yield each_var

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5303 5304 5305 5306
                import paddle
                import paddle.static as static

                paddle.enable_static()
5307

5308 5309
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5310
                hidden = static.nn.fc(x=data, size=10)
5311 5312
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5313 5314 5315 5316 5317 5318 5319

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5320 5321
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5499

5500
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5501
class Parameter(Variable):
5502
    """
5503
    Parameter is derived from Variable. A parameter is a persistable
5504
    Variable, and will be updated by optimizers after each iteration.
5505
    The training of a neural network is essentially the updating of
5506 5507
    its parameters.

5508
    Relative to a general Variable, a Parameter has several its own
5509 5510
    member variables:

5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5521 5522
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5523 5524
    """

5525 5526 5527 5528 5529 5530
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5531 5532 5533 5534 5535
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5536
        if len(shape) == 0:
5537 5538
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5539 5540 5541

        for each in shape:
            if each < 0:
5542 5543 5544
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5545 5546

        Variable.__init__(
5547 5548 5549 5550 5551 5552 5553
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5554 5555 5556 5557
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5558 5559
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5560
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5561

5562 5563
        self.need_clip = kwargs.get('need_clip', True)

5564 5565
        self.is_distributed = False

5566 5567
        self.is_parameter = True

F
fengjiayi 已提交
5568
    def __str__(self):
5569
        return self._to_readable_code()
F
fengjiayi 已提交
5570

F
update  
fengjiayi 已提交
5571 5572 5573
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5574

F
update  
fengjiayi 已提交
5575 5576 5577 5578 5579 5580 5581 5582
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5583 5584 5585 5586 5587 5588 5589 5590 5591
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5592 5593 5594 5595 5596 5597
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5598
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5599
            for attr_name in additional_attr:
5600 5601
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5602 5603
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5604 5605 5606 5607
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5608

5609 5610
class ParamBase(core.VarBase):
    """
5611 5612 5613
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5614 5615 5616
    The training of a neural network is essentially the updating of
    its ParamBase.

5617
    Relative to a general Tensor, a ParamBase has several its own
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5630 5631
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5662 5663
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5664 5665 5666 5667 5668 5669 5670

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5671 5672
        self.need_clip = kwargs.get('need_clip', True)

5673
        self.is_distributed = False
5674
        # self.block = default_main_program().global_block()
5675

5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5689
    def __str__(self):
5690
        """
5691
        Convert a ParamBase object to a readable string.
5692

5693
        Returns(str): A readable string.
5694 5695 5696 5697

        Examples:
            .. code-block:: python

5698
                import paddle
5699 5700 5701 5702 5703 5704 5705
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5706
        """
5707 5708
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5709

5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5721

5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5740 5741 5742 5743 5744 5745 5746
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5747 5748 5749
    __repr__ = __str__


Y
Yu Yang 已提交
5750
# program is a global instance.
Y
Yu Yang 已提交
5751 5752
_main_program_ = Program()
_startup_program_ = Program()
5753

5754

5755
def default_startup_program():
Y
Yu Yang 已提交
5756
    """
Y
yuyang18 已提交
5757 5758
    Get default/global startup program.

5759 5760
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5761

5762 5763
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5764

5765 5766
    Returns:
        Program: current default startup program.
5767

5768
    Returns type: 
5769 5770 5771 5772

    Examples:
        .. code-block:: python

5773
            import paddle
5774

5775
            paddle.enable_static()
5776 5777 5778 5779
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5780
    """
Y
Yu Yang 已提交
5781
    return _startup_program_
5782

5783

5784
def default_main_program():
Y
Yu Yang 已提交
5785
    """
5786
    This API can be used to get ``default main program`` which store the 
5787
    descriptions of Ops and tensors.
T
tangwei12 已提交
5788

5789
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5790
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5791

5792 5793
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5794
    :code:`default_main_program` when the program is not specified.
5795

5796
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5797

Y
Yu Yang 已提交
5798
    Returns:
5799
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5800 5801 5802 5803

    Examples:
        ..  code-block:: python

5804
            import paddle
5805

5806
            paddle.enable_static()
5807
            # Sample Network:
5808 5809 5810
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5811

5812 5813 5814
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5815
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5816
    """
Y
Yu Yang 已提交
5817
    return _main_program_
Y
Yu Yang 已提交
5818 5819 5820 5821 5822


def switch_main_program(program):
    """
    Switch the main program to a new program.
5823

Y
Yu Yang 已提交
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5838
    Switch the startup program to a new program
Y
Yu Yang 已提交
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5851
@signature_safe_contextmanager
Y
Yu Yang 已提交
5852 5853
def program_guard(main_program, startup_program=None):
    """
5854 5855
    :api_attr: Static Graph

5856 5857 5858
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5859

G
guofei 已提交
5860
    Args:
5861 5862
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5863 5864 5865 5866
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5867
    Examples:
5868
       .. code-block:: python
T
tangwei12 已提交
5869

5870
          import paddle
Y
yuyang18 已提交
5871

5872 5873 5874 5875 5876
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5877
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5878 5879 5880

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5881

Y
Yu Yang 已提交
5882
    Examples:
5883
       .. code-block:: python
Y
yuyang18 已提交
5884

5885
          import paddle
5886

5887 5888 5889 5890 5891
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5892

Y
Yu Yang 已提交
5893
    """
5894
    from .data_feeder import check_type
5895 5896
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5897 5898
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5899
        check_type(startup_program, 'startup_program', Program,
5900
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5901
        startup_program = switch_startup_program(startup_program)
5902 5903 5904 5905 5906 5907
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5908 5909


W
Wu Yi 已提交
5910
def _get_var(name, program=None):
X
xuwei06 已提交
5911
    """
Y
yuyang18 已提交
5912
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5913

X
xuwei06 已提交
5914 5915 5916
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5917
        If None, default_global_program() will be used.
X
xuwei06 已提交
5918 5919 5920 5921 5922 5923 5924

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5925
    assert isinstance(program, Program)
X
xuwei06 已提交
5926 5927

    return program.global_block().var(name)
5928 5929


S
rename  
sneaxiy 已提交
5930
@signature_safe_contextmanager
L
lujun 已提交
5931 5932
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5933
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5934
    _dygraph_tracer_ = tracer
5935
    core._switch_tracer(tracer)
M
minqiyang 已提交
5936

5937 5938 5939
    try:
        yield
    finally:
5940 5941
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5942 5943


S
rename  
sneaxiy 已提交
5944
@signature_safe_contextmanager
L
lujun 已提交
5945
def _dygraph_place_guard(place):
5946 5947 5948
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5949

5950 5951
    _set_dygraph_tracer_expected_place(place)

5952 5953 5954
    try:
        yield
    finally:
5955
        _global_expected_place_ = tmp_place
5956
        _set_dygraph_tracer_expected_place(tmp_place)
5957 5958


5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
5975 5976
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
5977 5978 5979 5980 5981 5982 5983 5984 5985
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
5986
            import paddle
5987

Z
Zhang Ting 已提交
5988 5989 5990
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5991
            if support_gpu:
Z
Zhang Ting 已提交
5992
                place = paddle.CUDAPlace(0)
5993 5994

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
5995 5996 5997
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5998

Z
Zhang Ting 已提交
5999
            with paddle.static.device_guard("cpu"):
6000
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6001 6002
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6003
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6004
                out = paddle.reshape(data1, shape=shape)
6005

Z
Zhang Ting 已提交
6006 6007
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6008 6009 6010
            result = exe.run(fetch_list=[out])
    """

6011 6012 6013 6014 6015
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6016
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6017
        raise ValueError(
6018
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6019
            "when there is no need to specify device. But received %s" % device)
6020 6021
    if index:
        device = ":".join([device, index])
6022
    pre_device = switch_device(device)
6023 6024 6025 6026
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6045 6046
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6075 6076
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6077 6078 6079 6080 6081 6082 6083
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6084 6085
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6086 6087 6088 6089 6090 6091 6092 6093
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6094 6095 6096 6097 6098 6099 6100


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6101
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6102 6103 6104 6105 6106 6107 6108 6109 6110
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6111

6112 6113 6114
    if (place == "device"):
        return core.Place()

6115
    # GPU
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6131 6132

    # XPU
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6156
    raise ValueError(
6157 6158
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret