test_ops.py 74.6 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ops """
import functools
J
jinyaohui 已提交
17

Z
zhunaipan 已提交
18
import numpy as np
J
jinyaohui 已提交
19 20 21 22

import mindspore.nn as nn
import mindspore.ops.composite as C
from mindspore import Tensor
23
from mindspore import ops, Parameter, context
J
jinyaohui 已提交
24
from mindspore.common import dtype as mstype
Z
zhunaipan 已提交
25 26 27
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
J
jiangjinsheng 已提交
28
from mindspore.ops.operations import _inner_ops as inner
Z
zhunaipan 已提交
29 30
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
31
from ....mindspore_test_framework.pipeline.forward.compile_forward \
Z
zhunaipan 已提交
32 33
    import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
            pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
34
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
Z
zhunaipan 已提交
35 36 37
    import pipeline_for_compile_grad_ge_graph_for_case_by_case_config


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def test_tensor_scatter_update():
    class TensorScatterUpdateNet(nn.Cell):
        """TensorScatterUpdate net definition"""

        def __init__(self):
            super(TensorScatterUpdateNet, self).__init__()
            self.tensor_scatter_update = P.TensorScatterUpdate()

        def construct(self, x, i, u):
            out = self.tensor_scatter_update(x, i, u)
            return out
    net = TensorScatterUpdateNet()
    context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
    x = Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)),  mstype.float32)
    indices = Tensor(np.array([[0, 0], [1, 1]], np.int32))
    updates = Tensor(np.ones([2, 5], np.float32))
    net(x, indices, updates)


Z
zhunaipan 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class InputBackward(nn.Cell):
    def __init__(self, network):
        super(InputBackward, self).__init__()
        self.network = network
        self.network.set_train()
        self.grad = C.grad_all_with_sens

    def construct(self, x1, x2, x3, sens):
        return self.grad(self.network)(x1, x2, x3, sens)


class NetForTupleInput(nn.Cell):
    def __init__(self, op):
        super(NetForTupleInput, self).__init__()
        self.op = op

    def construct(self, x1, x2):
        return self.op((x1, x2))


class StridedSlicessdNet(nn.Cell):
    def __init__(self):
        super(StridedSlicessdNet, self).__init__()
        self.rank = P.Rank()

    def construct(self, x1):
        return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))


class NetForConcat(nn.Cell):
    def __init__(self):
        super(NetForConcat, self).__init__()
        self.concat = P.Concat()

    def construct(self, x1):
        return self.concat((x1, x1))


class NetForConcat1(nn.Cell):
    def __init__(self):
        super(NetForConcat1, self).__init__()
        self.concat = P.Concat()

    def construct(self, x1, x2):
        return self.concat((x1, x2))


104
class NetForPackInput(nn.Cell):
L
liuxiao 已提交
105
    def __init__(self, op):
106
        super(NetForPackInput, self).__init__()
L
liuxiao 已提交
107 108 109 110 111
        self.op = op
        self.mul = P.Mul()

    def construct(self, *args):
        t = ()
112 113
        for element in args:
            t = t + (self.mul(element, element),)
L
liuxiao 已提交
114 115 116
        return self.op(t)


117
class NetForUnpackInput(nn.Cell):
L
liuxiao 已提交
118
    def __init__(self, op):
119
        super(NetForUnpackInput, self).__init__()
L
liuxiao 已提交
120 121 122 123 124 125 126
        self.op = op
        self.mul = P.Mul()

    def construct(self, x1):
        return self.op((self.mul(x1, x1)))


Z
zhunaipan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class NetForFlatten(nn.Cell):
    def __init__(self):
        super(NetForFlatten, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x, y):
        return self.flatten(x) + y


class NetForFlatten0D(nn.Cell):
    def __init__(self):
        super(NetForFlatten0D, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x):
        return self.flatten(x)


Z
zhaozhenlong 已提交
145 146 147 148 149 150 151
class NetForFlattenComposed(nn.Cell):
    # make flatten op together with other ops for testing flatten grad
    def __init__(self):
        super(NetForFlattenComposed, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x, y):
L
lihongkang 已提交
152
        return self.flatten(x + x) + y
Z
zhaozhenlong 已提交
153 154


Z
zhunaipan 已提交
155 156 157 158 159
class ArgmaxNet(nn.Cell):
    def __init__(self):
        super(ArgmaxNet, self).__init__()
        self.argmax = P.Argmax(axis=1)

160 161
    def construct(self, input_):
        return self.argmax(input_)
Z
zhunaipan 已提交
162 163 164 165 166 167 168


class ArgminNet(nn.Cell):
    def __init__(self):
        super(ArgminNet, self).__init__()
        self.argmin = P.Argmin(axis=1)

169 170
    def construct(self, input_):
        return self.argmin(input_)
Z
zhunaipan 已提交
171 172 173 174 175 176 177 178


class CumSumNet(nn.Cell):
    def __init__(self):
        super(CumSumNet, self).__init__()
        self.cumsum = P.CumSum()
        self.axis = 1

179 180
    def construct(self, input_):
        return self.cumsum(input_, self.axis)
Z
zhunaipan 已提交
181 182 183


class SummaryNet(nn.Cell):
184
    def __init__(self):
Z
zhunaipan 已提交
185 186 187 188 189 190 191 192 193
        super(SummaryNet, self).__init__()
        self.s = P.ScalarSummary()
        self.add = P.TensorAdd()

    def construct(self, x, y):
        self.s("x1", x)
        return self.add(x, y)


O
ougongchang 已提交
194
class HistogramSummaryNet(nn.Cell):
195
    def __init__(self):
O
ougongchang 已提交
196 197 198 199 200 201 202 203 204 205 206
        super(HistogramSummaryNet, self).__init__()
        self.summary = P.HistogramSummary()
        self.add = P.TensorAdd()

    def construct(self, x, y):
        out = self.add(x, y)
        string_in = "out"
        self.summary(string_in, out)
        return out


207 208 209
class ScatterMax(nn.Cell):
    """ScatterMax net definition"""

210
    def __init__(self, dtype=np.float32, use_locking=False):
211
        super(ScatterMax, self).__init__()
212 213
        self.scatter_max = P.ScatterMax(use_locking)
        self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype)), name="ref")
214 215 216 217 218

    def construct(self, indices, updates):
        out = self.scatter_max(self.ref, indices, updates)
        return out

J
jinyaohui 已提交
219

220 221 222 223 224 225 226 227 228 229 230 231 232
class ScatterMin(nn.Cell):
    """ScatterMin net definition"""

    def __init__(self, dtype=np.float32, use_locking=False):
        super(ScatterMin, self).__init__()
        self.scatter_min = P.ScatterMin(use_locking)
        self.ref = Parameter(Tensor(np.array([[-1.0, 2.0, 3.0], [-4.0, 1.0, 6.0]], dtype)), name="ref")

    def construct(self, indices, updates):
        out = self.scatter_min(self.ref, indices, updates)
        return out


Z
zhaozhenlong 已提交
233 234 235
class ScatterAdd(nn.Cell):
    """ScatterAdd net definition"""

236
    def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
Z
zhaozhenlong 已提交
237
        super(ScatterAdd, self).__init__()
238
        self.scatter_add = P.ScatterAdd(use_locking)
239
        self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
Z
zhaozhenlong 已提交
240 241 242 243 244 245

    def construct(self, indices, updates):
        out = self.scatter_add(self.ref, indices, updates)
        return out


246 247 248 249 250 251 252 253 254 255 256 257 258
class ScatterSub(nn.Cell):
    """ScatterSub net definition"""

    def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
        super(ScatterSub, self).__init__()
        self.scatter_sub = P.ScatterSub(use_locking)
        self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")

    def construct(self, indices, updates):
        out = self.scatter_sub(self.ref, indices, updates)
        return out


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
class ApplyFtrlNet(nn.Cell):
    def __init__(self):
        super(ApplyFtrlNet, self).__init__()
        self.apply_ftrl = P.ApplyFtrl()
        self.lr = 0.001
        self.l1 = 0.0
        self.l2 = 0.0
        self.lr_power = -0.5
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")

    def construct(self, grad):
        out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
        return out

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

class SparseApplyFtrlNet(nn.Cell):
    def __init__(self):
        super(SparseApplyFtrlNet, self).__init__()
        self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")

    def construct(self, grad, indices):
        out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
        return out


class SparseApplyProximalAdagradNet(nn.Cell):
    def __init__(self):
        super(SparseApplyProximalAdagradNet, self).__init__()
        self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
L
liuxiao 已提交
293 294
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
295 296 297 298
        self.lr = 0.01
        self.l1 = 0.0
        self.l2 = 0.0

L
liuxiao 已提交
299 300
    def construct(self, grad, indices):
        out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
301 302 303 304 305 306 307
        return out


class ApplyProximalAdagradNet(nn.Cell):
    def __init__(self):
        super(ApplyProximalAdagradNet, self).__init__()
        self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
L
liuxiao 已提交
308 309
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
310 311 312 313
        self.lr = 0.01
        self.l1 = 0.0
        self.l2 = 0.0

L
liuxiao 已提交
314 315
    def construct(self, grad):
        out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
316 317 318
        return out


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
class ApplyAdaMaxNet(nn.Cell):
    def __init__(self):
        super(ApplyAdaMaxNet, self).__init__()
        self.apply_ada_max = P.ApplyAdaMax()
        self.beta1_power = 0.9
        self.lr = 0.001
        self.beta1 = 0.9
        self.beta2 = 0.99
        self.epsilon = 1e-10
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
        self.v = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="v")

    def construct(self, grad):
        out = self.apply_ada_max(self.var, self.m, self.v, self.beta1_power, self.lr,
                                 self.beta1, self.beta2, self.epsilon, grad)
        return out


class ApplyAdadeltaNet(nn.Cell):
    def __init__(self):
        super(ApplyAdadeltaNet, self).__init__()
        self.apply_adadelta = P.ApplyAdadelta()
        self.lr = 0.001
        self.rho = 0.0
        self.epsilon = 1e-6
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.accum_update = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum_update")

    def construct(self, grad):
        out = self.apply_adadelta(self.var, self.accum, self.accum_update, self.lr, self.rho, self.epsilon, grad)
        return out


class ApplyAdagradNet(nn.Cell):
    def __init__(self):
        super(ApplyAdagradNet, self).__init__()
        self.apply_adagrad = P.ApplyAdagrad()
        self.lr = 0.001
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")

    def construct(self, grad):
        out = self.apply_adagrad(self.var, self.accum, self.lr, grad)
        return out


class ApplyAdagradV2Net(nn.Cell):
    def __init__(self):
        super(ApplyAdagradV2Net, self).__init__()
        self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6)
        self.lr = 0.001
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")

    def construct(self, grad):
        out = self.apply_adagrad_v2(self.var, self.accum, self.lr, grad)
        return out


L
liuxiao 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
class ApplyAddSignNet(nn.Cell):
    def __init__(self):
        super(ApplyAddSignNet, self).__init__()
        self.apply_add_sign = P.ApplyAddSign()
        self.lr = 0.001
        self.alpha = 1.0
        self.sign_decay = 0.99
        self.beta = 0.99
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")

    def construct(self, grad):
        out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad)
        return out


class ApplyPowerSignNet(nn.Cell):
    def __init__(self):
        super(ApplyPowerSignNet, self).__init__()
        self.apply_power_sign = P.ApplyPowerSign()
        self.lr = 0.001
        self.logbase = np.e
        self.sign_decay = 0.99
        self.beta = 0.99
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")

    def construct(self, grad):
        out = self.apply_power_sign(self.var, self.m, self.lr, self.logbase, self.sign_decay, self.beta, grad)
        return out


class ApplyGradientDescentNet(nn.Cell):
    def __init__(self):
        super(ApplyGradientDescentNet, self).__init__()
        self.apply_gradient_descent = P.ApplyGradientDescent()
        self.alpha = 0.001
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")

    def construct(self, delta):
        out = self.apply_gradient_descent(self.var, self.alpha, delta)
        return out


class ApplyProximalGradientDescentNet(nn.Cell):
    def __init__(self):
        super(ApplyProximalGradientDescentNet, self).__init__()
        self.apply_proximal_gradient_descent = P.ApplyProximalGradientDescent()
        self.alpha = 0.001
        self.l1 = 0.0
        self.l2 = 0.0
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")

    def construct(self, delta):
        out = self.apply_proximal_gradient_descent(self.var, self.alpha, self.l1, self.l2, delta)
        return out


438 439 440 441 442 443 444 445 446 447 448
class SparseApplyAdagradNet(nn.Cell):
    def __init__(self):
        super(SparseApplyAdagradNet, self).__init__()
        self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=0.01)
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")

    def construct(self, grad, indices):
        out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices)
        return out

Z
zhaojichen 已提交
449 450 451 452 453 454
class ApplyRMSNet(nn.Cell):
    def __init__(self):
        super(ApplyRMSNet, self).__init__()
        self.apply_rms = P.ApplyRMSProp()
        self.lr = 0.001
        self.rho = 0.0
455
        self.momentum = 0.0
Z
zhaojichen 已提交
456 457 458 459 460 461 462 463
        self.epsilon = 1e-10
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
        self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")

    def construct(self, grad):
        out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
        return out
464

L
lihongkang 已提交
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
class InplaceAddNet(nn.Cell):
    def __init__(self):
        super(InplaceAddNet, self).__init__()
        self.inplace_add = P.InplaceAdd(indices=(0, 1))

    def construct(self, x, v):
        out = self.inplace_add(x, v)
        return out


class InplaceSubNet(nn.Cell):
    def __init__(self):
        super(InplaceSubNet, self).__init__()
        self.inplace_sub = P.InplaceSub(indices=(0, 1))

    def construct(self, x, v):
        out = self.inplace_sub(x, v)
        return out


P
pkuliuliu 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498
class NormalNet(nn.Cell):
    def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0):
        super(NormalNet, self).__init__()
        self.normal = P.Normal(seed=seed)
        self.shape = shape
        self.mean = Tensor(mean, mstype.float32)
        self.stddev = Tensor(stddev, mstype.float32)

    def construct(self):
        out = self.normal(self.shape, self.mean, self.stddev)
        return out


Z
zhunaipan 已提交
499
test_case_math_ops = [
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    ('BitwiseAnd', {
        'block': P.BitwiseAnd(),
        'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
                        Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseAnd_1', {
        'block': P.BitwiseAnd(),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
                        Tensor(np.array([1, 1, 1]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseOr', {
        'block': P.BitwiseOr(),
        'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
                        Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseOr_1', {
        'block': P.BitwiseOr(),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
                        Tensor(np.array([1, 1, 1]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseXor', {
        'block': P.BitwiseXor(),
        'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
                        Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseXor_1', {
        'block': P.BitwiseXor(),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
                        Tensor(np.array([1, 1, 1]), mstype.int16)],
        'skip': ['backward']}),
Z
zhunaipan 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    ('Neg', {
        'block': P.Neg(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('Sub', {
        'block': P.Sub(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('TensorAdd', {
        'block': P.TensorAdd(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul0', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul1', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul2', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Mul3', {
        'block': P.Mul(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Mul4', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add0', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Add1', {
        'block': P.TensorAdd(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add2', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add3', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add4', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Minimum', {
        'block': P.Minimum(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
593
    ('Pow_0', {
Z
zhunaipan 已提交
594 595 596 597
        'block': P.Pow(),
        'desc_const': [2.0],
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
598 599 600 601
    ('Pow_1', {
        'block': P.Pow(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
Z
zhunaipan 已提交
602 603 604 605
    ('Exp', {
        'block': P.Exp(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
Z
zhouneng 已提交
606 607 608 609
    ('Expm1', {
        'block': P.Expm1(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
liuxiao 已提交
610 611 612 613
    ('Erf', {
        'block': P.Erf(),
        'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
Z
zhunaipan 已提交
614 615 616
    ('Floor', {
        'block': P.Floor(),
        'desc_inputs': [[2, 512, 56, 56]],
617 618 619 620 621
        'desc_bprop': [[2, 512, 56, 56]],
        'skip': ['backward']}),
    ('Ceil', {
        'block': P.Ceil(),
        'desc_inputs': [[2, 512, 56, 56]],
Z
zhunaipan 已提交
622 623
        'desc_bprop': [[2, 512, 56, 56]],
        'skip': ['backward']}),
624 625 626 627 628 629 630 631 632 633
    ('InplaceAdd', {
        'block': InplaceAddNet(),
        'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
                        Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
        'skip': ['backward']}),
    ('InplaceSub', {
        'block': InplaceSubNet(),
        'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
                        Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
        'skip': ['backward']}),
Z
zhunaipan 已提交
634 635
    ('ACos', {
        'block': P.ACos(),
Z
zhouneng 已提交
636 637 638 639 640 641
        'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
        'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
    ('ACosGrad', {
        'block': G.ACosGrad(),
        'desc_inputs': [[2, 3], [2, 3]],
        'skip': ['backward']}),
Z
zhangz0911gm 已提交
642 643
    ('Acosh', {
        'block': P.Acosh(),
Z
zhouneng 已提交
644 645 646 647 648 649
        'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
        'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
    ('AcoshGrad', {
        'block': G.AcoshGrad(),
        'desc_inputs': [[2, 3], [2, 3]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
650 651 652 653
    ('Sin', {
        'block': P.Sin(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
654 655 656 657 658 659 660 661
    ('Asin', {
        'block': P.Asin(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('Asinh', {
        'block': P.Asinh(),
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
Z
zhunaipan 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    ('Reciprocal', {
        'block': P.Reciprocal(),
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Minimum_0', {
        'block': P.Minimum(),
        'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Maximum', {
        'block': P.Maximum(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Maximum_0', {
        'block': P.Maximum(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('MaximumGrad', {
        'block': G.MaximumGrad(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
        'skip': ['backward']}),
    ('MinimumGrad', {
        'block': G.MinimumGrad(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
        'skip': ['backward']}),
    ('StridedSlice', {
        'block': P.StridedSlice(),
        'desc_const': [(0, 1, 2, 1),
689 690
                       (2, 3, 3, 4),
                       (1, 1, 1, 1)],
Z
zhunaipan 已提交
691 692 693 694 695
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 2, 1, 3]]}),
    ('Slice_1', {
        'block': P.Slice(),
        'desc_const': [(0, 1, 2, 1),
696
                       (1, 1, 1, 2)],
Z
zhunaipan 已提交
697 698 699 700 701
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[1, 1, 1, 2]]}),
    ('StridedSliceGrad', {
        'block': G.StridedSliceGrad(),
        'desc_const': [(64, 1, 1024),
702 703 704
                       (0, 1, 0),
                       (64, 2, 1024),
                       (1, 1, 1)],
Z
zhunaipan 已提交
705 706 707 708 709
        'desc_inputs': [[64, 128, 1024]],
        'skip': ['backward']}),
    ('RandomChoiceWithMask', {
        'block': P.RandomChoiceWithMask(256),
        'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
710
        'desc_bprop': [[256, 4], [256, 4]],
Z
zhunaipan 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
        'skip': ['backward']}),
    ('LessEqual', {
        'block': P.LessEqual(),
        'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
                        Tensor(np.random.rand(4).astype(np.float16))],
        'skip': ['backward']}),
    ('Less', {
        'block': P.Less(),
        'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
        'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
        'skip': ['backward']}),
    ('RealDiv_0', {
        'block': P.RealDiv(),
        'desc_const': [Tensor(2048.0), Tensor(0.0)],
        'desc_inputs': [],
        'skip': ['backward']}),
    ('RealDiv', {
        'block': P.RealDiv(),
        'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
        'desc_bprop': [[4]]}),
    ('RealDiv_1', {
        'block': P.RealDiv(),
        'desc_inputs': [[512, 1024], [512, 1024]],
        'desc_bprop': [[512, 1024]]}),
    ('FloorDiv', {
        'block': P.FloorDiv(),
        'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
                        Tensor(np.random.rand(4).astype(np.float16))],
        'skip': ['backward']}),
Z
zhangz0911gm 已提交
740 741
    ('FloorMod', {
        'block': P.FloorMod(),
B
buxue 已提交
742 743
        'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
Z
zhunaipan 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    ('identity', {
        'block': ops.functional.identity,
        'desc_inputs': [[2, 2]],
        'skip': ['backward']}),
    ('MatMul_1', {
        'block': P.MatMul(transpose_a=False, transpose_b=False),
        'desc_inputs': [[1024, 160], [160, 1024]],
        'desc_bprop': [[1024, 1024]]}),
    ('MatMul_2', {
        'block': P.MatMul(transpose_a=True, transpose_b=True),
        'desc_inputs': [[160, 1024], [1024, 160]],
        'desc_bprop': [[1024, 1024]]}),
    ('Sub', {
        'block': P.Sub(),
        'desc_inputs': [[3], [3]],
        'desc_bprop': [[3]]}),
    ('TruncatedNormal', {
        'block': P.TruncatedNormal(),
762
        'desc_const': [(1, 2, 3)],
Z
zhunaipan 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        'desc_inputs': [],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('Select', {
        'block': P.Select(),
        'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
                        [2, 3], [2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('Rank', {
        'block': P.Rank(),
        'desc_inputs': [[2, 3]],
        'skip': ['backward']}),
    ('InvertPermutation', {
        'block': P.InvertPermutation(),
        'desc_const': [(0, 3, 1, 2)],
        'desc_inputs': [],
        'skip': ['backward']}),
    ('Square', {
        'block': P.Square(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('Rsqrt', {
        'block': P.Rsqrt(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('Sqrt', {
        'block': P.Sqrt(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('RealDiv', {
        'block': P.RealDiv(),
        'desc_inputs': [[4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
    ('Div', {
        'block': P.Div(),
        'desc_inputs': [[4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
    ('Equal', {
        'block': P.Equal(),
        'desc_inputs': [[3, 4, 5], [4, 5]],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
    ('NotEqual', {
        'block': P.NotEqual(),
        'desc_inputs': [[4, 1], [2, 3, 4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
C
candanzg 已提交
808 809
    ('NotEqual_0', {
        'block': P.NotEqual(),
810
        'desc_inputs': [1, [2, 3, 4, 5]],
C
candanzg 已提交
811 812
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
        'skip': ['backward']}),
813 814 815 816
    ('ApproximateEqual', {
        'block': P.ApproximateEqual(),
        'desc_inputs': [[3, 4, 5], [3, 4, 5]],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
Z
zhunaipan 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829
    ('Greater', {
        'block': P.Greater(),
        'desc_inputs': [[2, 3, 4, 1], [4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
    ('GreaterEqual', {
        'block': P.GreaterEqual(),
        'desc_inputs': [[2, 3, 4, 1], [4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
    ('LogicalNot', {
        'block': P.LogicalNot(),
        'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
        'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
    ('LogicalAnd', {
830 831 832
        'block': P.LogicalAnd(),
        'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
        'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
Z
zhunaipan 已提交
833
    ('LogicalOr', {
834 835 836
        'block': P.LogicalOr(),
        'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
Z
zhunaipan 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    ('NpuAllocFloatStatus', {
        'block': P.NPUAllocFloatStatus(),
        'desc_inputs': [],
        'add_fack_input': True,
        'fack_input_type': np.float32,
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('NpuGetFloatStatus', {
        'block': P.NPUGetFloatStatus(),
        'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('NpuClearFloatStatus', {
        'block': P.NPUClearFloatStatus(),
        'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('CheckValid', {
        'block': P.CheckValid(),
        'desc_inputs': [[20000, 4], [3]],
        'desc_bprop': [[20000]],
        'skip': ['backward']}),
    ('NMSWithMask', {
        'block': P.NMSWithMask(0.5),
        'desc_inputs': [[128, 5]],
        'desc_bprop': [[128, 5], [128], [128]],
        'skip': ['backward']}),
    ('Abs', {
        'block': P.Abs(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('CumSum', {
Z
zhouneng 已提交
869 870
        'block': CumSumNet(),
        'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
871 872
        'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
                                        [1, 3, 7, 9]]).astype(np.float32))]}),
Z
zhunaipan 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    ('ReduceSum_3', {
        'block': P.ReduceSum(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('ReduceSum_4', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('ReduceSum_5', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1, 1, 1]]}),
    ('ReduceSum_6', {
        'block': P.ReduceSum(),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1]]}),
    ('Sum_0', {
        'block': P.ReduceSum(),
        'desc_const': [(1,)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3]]}),
    ('Sum_1', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [(1,)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3, 1]]}),
    ('Sum_2', {
        'block': P.ReduceSum(),
        'desc_const': [(0, 1)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1]]}),
    ('Sum_3', {
        'block': P.ReduceSum(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('Sum_4', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('Sum_5', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [()],
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1, 1, 1]]}),
    ('Sum_6', {
        'block': P.ReduceSum(),
        'desc_const': [()],
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1]]}),
    ('Sign', {
        'block': P.Sign(),
        'desc_inputs': [[3]],
        'desc_bprop': [[3]]}),
    ('Round', {
        'block': P.Round(),
        'desc_inputs': [[3]],
Z
zhaozhenlong 已提交
933 934 935 936 937
        'desc_bprop': [[3]]}),
    ('Atan2', {
        'block': P.Atan2(),
        'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
                        Tensor(np.array([1, 1]).astype(np.float32))],
Z
zhaojichen 已提交
938 939 940 941 942 943
        'desc_bprop': [[2]]}),
    ('SquareSumAll', {
        'block': P.SquareSumAll(),
        'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
                        Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
        'skip': ['backward']}),
Z
zhouneng 已提交
944 945 946 947
    ('Cos', {
        'block': P.Cos(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
lihongkang 已提交
948 949 950 951 952
    ('ReduceAll', {
        'block': P.ReduceAll(),
        'desc_const': [1],
        'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
        'desc_bprop': []}),
J
jiangjinsheng 已提交
953 954 955 956 957 958 959 960
    ('BesselI0e', {
        'block': P.BesselI0e(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('BesselI1e', {
        'block': P.BesselI1e(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
Z
zhouneng 已提交
961 962 963 964 965 966 967 968 969 970 971 972
    ('Atan', {
        'block': P.Atan(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('AtanGrad', {
        'block': G.AtanGrad(),
        'desc_inputs': [[2, 3], [2, 3]],
        'skip': ['backward']}),
    ('Atanh', {
        'block': P.Atanh(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
lihongkang 已提交
973 974 975 976 977 978 979 980
    ('Cosh', {
        'block': P.Cosh(),
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
    ('Sinh', {
        'block': P.Sinh(),
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
Z
zhaojichen 已提交
981 982 983 984 985 986 987 988 989
    ('Inv', {
        'block': P.Inv(),
        'desc_inputs': [[21, 9, 12, 5]],
        'desc_bprop': [[21, 9, 12, 5]]}),
    ('Invert', {
        'block': P.Invert(),
        'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))],
        'desc_bprop': [],
        'skip': ['backward']}),
990 991 992 993 994
    ('HistogramFixedWidth', {
        'block': P.HistogramFixedWidth(5),
        'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
        'desc_bprop': [],
        'skip': ['backward']}),
P
pkuliuliu 已提交
995 996 997 998
    ('Normal', {
        'block': NormalNet((3, 2, 4), 0.0, 1.0, 0),
        'desc_inputs': [],
        'skip': ['backward']}),
Z
zhunaipan 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
]

test_case_nn_ops = [
    ('BiasAdd', {
        'block': P.BiasAdd(),
        'desc_inputs': [[1, 3, 3, 3], [3]],
        'desc_bprop': [[1, 3, 3, 3]]}),
    ('BiasAddGrad', {
        'block': G.BiasAddGrad(),
        'desc_inputs': [[1, 3, 3, 3]],
        'skip': ['backward']}),
    ('Gelu', {
        'block': P.Gelu(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('GeluGrad', {
        'block': G.GeluGrad(),
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[2, 2]],
        'skip': ['backward']}),
    ('Tanh', {
        'block': P.Tanh(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('TanhGrad', {
        'block': G.TanhGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]],
        'skip': ['backward']}),
    ('ReLU', {
        'block': P.ReLU(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('ReLU6', {
        'block': P.ReLU6(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
1036 1037 1038
    ('ReLUV2', {
        'block': P.ReLUV2(),
        'desc_inputs': [[1, 3, 4, 4]],
P
panyifeng 已提交
1039
        'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
Z
zhunaipan 已提交
1040 1041 1042 1043
    ('ReLUGrad', {
        'block': G.ReluGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'skip': ['backward']}),
1044 1045 1046 1047 1048 1049 1050 1051
    ('Softplus', {
        'block': P.Softplus(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('SoftplusGrad', {
        'block': G.SoftplusGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    ('Elu', {
        'block': P.Elu(),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[2, 3, 4]]}),
    ('EluGrad', {
        'block': G.EluGrad(),
        'desc_inputs': [[2, 3, 4], [2, 3, 4]],
        'desc_bprop': [[2, 3, 4]],
        'skip': ['backward']}),
    ('Sigmoid', {
        'block': P.Sigmoid(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('MaxPool', {
        'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[100, 3, 28, 28]],
        'desc_bprop': [[100, 3, 14, 14]]}),
    ('MaxPoolGrad', {
        'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
        'desc_bprop': [[3, 4, 6, 6]],
        'skip': ['backward']}),
    ('AvgPool', {
        'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[100, 3, 28, 28]],
        'desc_bprop': [[100, 3, 14, 14]]}),
    ('AvgPoolGrad', {
        'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_const': [(3, 4, 6, 6)],
        'const_first': True,
        'desc_inputs': [[3, 4, 6, 6]],
        'desc_bprop': [[3, 4, 6, 6]],
        'skip': ['backward']}),
    ('MaxPoolWithArgmax', {
B
buxue 已提交
1086
        'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
Z
zhunaipan 已提交
1087
        'desc_inputs': [[128, 32, 32, 64]],
P
panyifeng 已提交
1088
        'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
Z
zhunaipan 已提交
1089 1090 1091 1092 1093 1094 1095 1096
    ('SoftmaxCrossEntropyWithLogits', {
        'block': P.SoftmaxCrossEntropyWithLogits(),
        'desc_inputs': [[1, 10], [1, 10]],
        'desc_bprop': [[1], [1, 10]],
        'skip': ['backward_exec']}),
    ('Flatten', {
        'block': P.Flatten(),
        'desc_inputs': [[128, 32, 32, 64]],
Z
zhaozhenlong 已提交
1097
        'desc_bprop': [[128, 65536]]}),
Z
zhunaipan 已提交
1098 1099 1100
    ('LogSoftmax', {
        'block': P.LogSoftmax(),
        'desc_inputs': [[64, 2]],
P
panyifeng 已提交
1101
        'desc_bprop': [[64, 2]]}),
Z
zhunaipan 已提交
1102 1103 1104 1105 1106
    ('LogSoftmaxGrad', {
        'block': G.LogSoftmaxGrad(),
        'desc_inputs': [[16, 1234], [16, 1234]],
        'desc_bprop': [[64, 2]],
        'skip': ['backward']}),
1107 1108 1109 1110 1111 1112 1113 1114 1115
    ('L2Normalize', {
        'block': P.L2Normalize(),
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[2, 2]]}),
    ('L2NormalizeGrad', {
        'block': G.L2NormalizeGrad(),
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[2, 2]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1116 1117 1118
    ('LayerNorm', {
        'block': P.LayerNorm(),
        'desc_inputs': [[2, 16], [16], [16]],
P
panyifeng 已提交
1119
        'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
Z
zhunaipan 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    ('LayerNormGrad', {
        'block': G.LayerNormGrad(),
        'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
        'desc_bprop': [[2, 16], [16], [16]],
        'skip': ['backward']}),
    ('FusedBatchNorm', {
        'block': P.FusedBatchNorm(),
        'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'skip': []}),
    ('FusedBatchNormGrad', {
        'block': G.FusedBatchNormGrad(),
        'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'skip': ['backward']}),
    ('BatchNorm', {
        'block': P.BatchNorm(),
        'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'skip': []}),
    ('BatchNormGrad', {
        'block': G.BatchNormGrad(),
高东海's avatar
高东海 已提交
1142
        'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
Z
zhunaipan 已提交
1143 1144
        'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1145 1146
    ('BasicLSTMCell', {
        'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
J
jinyaohui 已提交
1147
        'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1], [512, 1, 1, 1]],
Z
zhaozhenlong 已提交
1148 1149
        'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
        'skip': []}),
Z
zhunaipan 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    ('TopK', {
        'block': P.TopK(),
        'desc_const': [5],
        'desc_inputs': [[20, 20, 10]],
        'desc_bprop': [[20, 20, 5]],
        'skip': ['backward']}),
    ('GatherV2_0', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[2, 1, 2]]}),
    ('GatherV2_1', {
        'block': P.GatherV2(),
        'desc_const': [2],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[3, 1, 2]]}),
    ('GatherV2_2', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[3, 2, 1, 3]]}),
    ('GatherV2_3', {
        'block': P.GatherV2(),
        'desc_const': [2],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[3, 1, 3, 2]]}),
    ('GatherV2_4', {
        'block': P.GatherV2(),
        'desc_const': [1],
        'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
        'desc_bprop': [[32, 1, 1024]]}),
    ('GatherV2_5', {
        'block': P.GatherV2(),
        'desc_const': [-1],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[3, 1, 2]]}),
    ('GatherV2_6', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
        'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
Z
zhaozhenlong 已提交
1191 1192 1193 1194 1195
    ('SparseGatherV2_0', {
        'block': P.SparseGatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[2, 1, 2]]}),
L
liuxiao 已提交
1196
    ('Range', {
J
jiangjinsheng 已提交
1197
        'block': inner.Range(1.0, 5.0),
L
liuxiao 已提交
1198 1199
        'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
        'desc_bprop': [[10]]}),
Z
zhunaipan 已提交
1200 1201 1202
    ('UnsortedSegmentSum', {
        'block': P.UnsortedSegmentSum(),
        'desc_const': [1280],
1203 1204
        'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
        'desc_bprop': [[8192, 1024]],
Z
zhunaipan 已提交
1205 1206 1207 1208 1209 1210 1211
        'skip': ['backward']}),
    ('UnsortedSegmentSum_1', {
        'block': P.UnsortedSegmentSum(),
        'desc_const': [4],
        'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[4, 1, 3]],
        'skip': ['backward']}),
L
liuxiao 已提交
1212 1213 1214 1215 1216
    ('UnsortedSegmentMin', {
        'block': P.UnsortedSegmentMin(),
        'desc_const': [4],
        'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
        'desc_bprop': [[4, 2, 1, 3]]}),
Z
zhunaipan 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    ('DropoutGenMask', {
        'block': P.DropoutGenMask(),
        'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
        'desc_inputs': [],
        'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
        'skip': ['backward']}),
    ('DropoutDoMask', {
        'block': P.DropoutDoMask(),
        'desc_const': [Tensor(0.5)],
        'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
        'desc_bprop': [[64, 12, 128, 128]]}),
    ('Dropout', {
        'block': nn.Dropout(0.5),
        'desc_inputs': [[64, 12, 128, 128]],
        'desc_bprop': [[64, 12, 128, 128]]}),
    ('ReduceMean0', {
        'block': P.ReduceMean(),
        'desc_const': [(2,)],
        'desc_inputs': [[3, 2, 2]],
        'desc_bprop': [[3, 2]]}),
    ('ReduceMean1', {
        'block': P.ReduceMean(),
        'desc_const': [2],
        'desc_inputs': [[3, 2, 2]],
        'desc_bprop': [[3, 2]]}),
    ('All', {
        'block': P.ReduceAll(),
        'desc_const': [(1,)],
        'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
        'desc_bprop': [[3]],
        'skip': ['backward']}),
    ('DescConst', {
        'block': Tensor(np.array([2], np.float32)),
        'desc_inputs': [],
        'desc_bprop': [[1]],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('Fill', {
        'block': P.Fill(),
        'desc_const': [mstype.float32, (2, 3), 1.0],
        'desc_inputs': [],
        'desc_bprop': [[2, 3]],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('OnesLike', {
        'block': P.OnesLike(),
        'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
    }),
    ('ZerosLike', {
        'block': P.ZerosLike(),
        'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
    }),
    ('Softmax', {
        'block': P.Softmax(),
        'desc_inputs': [[5, 5]],
        'desc_bprop': [[5, 5]]}),
    ('DepthwiseConv2dNative_1', {
        'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
L
liuxiao 已提交
1277 1278
        'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
        'desc_bprop': [[10, 32, 16, 16]]}),
Z
zhunaipan 已提交
1279 1280 1281
    ('DepthwiseConv2dNative_2', {
        'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
        'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
L
liuxiao 已提交
1282
        'desc_bprop': [[2592, 2048, 4, 4]]}),
Z
zhunaipan 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    ('SigmoidCrossEntropyWithLogits', {
        'block': P.SigmoidCrossEntropyWithLogits(),
        'desc_inputs': [[128, 10], [128, 10]],
        'desc_bprop': [[128, 10]]}),
    ('Pad', {
        'block': P.Pad(((1, 2), (2, 3))),
        'desc_inputs': [[7, 7]],
        'desc_bprop': [[10, 12]]}),
    ('BinaryCrossEntropy', {
        'block': P.BinaryCrossEntropy(),
        'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
        'desc_bprop': []}),
    ('SparseApplyAdagrad', {
1296 1297
        'block': SparseApplyAdagradNet(),
        'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
1298
        'desc_bprop': [[3, 3], [3, 3]],
Z
zhunaipan 已提交
1299
        'skip': ['backward']}),
1300 1301 1302 1303 1304 1305
    ('SparseApplyFtrl', {
        'block': SparseApplyFtrlNet(),
        'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
        'skip': ['backward']}),
    ('ApplyProximalAdagrad', {
        'block': ApplyProximalAdagradNet(),
L
liuxiao 已提交
1306
        'desc_inputs': [[3, 3]],
1307 1308 1309
        'skip': ['backward']}),
    ('SparseApplyProximalAdagrad', {
        'block': SparseApplyProximalAdagradNet(),
L
liuxiao 已提交
1310
        'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
1311
        'skip': ['backward']}),
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    ('ApplyAdaMax', {
        'block': ApplyAdaMaxNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyAdadelta', {
        'block': ApplyAdadeltaNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyAdagrad', {
        'block': ApplyAdagradNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyAdagradV2', {
        'block': ApplyAdagradV2Net(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
L
liuxiao 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    ('ApplyAddSign', {
        'block': ApplyAddSignNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyPowerSign', {
        'block': ApplyPowerSignNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyGradientDescent', {
        'block': ApplyGradientDescentNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyProximalGradientDescent', {
        'block': ApplyProximalGradientDescentNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    ('Flatten_1', {
        'block': NetForFlatten(),
        'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
        'skip': ['backward']}),
    ('Flatten_2', {
        'block': NetForFlatten(),
        'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1354 1355 1356 1357 1358
    ('Flatten_3', {
        'block': NetForFlattenComposed(),
        'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
        'skip': []}),
Z
zhunaipan 已提交
1359 1360
    ('ArgmaxNet', {
        'block': ArgmaxNet(),
1361 1362
        'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
Z
zhunaipan 已提交
1363 1364 1365
        'skip': ['backward']}),
    ('ArgminNet', {
        'block': ArgminNet(),
1366 1367
        'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
Z
zhunaipan 已提交
1368 1369 1370 1371 1372
        'skip': ['backward']}),
    ('OneHot', {
        'block': P.OneHot(),
        'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
        'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
P
panyifeng 已提交
1373
        'desc_bprop': [[1, 3]]}),
Z
zhunaipan 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    ('ReduceProd_0', {
        'block': P.ReduceProd(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('ReduceProd_1', {
        'block': P.ReduceProd(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('CumProd', {
        'block': P.CumProd(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3, 2]]}),
    ('ApplyFtrl', {
1390 1391
        'block': ApplyFtrlNet(),
        'desc_inputs': [[3, 3]],
Z
zhunaipan 已提交
1392 1393
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
Z
zhaoting 已提交
1394
    ('ApplyRMSProp', {
Z
zhaojichen 已提交
1395 1396
        'block': ApplyRMSNet(),
        'desc_inputs': [[3, 3]],
Z
zhaoting 已提交
1397 1398 1399 1400 1401
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
    ('ApplyCenteredRMSProp', {
        'block': P.ApplyCenteredRMSProp(),
        'desc_const': [0.9, 0.0, 1e-10, 0.001],
Z
zhouneng 已提交
1402 1403 1404
        'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32),
                        Tensor(2., mstype.float32), Tensor(1., mstype.float32)],
        'desc_bprop': [1],
Z
zhaoting 已提交
1405
        'skip': ['backward']}),
L
liuxiao 已提交
1406 1407 1408 1409 1410 1411 1412
    ('CTCLoss', {
        'block': P.CTCLoss(),
        'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
                        Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
                        Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
                        Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
        'desc_bprop': [[4], [6, 4, 6]]}),
L
liuxiao 已提交
1413 1414
    ('L2Loss_1', {
        'block': P.L2Loss(),
L
liuxiao 已提交
1415
        'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
L
liuxiao 已提交
1416 1417 1418 1419 1420
        'desc_bprop': []}),
    ('L2Loss_2', {
        'block': P.L2Loss(),
        'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
        'desc_bprop': []}),
1421 1422 1423 1424 1425 1426 1427 1428 1429
    ('ResizeBilinear', {
        'block': P.ResizeBilinear((5, 5)),
        'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
        'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}),
    ('ResizeBilinearGrad', {
        'block': G.ResizeBilinearGrad(),
        'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
        'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
        'skip': ['backward']}),
1430 1431 1432
    ('ROIAlign', {
        'block': P.ROIAlign(7, 7, 0.03125, 2),
        'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
J
jinyaohui 已提交
1433
        'desc_bprop': [[7, 7]]}),
1434 1435 1436 1437 1438
    ('ROIAlignGrad', {
        'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
        'desc_inputs': [[1, 1, 2, 2], [1, 5]],
        'desc_bprop': [[1, 1, 2, 2]],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1439 1440 1441 1442 1443 1444 1445
    ('LARSUpdate', {
        'block': P.LARSUpdate(1e-05, 0.001, False),
        'desc_const': [0.0, 0.001],
        'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
    ('SGD', {
J
jinyaohui 已提交
1446
        'block': P.SGD(0.0, 0.0, False),
Z
zhaozhenlong 已提交
1447 1448 1449
        'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
    ('BinaryCrossEntropy', {
        'block': P.BinaryCrossEntropy(),
        'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
                        Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
                        Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
        'desc_bprop': []}),
    ('BinaryCrossEntropyGrad', {
        'block': G.BinaryCrossEntropyGrad(),
        'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
                        Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
                        Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
        'desc_bprop': [],
        'skip': ['backward']}),
1463 1464 1465 1466 1467
    ('DataFormatDimMap', {
        'block': P.DataFormatDimMap(),
        'desc_inputs': [Tensor([0, 1, 2, 3], mstype.int32)],
        'desc_bprop': [],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
]

test_case_array_ops = [
    ('SpaceToDepth', {
        'block': P.SpaceToDepth(2),
        'desc_inputs': [[1, 3, 2, 2]],
        'desc_bprop': [[1, 12, 1, 1]]}),
    ('DepthToSpace', {
        'block': P.DepthToSpace(2),
        'desc_inputs': [[1, 12, 1, 1]],
        'desc_bprop': [[1, 3, 2, 2]]}),
    ('Split', {
        'block': P.Split(1, 2),
        'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
        'skip': ['backward']}),
    ('Argmax', {
        'block': P.Argmax(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [0],
        'skip': ['backward']}),
    ('Argmin', {
        'block': P.Argmin(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [1],
        'skip': ['backward']}),
    ('ArgMaxWithValue', {
        'block': P.ArgMaxWithValue(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[1], [1]],
        'skip': ['backward']}),
    ('ArgMinWithValue', {
        'block': P.ArgMinWithValue(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[1], [1]],
        'skip': ['backward']}),
    ('Transpose_dim3', {
        'block': P.Transpose(),
        'desc_const': [(0, 2, 1)],
        'desc_inputs': [[1, 2, 3]],
        'desc_bprop': [[1, 3, 2]]}),
    ('Transpose_dim4', {
        'block': P.Transpose(),
        'desc_const': [(0, 1, 2, 3)],
        'desc_inputs': [[1, 2, 3, 4]],
        'desc_bprop': [[1, 2, 4, 3]]}),
    ('AddN', {
        'block': NetForTupleInput(P.AddN()),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
Z
zhangz0911gm 已提交
1518 1519 1520 1521 1522
    ('AccumulateNV2', {
        'block': NetForTupleInput(P.AccumulateNV2()),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    ('Shape', {
        'block': P.Shape(),
        'desc_inputs': [[3, 3, 2, 2]],
        'skip': ['backward']}),
    ('Reshape', {
        'block': P.Reshape(),
        'desc_const': [(64,)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64]]}),
    ('Cast', {
        'block': P.Cast(),
        'desc_const': [mstype.int32],
        'desc_inputs': [[2, 3, 4, 5]],
P
panyifeng 已提交
1536
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
Z
zhunaipan 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    ('ExpandDims', {
        'block': P.ExpandDims(),
        'desc_const': [0],
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[1, 2, 2]]}),
    ('ExpandDims_1', {
        'block': P.ExpandDims(),
        'desc_const': [-1],
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[2, 2, 1]]}),
    ('Squeeze', {
        'block': P.Squeeze(2),
        'desc_inputs': [[3, 2, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Squeeze_0', {
        'block': P.Squeeze(),
        'desc_inputs': [[3, 1, 2, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Squeeze_1', {
        'block': P.Squeeze(),
        'desc_inputs': [[1, 1, 1, 1]],
        'desc_bprop': [1.0],
        'skip': ['backward']}),
    ('Squeeze_2', {
        'block': P.Squeeze((2, 3)),
        'desc_inputs': [[3, 2, 1, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Size', {
        'block': P.Size(),
        'desc_inputs': [[2, 3, 5]],
        'skip': ['backward']}),
    ('Tile_0', {
        'block': P.Tile(),
        'desc_const': [(1, 2)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64, 2]]}),
    ('Tile_1', {
        'block': P.Tile(),
        'desc_const': [(1, 1)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64, 1]]}),
    ('Tile_2', {
        'block': P.Tile(),
        'desc_const': [(2, 1, 1, 2)],
        'desc_inputs': [[2, 2, 2]],
        'desc_bprop': [[2, 2, 2, 4]]}),
    ('ConcatV2_0', {
        'block': P.Concat(),
        'desc_inputs': [
            (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
             Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
P
panyifeng 已提交
1588
        'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
Z
zhunaipan 已提交
1589 1590 1591 1592
    ('ConcatV2_1', {
        'block': P.Concat(axis=2),
        'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
                         Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
P
panyifeng 已提交
1593
        'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
Z
zhunaipan 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    ('ConcatV2_2', {
        'block': NetForConcat(),
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[4, 2]]}),
    ('ConcatV2_3', {
        'block': NetForConcat1(),
        'desc_inputs': [[2, 2], [2, 2]],
        'desc_bprop': [[4, 2]]}),
    ('ConcatV2_4', {
        'block': P.Concat(axis=0),
        'desc_inputs': [
            (Tensor(np.ones((3, 2, 3), np.float32)),
             Tensor(np.ones((5, 2, 3), np.float32)),
             Tensor(np.ones((6, 2, 3), np.float32)))],
        'desc_bprop': [[14, 2, 3]]}),
    ('ConcatV2_5', {
        'block': P.Concat(axis=-1),
        'desc_inputs': [(Tensor(np.array([1], np.float32)),
                         Tensor(np.array([1], np.float32)),
                         Tensor(np.array([1], np.float32)))],
J
jiangjinsheng 已提交
1614
        'desc_bprop': [[3, ]]}),
1615 1616
    ('Pack_0', {
        'block': NetForPackInput(P.Pack()),
1617 1618
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[3, 2, 2]],
L
liuxiao 已提交
1619
    }),
1620 1621
    ('Pack_1', {
        'block': NetForPackInput(P.Pack(axis=-2)),
1622 1623
        'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
        'desc_bprop': [[3, 2, 3, 3]],
L
liuxiao 已提交
1624
    }),
1625 1626
    ('Pack_2', {
        'block': NetForPackInput(P.Pack()),
1627 1628
        'desc_inputs': [[128, 128], [128, 128]],
        'desc_bprop': [[2, 128, 128]],
L
liuxiao 已提交
1629
    }),
1630 1631
    ('Unpack_0', {
        'block': NetForUnpackInput(P.Unpack(axis=0)),
1632 1633
        'desc_inputs': [[2, 4]],
        'desc_bprop': [[4], [4]],
L
liuxiao 已提交
1634
    }),
1635 1636
    ('Unpack_1', {
        'block': NetForUnpackInput(P.Unpack(axis=-1)),
1637 1638
        'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
        'desc_bprop': [[1], [1], [1]],
L
liuxiao 已提交
1639
    }),
1640
    ('Diag_1', {
Z
zhaozhenlong 已提交
1641 1642 1643 1644
        'block': P.Diag(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4, 4]],
    }),
1645 1646 1647 1648 1649 1650
    ('Diag_2', {
        'block': P.Diag(),
        'desc_inputs': [[4, 4]],
        'desc_bprop': [[4, 4, 4, 4]],
    }),
    ('DiagPart_1', {
Z
zhaozhenlong 已提交
1651 1652 1653 1654
        'block': P.DiagPart(),
        'desc_inputs': [[4, 4]],
        'desc_bprop': [[4]],
    }),
1655 1656 1657 1658 1659
    ('DiagPart_2', {
        'block': P.DiagPart(),
        'desc_inputs': [[4, 4, 4, 4]],
        'desc_bprop': [[4, 4]],
    }),
1660 1661 1662 1663 1664 1665 1666 1667
    ('SpaceToBatch_1', {
        'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
        'desc_inputs': [[1, 3, 2, 2]],
        'desc_bprop': [[4, 3, 1, 1]],
    }),
    ('SpaceToBatch_2', {
        'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
        'desc_inputs': [[1, 3, 2, 2]],
P
panyifeng 已提交
1668
        'desc_bprop': [[4, 3, 2, 3]],
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    }),
    ('BatchToSpace_1', {
        'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
        'desc_inputs': [[4, 3, 1, 1]],
        'desc_bprop': [[1, 3, 2, 2]],
    }),
    ('BatchToSpace_2', {
        'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
        'desc_inputs': [[4, 3, 1, 1]],
        'desc_bprop': [[1, 3, 2, 1]],
    }),
L
lihongkang 已提交
1680 1681 1682 1683 1684 1685
    ('UnsortedSegmentMin_1', {
        'block': P.UnsortedSegmentMin(),
        'desc_const': [2],
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)),
                        Tensor(np.array([0, 1, 1]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
Z
zhaozhenlong 已提交
1686
    ('BroadcastTo', {
J
jiangjinsheng 已提交
1687
        'block': P.BroadcastTo((2, 3)),
Z
zhaozhenlong 已提交
1688 1689
        'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
        'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
    ('InTopK', {
        'block': P.InTopK(2),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [2, 3, 6], [4, 2, 1]]).astype(np.float32)),
                        Tensor(np.array([2, 1, 2]).astype(np.int32))],
        'skip': ['backward'],
    }),
    ('InplaceUpdate', {
        'block': P.InplaceUpdate((0, 2)),
        'desc_inputs': [Tensor(np.arange(24).reshape(3, 4, 2).astype(np.float32)),
                        Tensor(np.arange(16).reshape(2, 4, 2).astype(np.float32))],
        'skip': ['backward'],
    }),
1702 1703 1704 1705 1706
    ('ReverseSequence', {
        'block': P.ReverseSequence(1, 0),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32)),
                        Tensor(np.array([1, 2, 3]).astype(np.int32))],
        'desc_bprop': [[3, 3]]}),
J
jiangjinsheng 已提交
1707 1708 1709 1710 1711 1712 1713 1714
    ('LinSpace', {
        'block': inner.LinSpace(),
        'desc_inputs': [Tensor([5, 5.5], mstype.float32),
                        Tensor(1, mstype.float32),
                        Tensor(10, mstype.float32),
                        Tensor(5, mstype.int32)],
        'skip': ['backward'],
    }),
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
    ('MatrixDiag', {
        'block': inner.MatrixDiag(),
        'desc_inputs': [Tensor(np.array([1, -1]), mstype.float32),
                        Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
        'skip': ['backward'],
    }),
    ('MatrixDiagPart', {
        'block': inner.MatrixDiagPart(),
        'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32),
                        Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
        'skip': ['backward'],
    }),
    ('MatrixSetDiag', {
        'block': inner.MatrixSetDiag(),
        'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32),
                        Tensor(np.arange(6).reshape(3, 2), mstype.float32),
                        Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
        'skip': ['backward'],
    }),
Z
zhunaipan 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
]

test_case_other_ops = [
    ('ScalarLog', {
        'block': F.scalar_log,
        'desc_const': [0.0],
        'desc_inputs': [],
        'desc_bprop': [1],
        'skip': ['backward']}),
    ('BoundingBoxEncode', {
        'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]],
        'skip': ['backward']}),
    ('BoundingBoxDecode', {
        'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]],
        'skip': ['backward']}),
    ('GatherNd', {
        'block': P.GatherNd(),
        'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
                        Tensor(np.ones((2, 4), np.int32))),
        'desc_bprop': [[2]]}),
    ('ScatterNd', {
        'block': P.ScatterNd(),
        'desc_const': [(3, 3)],
        'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
                        Tensor(np.ones((2,), np.int32))),
P
panyifeng 已提交
1763
        'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
1764 1765 1766 1767 1768 1769
    ('TensorScatterUpdate', {
        'block': P.TensorScatterUpdate(),
        'desc_inputs': (Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)),  mstype.float32),
                        Tensor(np.array([[0, 1], [1, 2]], np.int32)),
                        Tensor(np.ones([2, 5], np.float32) * 99)),
        'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}),
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    ('ScatterMaxUseLocking', {
        'block': ScatterMax(use_locking=True),
        'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
                        Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))),
        'skip': ['backward']}),
    ('ScatterMax1d', {
        'block': ScatterMax(),
        'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
                        Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))),
        'skip': ['backward']}),
    ('ScatterMaxF32', {
1781 1782 1783 1784
        'block': ScatterMax(),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.float32) * 99)),
        'skip': ['backward']}),
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    ('ScatterMaxF16', {
        'block': ScatterMax(np.float16),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.float16) * 99)),
        'skip': ['backward']}),
    ('ScatterMaxI32', {
        'block': ScatterMax(np.int32),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.int32) * 99)),
        'skip': ['backward']}),
    ('ScatterMinUseLocking', {
        'block': ScatterMin(use_locking=True),
        'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
                        Tensor(np.ones([2, 3], np.float32))),
        'skip': ['backward']}),
    ('ScatterMin1d', {
        'block': ScatterMin(),
        'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
                        Tensor(np.ones([2, 3], np.float32))),
        'skip': ['backward']}),
    ('ScatterMinF32', {
        'block': ScatterMin(),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.float32))),
        'skip': ['backward']}),
    ('ScatterMinF16', {
        'block': ScatterMin(np.float16),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.float16))),
        'skip': ['backward']}),
    ('ScatterMinI32', {
        'block': ScatterMin(np.int32),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.int32))),
        'skip': ['backward']}),
    ('ScatterAddUseLocking', {
        'block': ScatterAdd((6,), use_locking=True),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1825 1826 1827 1828 1829
    ('ScatterAdd', {
        'block': ScatterAdd((6,)),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
        'skip': ['backward']}),
1830 1831 1832 1833 1834
    ('ScatterAddScalar', {
        'block': ScatterAdd((6,)),
        'desc_inputs': (Tensor(np.array([2], np.int32)),
                        Tensor(np.array([2.0], np.float32))),
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1835 1836 1837 1838 1839 1840
    ('ScatterAdd2d', {
        'block': ScatterAdd((3, 4)),
        'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
                        Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
                                         [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
        'skip': ['backward']}),
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    ('ScatterAddF16', {
        'block': ScatterAdd((6,), np.float16),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
        'skip': ['backward']}),
    ('ScatterAddI8', {
        'block': ScatterAdd((6,), np.int8),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2, 3, 4], np.int8))),
        'skip': ['backward']}),
    ('ScatterAddI32', {
        'block': ScatterAdd((6,), np.int32),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2, 3, 4], np.int32))),
        'skip': ['backward']}),
    ('ScatterAddU8', {
        'block': ScatterAdd((6,), np.uint8),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2, 3, 4], np.uint8))),
        'skip': ['backward']}),
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
    ('ScatterSubUseLocking', {
        'block': ScatterSub((6,), use_locking=True),
        'desc_inputs': (Tensor(np.array([2], np.int32)),
                        Tensor(np.array([2.0], np.float32))),
        'skip': ['backward']}),
    ('ScatterSubScalar', {
        'block': ScatterSub((6,)),
        'desc_inputs': (Tensor(np.array([2], np.int32)),
                        Tensor(np.array([2.0], np.float32))),
        'skip': ['backward']}),
    ('ScatterSub2d', {
        'block': ScatterSub((3, 4)),
        'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
                        Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
                                         [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
        'skip': ['backward']}),
    ('ScatterSubF16', {
        'block': ScatterSub((6,), np.float16),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
        'skip': ['backward']}),
    ('ScatterSubI32', {
        'block': ScatterSub((6,), np.int32),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2, 3, 4], np.int32))),
        'skip': ['backward']}),
    ('ScatterSubI8', {
        'block': ScatterSub((6,), np.int8),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2, 3, 4], np.int8))),
        'skip': ['backward']}),
    ('ScatterSubU8', {
        'block': ScatterSub((6,), np.uint8),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([1, 1, 0], np.uint8))),
        'skip': ['backward']}),
Z
zhunaipan 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    ('SmoothL1Loss', {
        'block': P.SmoothL1Loss(),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]]}),
    ('IOU', {
        'block': P.IOU(),
        'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
        'desc_bprop': [[128, 256]]}),
    ('Summary', {
        'block': SummaryNet(),
        'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
                        Tensor(np.array([1.2]).astype(np.float32))],
        'skip': ['backward']}),
1910
    ('ConfusionMulGrad_1', {
1911
        'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
1912 1913 1914 1915
        'desc_inputs': [[3, 2], [3, 2], [3, 2]],
        'desc_bprop': [[3, 2], [2]],
        'skip': ['backward']}),
    ('ConfusionMulGrad_2', {
1916
        'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
1917 1918 1919 1920
        'desc_inputs': [[3, 2], [3, 2], [3, 2]],
        'desc_bprop': [[3, 2], [1, 2]],
        'skip': ['backward']}),
    ('ConfusionMulGrad_3', {
1921
        'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
1922 1923 1924
        'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
        'desc_bprop': [[2, 3, 4], [1, 1, 1]],
        'skip': ['backward']}),
O
ougongchang 已提交
1925 1926 1927 1928 1929
    ('HistogramSummary', {
        'block': HistogramSummaryNet(),
        'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
                        Tensor(np.array([1.2]).astype(np.float32))],
        'skip': ['backward']}),
1930

Z
zhunaipan 已提交
1931 1932
]

Z
zhaozhenlong 已提交
1933 1934 1935

test_case_quant_ops = [
    ('AscendQuant_1', {
1936
        'block': inner.AscendQuant(0.5, 0.0, False, "Round"),
Z
zhaozhenlong 已提交
1937 1938 1939
        'desc_inputs': [Tensor(np.random.rand(1,2,4,4), mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_2', {
1940
        'block': inner.AscendQuant(80.0, 10.0, True, "Round"),
Z
zhaozhenlong 已提交
1941 1942 1943
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_3', {
1944
        'block': inner.AscendQuant(80.0, 0.0, False, "Floor"),
Z
zhaozhenlong 已提交
1945 1946 1947
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_4', {
1948
        'block': inner.AscendQuant(80.0, 0.0, False, "Ceil"),
Z
zhaozhenlong 已提交
1949 1950 1951
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_5', {
1952
        'block': inner.AscendQuant(80.0, 0.0, False, "Trunc"),
Z
zhaozhenlong 已提交
1953 1954 1955
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_6', {
1956
        'block': inner.AscendQuant(-80.0, 10.0, False, "Round"),
Z
zhaozhenlong 已提交
1957 1958 1959
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_7', {
1960
        'block': inner.AscendQuant(80.0, -10.0, False, "Round"),
Z
zhaozhenlong 已提交
1961 1962 1963
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_8', {
1964
        'block': inner.AscendQuant(80.0, 10.0, False, "Round"),
Z
zhaozhenlong 已提交
1965 1966 1967 1968 1969
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float16)],
        'skip': ['backward']}),
]

test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops, test_case_quant_ops]
Z
zhunaipan 已提交
1970 1971 1972 1973 1974 1975 1976
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm


test_exec_case = test_case

J
jinyaohui 已提交
1977
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
Z
zhunaipan 已提交
1978 1979 1980 1981 1982


@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
1983
    context.set_context(mode=context.GRAPH_MODE)
Z
zhunaipan 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    return test_exec_case


@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
def test_backward_exec():
    context.set_context(mode=context.GRAPH_MODE)
    return test_backward_exec_case


raise_set = [
    ('Cast_Error', {
        'block': (P.Cast(), {'exception': TypeError}),
        'desc_const': [mstype.int32],
        'desc_inputs': ['wrong input'],
        'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
    ('Maximum_Error', {
        'block': (P.Maximum(), {'exception': TypeError}),
        'desc_const': [(1, 2, 3)],
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Shape_error', {
        'block': (P.Shape(), {'exception': TypeError}),
        'desc_inputs': [(64, 1)],
        'desc_bprop': [[64]]}),
    ('Flatten_Error', {
        'block': (NetForFlatten0D(), {'exception': ValueError}),
        'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
        'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
2012 2013 2014
    ('ScatterNdUpdate', {
        'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
        'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
B
buxue 已提交
2015
                        Tensor(np.ones((2, 2), np.float32)),
2016 2017
                        Tensor(np.ones((2,), np.float32))),
        'desc_bprop': [[2, 3]]}),
2018 2019
    ('Pack', {
        'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
2020 2021
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[1, 2, 2]]}),
2022 2023
    ('PReLU', {
        'block': (P.PReLU(), {'exception': ValueError}),
2024 2025
        'desc_inputs': [[2], [1]],
        'desc_bprop': [[1]]}),
Z
zhaozhenlong 已提交
2026 2027 2028 2029
    ('SSIM', {
        'block': (nn.SSIM(), {'exception': ValueError}),
        'desc_inputs': [Tensor(np.ones((1, 3, 8, 8)), mstype.float32),
                        Tensor(np.ones((1, 3, 8, 8)), mstype.float32)]}),
2030

Z
zhunaipan 已提交
2031 2032 2033 2034 2035 2036
]


@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception():
    return raise_set