test_ops.py 63.6 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ops """
import functools
J
jinyaohui 已提交
17

Z
zhunaipan 已提交
18
import numpy as np
J
jinyaohui 已提交
19 20 21 22

import mindspore.nn as nn
import mindspore.ops.composite as C
from mindspore import Tensor
23
from mindspore import ops, Parameter, context
J
jinyaohui 已提交
24
from mindspore.common import dtype as mstype
Z
zhunaipan 已提交
25 26 27
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
J
jiangjinsheng 已提交
28
from mindspore.ops.operations import _inner_ops as inner
Z
zhunaipan 已提交
29 30
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
31
from ....mindspore_test_framework.pipeline.forward.compile_forward \
Z
zhunaipan 已提交
32 33
    import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
            pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
34
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
Z
zhunaipan 已提交
35 36 37
    import pipeline_for_compile_grad_ge_graph_for_case_by_case_config


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def test_tensor_scatter_update():
    class TensorScatterUpdateNet(nn.Cell):
        """TensorScatterUpdate net definition"""

        def __init__(self):
            super(TensorScatterUpdateNet, self).__init__()
            self.tensor_scatter_update = P.TensorScatterUpdate()

        def construct(self, x, i, u):
            out = self.tensor_scatter_update(x, i, u)
            return out
    net = TensorScatterUpdateNet()
    context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
    x = Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)),  mstype.float32)
    indices = Tensor(np.array([[0, 0], [1, 1]], np.int32))
    updates = Tensor(np.ones([2, 5], np.float32))
    net(x, indices, updates)


Z
zhunaipan 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class InputBackward(nn.Cell):
    def __init__(self, network):
        super(InputBackward, self).__init__()
        self.network = network
        self.network.set_train()
        self.grad = C.grad_all_with_sens

    def construct(self, x1, x2, x3, sens):
        return self.grad(self.network)(x1, x2, x3, sens)


class NetForTupleInput(nn.Cell):
    def __init__(self, op):
        super(NetForTupleInput, self).__init__()
        self.op = op

    def construct(self, x1, x2):
        return self.op((x1, x2))


class StridedSlicessdNet(nn.Cell):
    def __init__(self):
        super(StridedSlicessdNet, self).__init__()
        self.rank = P.Rank()

    def construct(self, x1):
        return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))


class NetForConcat(nn.Cell):
    def __init__(self):
        super(NetForConcat, self).__init__()
        self.concat = P.Concat()

    def construct(self, x1):
        return self.concat((x1, x1))


class NetForConcat1(nn.Cell):
    def __init__(self):
        super(NetForConcat1, self).__init__()
        self.concat = P.Concat()

    def construct(self, x1, x2):
        return self.concat((x1, x2))


104
class NetForPackInput(nn.Cell):
L
liuxiao 已提交
105
    def __init__(self, op):
106
        super(NetForPackInput, self).__init__()
L
liuxiao 已提交
107 108 109 110 111
        self.op = op
        self.mul = P.Mul()

    def construct(self, *args):
        t = ()
112 113
        for element in args:
            t = t + (self.mul(element, element),)
L
liuxiao 已提交
114 115 116
        return self.op(t)


117
class NetForUnpackInput(nn.Cell):
L
liuxiao 已提交
118
    def __init__(self, op):
119
        super(NetForUnpackInput, self).__init__()
L
liuxiao 已提交
120 121 122 123 124 125 126
        self.op = op
        self.mul = P.Mul()

    def construct(self, x1):
        return self.op((self.mul(x1, x1)))


Z
zhunaipan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class NetForFlatten(nn.Cell):
    def __init__(self):
        super(NetForFlatten, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x, y):
        return self.flatten(x) + y


class NetForFlatten0D(nn.Cell):
    def __init__(self):
        super(NetForFlatten0D, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x):
        return self.flatten(x)


Z
zhaozhenlong 已提交
145 146 147 148 149 150 151
class NetForFlattenComposed(nn.Cell):
    # make flatten op together with other ops for testing flatten grad
    def __init__(self):
        super(NetForFlattenComposed, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x, y):
L
lihongkang 已提交
152
        return self.flatten(x + x) + y
Z
zhaozhenlong 已提交
153 154


Z
zhunaipan 已提交
155 156 157 158 159
class ArgmaxNet(nn.Cell):
    def __init__(self):
        super(ArgmaxNet, self).__init__()
        self.argmax = P.Argmax(axis=1)

160 161
    def construct(self, input_):
        return self.argmax(input_)
Z
zhunaipan 已提交
162 163 164 165 166 167 168


class ArgminNet(nn.Cell):
    def __init__(self):
        super(ArgminNet, self).__init__()
        self.argmin = P.Argmin(axis=1)

169 170
    def construct(self, input_):
        return self.argmin(input_)
Z
zhunaipan 已提交
171 172 173 174 175 176 177 178


class CumSumNet(nn.Cell):
    def __init__(self):
        super(CumSumNet, self).__init__()
        self.cumsum = P.CumSum()
        self.axis = 1

179 180
    def construct(self, input_):
        return self.cumsum(input_, self.axis)
Z
zhunaipan 已提交
181 182 183


class SummaryNet(nn.Cell):
184
    def __init__(self):
Z
zhunaipan 已提交
185 186 187 188 189 190 191 192 193
        super(SummaryNet, self).__init__()
        self.s = P.ScalarSummary()
        self.add = P.TensorAdd()

    def construct(self, x, y):
        self.s("x1", x)
        return self.add(x, y)


O
ougongchang 已提交
194
class HistogramSummaryNet(nn.Cell):
195
    def __init__(self):
O
ougongchang 已提交
196 197 198 199 200 201 202 203 204 205 206
        super(HistogramSummaryNet, self).__init__()
        self.summary = P.HistogramSummary()
        self.add = P.TensorAdd()

    def construct(self, x, y):
        out = self.add(x, y)
        string_in = "out"
        self.summary(string_in, out)
        return out


207 208 209 210 211 212 213 214 215 216 217 218
class ScatterMax(nn.Cell):
    """ScatterMax net definition"""

    def __init__(self):
        super(ScatterMax, self).__init__()
        self.scatter_max = P.ScatterMax()
        self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")

    def construct(self, indices, updates):
        out = self.scatter_max(self.ref, indices, updates)
        return out

J
jinyaohui 已提交
219

Z
zhaozhenlong 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232
class ScatterAdd(nn.Cell):
    """ScatterAdd net definition"""

    def __init__(self, ref_shape):
        super(ScatterAdd, self).__init__()
        self.scatter_add = P.ScatterAdd()
        self.ref = Parameter(Tensor(np.ones(ref_shape, np.float32)), name="ref")

    def construct(self, indices, updates):
        out = self.scatter_add(self.ref, indices, updates)
        return out


233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
class ApplyFtrlNet(nn.Cell):
    def __init__(self):
        super(ApplyFtrlNet, self).__init__()
        self.apply_ftrl = P.ApplyFtrl()
        self.lr = 0.001
        self.l1 = 0.0
        self.l2 = 0.0
        self.lr_power = -0.5
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")

    def construct(self, grad):
        out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
        return out

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

class SparseApplyFtrlNet(nn.Cell):
    def __init__(self):
        super(SparseApplyFtrlNet, self).__init__()
        self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")

    def construct(self, grad, indices):
        out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
        return out


class SparseApplyProximalAdagradNet(nn.Cell):
    def __init__(self):
        super(SparseApplyProximalAdagradNet, self).__init__()
        self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
L
liuxiao 已提交
267 268
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
269 270 271 272
        self.lr = 0.01
        self.l1 = 0.0
        self.l2 = 0.0

L
liuxiao 已提交
273 274
    def construct(self, grad, indices):
        out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
275 276 277 278 279 280 281
        return out


class ApplyProximalAdagradNet(nn.Cell):
    def __init__(self):
        super(ApplyProximalAdagradNet, self).__init__()
        self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
L
liuxiao 已提交
282 283
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
284 285 286 287
        self.lr = 0.01
        self.l1 = 0.0
        self.l2 = 0.0

L
liuxiao 已提交
288 289
    def construct(self, grad):
        out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
290 291 292
        return out


293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
class ApplyAdaMaxNet(nn.Cell):
    def __init__(self):
        super(ApplyAdaMaxNet, self).__init__()
        self.apply_ada_max = P.ApplyAdaMax()
        self.beta1_power = 0.9
        self.lr = 0.001
        self.beta1 = 0.9
        self.beta2 = 0.99
        self.epsilon = 1e-10
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
        self.v = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="v")

    def construct(self, grad):
        out = self.apply_ada_max(self.var, self.m, self.v, self.beta1_power, self.lr,
                                 self.beta1, self.beta2, self.epsilon, grad)
        return out


class ApplyAdadeltaNet(nn.Cell):
    def __init__(self):
        super(ApplyAdadeltaNet, self).__init__()
        self.apply_adadelta = P.ApplyAdadelta()
        self.lr = 0.001
        self.rho = 0.0
        self.epsilon = 1e-6
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.accum_update = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum_update")

    def construct(self, grad):
        out = self.apply_adadelta(self.var, self.accum, self.accum_update, self.lr, self.rho, self.epsilon, grad)
        return out


class ApplyAdagradNet(nn.Cell):
    def __init__(self):
        super(ApplyAdagradNet, self).__init__()
        self.apply_adagrad = P.ApplyAdagrad()
        self.lr = 0.001
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")

    def construct(self, grad):
        out = self.apply_adagrad(self.var, self.accum, self.lr, grad)
        return out


class ApplyAdagradV2Net(nn.Cell):
    def __init__(self):
        super(ApplyAdagradV2Net, self).__init__()
        self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6)
        self.lr = 0.001
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")

    def construct(self, grad):
        out = self.apply_adagrad_v2(self.var, self.accum, self.lr, grad)
        return out


Z
zhaojichen 已提交
354 355 356 357 358 359
class ApplyRMSNet(nn.Cell):
    def __init__(self):
        super(ApplyRMSNet, self).__init__()
        self.apply_rms = P.ApplyRMSProp()
        self.lr = 0.001
        self.rho = 0.0
360
        self.momentum = 0.0
Z
zhaojichen 已提交
361 362 363 364 365 366 367 368
        self.epsilon = 1e-10
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
        self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")

    def construct(self, grad):
        out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
        return out
369

L
lihongkang 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
class InplaceAddNet(nn.Cell):
    def __init__(self):
        super(InplaceAddNet, self).__init__()
        self.inplace_add = P.InplaceAdd(indices=(0, 1))

    def construct(self, x, v):
        out = self.inplace_add(x, v)
        return out


class InplaceSubNet(nn.Cell):
    def __init__(self):
        super(InplaceSubNet, self).__init__()
        self.inplace_sub = P.InplaceSub(indices=(0, 1))

    def construct(self, x, v):
        out = self.inplace_sub(x, v)
        return out


Z
zhunaipan 已提交
391
test_case_math_ops = [
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    ('BitwiseAnd', {
        'block': P.BitwiseAnd(),
        'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
                        Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseAnd_1', {
        'block': P.BitwiseAnd(),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
                        Tensor(np.array([1, 1, 1]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseOr', {
        'block': P.BitwiseOr(),
        'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
                        Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseOr_1', {
        'block': P.BitwiseOr(),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
                        Tensor(np.array([1, 1, 1]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseXor', {
        'block': P.BitwiseXor(),
        'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
                        Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
        'skip': ['backward']}),
    ('BitwiseXor_1', {
        'block': P.BitwiseXor(),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
                        Tensor(np.array([1, 1, 1]), mstype.int16)],
        'skip': ['backward']}),
Z
zhunaipan 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    ('Neg', {
        'block': P.Neg(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('Sub', {
        'block': P.Sub(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('TensorAdd', {
        'block': P.TensorAdd(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul0', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul1', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul2', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Mul3', {
        'block': P.Mul(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Mul4', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add0', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Add1', {
        'block': P.TensorAdd(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add2', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add3', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add4', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Minimum', {
        'block': P.Minimum(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
485
    ('Pow_0', {
Z
zhunaipan 已提交
486 487 488 489
        'block': P.Pow(),
        'desc_const': [2.0],
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
490 491 492 493
    ('Pow_1', {
        'block': P.Pow(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
Z
zhunaipan 已提交
494 495 496 497
    ('Exp', {
        'block': P.Exp(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
Z
zhouneng 已提交
498 499 500 501
    ('Expm1', {
        'block': P.Expm1(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
liuxiao 已提交
502 503 504 505
    ('Erf', {
        'block': P.Erf(),
        'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
Z
zhunaipan 已提交
506 507 508
    ('Floor', {
        'block': P.Floor(),
        'desc_inputs': [[2, 512, 56, 56]],
509 510 511 512 513
        'desc_bprop': [[2, 512, 56, 56]],
        'skip': ['backward']}),
    ('Ceil', {
        'block': P.Ceil(),
        'desc_inputs': [[2, 512, 56, 56]],
Z
zhunaipan 已提交
514 515
        'desc_bprop': [[2, 512, 56, 56]],
        'skip': ['backward']}),
516 517 518 519 520 521 522 523 524 525
    ('InplaceAdd', {
        'block': InplaceAddNet(),
        'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
                        Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
        'skip': ['backward']}),
    ('InplaceSub', {
        'block': InplaceSubNet(),
        'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
                        Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
        'skip': ['backward']}),
Z
zhunaipan 已提交
526 527
    ('ACos', {
        'block': P.ACos(),
Z
zhouneng 已提交
528 529 530 531 532 533
        'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
        'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
    ('ACosGrad', {
        'block': G.ACosGrad(),
        'desc_inputs': [[2, 3], [2, 3]],
        'skip': ['backward']}),
Z
zhangz0911gm 已提交
534 535
    ('Acosh', {
        'block': P.Acosh(),
Z
zhouneng 已提交
536 537 538 539 540 541
        'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
        'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
    ('AcoshGrad', {
        'block': G.AcoshGrad(),
        'desc_inputs': [[2, 3], [2, 3]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
542 543 544 545
    ('Sin', {
        'block': P.Sin(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
546 547 548 549 550 551 552 553
    ('Asin', {
        'block': P.Asin(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('Asinh', {
        'block': P.Asinh(),
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
Z
zhunaipan 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    ('Reciprocal', {
        'block': P.Reciprocal(),
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Minimum_0', {
        'block': P.Minimum(),
        'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Maximum', {
        'block': P.Maximum(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Maximum_0', {
        'block': P.Maximum(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('MaximumGrad', {
        'block': G.MaximumGrad(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
        'skip': ['backward']}),
    ('MinimumGrad', {
        'block': G.MinimumGrad(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
        'skip': ['backward']}),
    ('StridedSlice', {
        'block': P.StridedSlice(),
        'desc_const': [(0, 1, 2, 1),
581 582
                       (2, 3, 3, 4),
                       (1, 1, 1, 1)],
Z
zhunaipan 已提交
583 584 585 586 587
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 2, 1, 3]]}),
    ('Slice_1', {
        'block': P.Slice(),
        'desc_const': [(0, 1, 2, 1),
588
                       (1, 1, 1, 2)],
Z
zhunaipan 已提交
589 590 591 592 593
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[1, 1, 1, 2]]}),
    ('StridedSliceGrad', {
        'block': G.StridedSliceGrad(),
        'desc_const': [(64, 1, 1024),
594 595 596
                       (0, 1, 0),
                       (64, 2, 1024),
                       (1, 1, 1)],
Z
zhunaipan 已提交
597 598 599 600 601
        'desc_inputs': [[64, 128, 1024]],
        'skip': ['backward']}),
    ('RandomChoiceWithMask', {
        'block': P.RandomChoiceWithMask(256),
        'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
602
        'desc_bprop': [[256, 4], [256, 4]],
Z
zhunaipan 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        'skip': ['backward']}),
    ('LessEqual', {
        'block': P.LessEqual(),
        'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
                        Tensor(np.random.rand(4).astype(np.float16))],
        'skip': ['backward']}),
    ('Less', {
        'block': P.Less(),
        'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
        'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
        'skip': ['backward']}),
    ('RealDiv_0', {
        'block': P.RealDiv(),
        'desc_const': [Tensor(2048.0), Tensor(0.0)],
        'desc_inputs': [],
        'skip': ['backward']}),
    ('RealDiv', {
        'block': P.RealDiv(),
        'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
        'desc_bprop': [[4]]}),
    ('RealDiv_1', {
        'block': P.RealDiv(),
        'desc_inputs': [[512, 1024], [512, 1024]],
        'desc_bprop': [[512, 1024]]}),
    ('FloorDiv', {
        'block': P.FloorDiv(),
        'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
                        Tensor(np.random.rand(4).astype(np.float16))],
        'skip': ['backward']}),
Z
zhangz0911gm 已提交
632 633
    ('FloorMod', {
        'block': P.FloorMod(),
B
buxue 已提交
634 635
        'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
Z
zhunaipan 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    ('identity', {
        'block': ops.functional.identity,
        'desc_inputs': [[2, 2]],
        'skip': ['backward']}),
    ('MatMul_1', {
        'block': P.MatMul(transpose_a=False, transpose_b=False),
        'desc_inputs': [[1024, 160], [160, 1024]],
        'desc_bprop': [[1024, 1024]]}),
    ('MatMul_2', {
        'block': P.MatMul(transpose_a=True, transpose_b=True),
        'desc_inputs': [[160, 1024], [1024, 160]],
        'desc_bprop': [[1024, 1024]]}),
    ('Sub', {
        'block': P.Sub(),
        'desc_inputs': [[3], [3]],
        'desc_bprop': [[3]]}),
    ('TruncatedNormal', {
        'block': P.TruncatedNormal(),
654
        'desc_const': [(1, 2, 3)],
Z
zhunaipan 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        'desc_inputs': [],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('Select', {
        'block': P.Select(),
        'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
                        [2, 3], [2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('Rank', {
        'block': P.Rank(),
        'desc_inputs': [[2, 3]],
        'skip': ['backward']}),
    ('InvertPermutation', {
        'block': P.InvertPermutation(),
        'desc_const': [(0, 3, 1, 2)],
        'desc_inputs': [],
        'skip': ['backward']}),
    ('Square', {
        'block': P.Square(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('Rsqrt', {
        'block': P.Rsqrt(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('Sqrt', {
        'block': P.Sqrt(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('RealDiv', {
        'block': P.RealDiv(),
        'desc_inputs': [[4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
    ('Div', {
        'block': P.Div(),
        'desc_inputs': [[4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
    ('Equal', {
        'block': P.Equal(),
        'desc_inputs': [[3, 4, 5], [4, 5]],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
    ('NotEqual', {
        'block': P.NotEqual(),
        'desc_inputs': [[4, 1], [2, 3, 4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
C
candanzg 已提交
700 701
    ('NotEqual_0', {
        'block': P.NotEqual(),
702
        'desc_inputs': [1, [2, 3, 4, 5]],
C
candanzg 已提交
703 704
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
        'skip': ['backward']}),
705 706 707 708
    ('ApproximateEqual', {
        'block': P.ApproximateEqual(),
        'desc_inputs': [[3, 4, 5], [3, 4, 5]],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
Z
zhunaipan 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721
    ('Greater', {
        'block': P.Greater(),
        'desc_inputs': [[2, 3, 4, 1], [4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
    ('GreaterEqual', {
        'block': P.GreaterEqual(),
        'desc_inputs': [[2, 3, 4, 1], [4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
    ('LogicalNot', {
        'block': P.LogicalNot(),
        'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
        'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
    ('LogicalAnd', {
722 723 724
        'block': P.LogicalAnd(),
        'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
        'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
Z
zhunaipan 已提交
725
    ('LogicalOr', {
726 727 728
        'block': P.LogicalOr(),
        'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
Z
zhunaipan 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
    ('NpuAllocFloatStatus', {
        'block': P.NPUAllocFloatStatus(),
        'desc_inputs': [],
        'add_fack_input': True,
        'fack_input_type': np.float32,
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('NpuGetFloatStatus', {
        'block': P.NPUGetFloatStatus(),
        'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('NpuClearFloatStatus', {
        'block': P.NPUClearFloatStatus(),
        'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('CheckValid', {
        'block': P.CheckValid(),
        'desc_inputs': [[20000, 4], [3]],
        'desc_bprop': [[20000]],
        'skip': ['backward']}),
    ('NMSWithMask', {
        'block': P.NMSWithMask(0.5),
        'desc_inputs': [[128, 5]],
        'desc_bprop': [[128, 5], [128], [128]],
        'skip': ['backward']}),
    ('Abs', {
        'block': P.Abs(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('CumSum', {
Z
zhouneng 已提交
761 762
        'block': CumSumNet(),
        'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
763 764
        'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
                                        [1, 3, 7, 9]]).astype(np.float32))]}),
Z
zhunaipan 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    ('ReduceSum_3', {
        'block': P.ReduceSum(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('ReduceSum_4', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('ReduceSum_5', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1, 1, 1]]}),
    ('ReduceSum_6', {
        'block': P.ReduceSum(),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1]]}),
    ('Sum_0', {
        'block': P.ReduceSum(),
        'desc_const': [(1,)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3]]}),
    ('Sum_1', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [(1,)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3, 1]]}),
    ('Sum_2', {
        'block': P.ReduceSum(),
        'desc_const': [(0, 1)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1]]}),
    ('Sum_3', {
        'block': P.ReduceSum(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('Sum_4', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('Sum_5', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [()],
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1, 1, 1]]}),
    ('Sum_6', {
        'block': P.ReduceSum(),
        'desc_const': [()],
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1]]}),
    ('Sign', {
        'block': P.Sign(),
        'desc_inputs': [[3]],
        'desc_bprop': [[3]]}),
    ('Round', {
        'block': P.Round(),
        'desc_inputs': [[3]],
Z
zhaozhenlong 已提交
825 826 827 828 829
        'desc_bprop': [[3]]}),
    ('Atan2', {
        'block': P.Atan2(),
        'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
                        Tensor(np.array([1, 1]).astype(np.float32))],
Z
zhaojichen 已提交
830 831 832 833 834 835
        'desc_bprop': [[2]]}),
    ('SquareSumAll', {
        'block': P.SquareSumAll(),
        'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
                        Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
        'skip': ['backward']}),
Z
zhouneng 已提交
836 837 838 839
    ('Cos', {
        'block': P.Cos(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
lihongkang 已提交
840 841 842 843 844
    ('ReduceAll', {
        'block': P.ReduceAll(),
        'desc_const': [1],
        'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
        'desc_bprop': []}),
J
jiangjinsheng 已提交
845 846 847 848 849 850 851 852
    ('BesselI0e', {
        'block': P.BesselI0e(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('BesselI1e', {
        'block': P.BesselI1e(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
Z
zhouneng 已提交
853 854 855 856 857 858 859 860 861 862 863 864
    ('Atan', {
        'block': P.Atan(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('AtanGrad', {
        'block': G.AtanGrad(),
        'desc_inputs': [[2, 3], [2, 3]],
        'skip': ['backward']}),
    ('Atanh', {
        'block': P.Atanh(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
lihongkang 已提交
865 866 867 868 869 870 871 872
    ('Cosh', {
        'block': P.Cosh(),
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
    ('Sinh', {
        'block': P.Sinh(),
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
Z
zhaojichen 已提交
873 874 875 876 877 878 879 880 881
    ('Inv', {
        'block': P.Inv(),
        'desc_inputs': [[21, 9, 12, 5]],
        'desc_bprop': [[21, 9, 12, 5]]}),
    ('Invert', {
        'block': P.Invert(),
        'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))],
        'desc_bprop': [],
        'skip': ['backward']}),
882 883 884 885 886
    ('HistogramFixedWidth', {
        'block': P.HistogramFixedWidth(5),
        'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
        'desc_bprop': [],
        'skip': ['backward']}),
Z
zhunaipan 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
]

test_case_nn_ops = [
    ('BiasAdd', {
        'block': P.BiasAdd(),
        'desc_inputs': [[1, 3, 3, 3], [3]],
        'desc_bprop': [[1, 3, 3, 3]]}),
    ('BiasAddGrad', {
        'block': G.BiasAddGrad(),
        'desc_inputs': [[1, 3, 3, 3]],
        'skip': ['backward']}),
    ('Gelu', {
        'block': P.Gelu(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('GeluGrad', {
        'block': G.GeluGrad(),
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[2, 2]],
        'skip': ['backward']}),
    ('Tanh', {
        'block': P.Tanh(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('TanhGrad', {
        'block': G.TanhGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]],
        'skip': ['backward']}),
    ('ReLU', {
        'block': P.ReLU(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('ReLU6', {
        'block': P.ReLU6(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
924 925 926
    ('ReLUV2', {
        'block': P.ReLUV2(),
        'desc_inputs': [[1, 3, 4, 4]],
P
panyifeng 已提交
927
        'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
Z
zhunaipan 已提交
928 929 930 931
    ('ReLUGrad', {
        'block': G.ReluGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'skip': ['backward']}),
932 933 934 935 936 937 938 939
    ('Softplus', {
        'block': P.Softplus(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('SoftplusGrad', {
        'block': G.SoftplusGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
    ('Elu', {
        'block': P.Elu(),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[2, 3, 4]]}),
    ('EluGrad', {
        'block': G.EluGrad(),
        'desc_inputs': [[2, 3, 4], [2, 3, 4]],
        'desc_bprop': [[2, 3, 4]],
        'skip': ['backward']}),
    ('Sigmoid', {
        'block': P.Sigmoid(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('MaxPool', {
        'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[100, 3, 28, 28]],
        'desc_bprop': [[100, 3, 14, 14]]}),
    ('MaxPoolGrad', {
        'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
        'desc_bprop': [[3, 4, 6, 6]],
        'skip': ['backward']}),
    ('AvgPool', {
        'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[100, 3, 28, 28]],
        'desc_bprop': [[100, 3, 14, 14]]}),
    ('AvgPoolGrad', {
        'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_const': [(3, 4, 6, 6)],
        'const_first': True,
        'desc_inputs': [[3, 4, 6, 6]],
        'desc_bprop': [[3, 4, 6, 6]],
        'skip': ['backward']}),
    ('MaxPoolWithArgmax', {
B
buxue 已提交
974
        'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
Z
zhunaipan 已提交
975
        'desc_inputs': [[128, 32, 32, 64]],
P
panyifeng 已提交
976
        'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
Z
zhunaipan 已提交
977 978 979 980 981 982 983 984
    ('SoftmaxCrossEntropyWithLogits', {
        'block': P.SoftmaxCrossEntropyWithLogits(),
        'desc_inputs': [[1, 10], [1, 10]],
        'desc_bprop': [[1], [1, 10]],
        'skip': ['backward_exec']}),
    ('Flatten', {
        'block': P.Flatten(),
        'desc_inputs': [[128, 32, 32, 64]],
Z
zhaozhenlong 已提交
985
        'desc_bprop': [[128, 65536]]}),
Z
zhunaipan 已提交
986 987 988
    ('LogSoftmax', {
        'block': P.LogSoftmax(),
        'desc_inputs': [[64, 2]],
P
panyifeng 已提交
989
        'desc_bprop': [[64, 2]]}),
Z
zhunaipan 已提交
990 991 992 993 994
    ('LogSoftmaxGrad', {
        'block': G.LogSoftmaxGrad(),
        'desc_inputs': [[16, 1234], [16, 1234]],
        'desc_bprop': [[64, 2]],
        'skip': ['backward']}),
995 996 997 998 999 1000 1001 1002 1003
    ('L2Normalize', {
        'block': P.L2Normalize(),
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[2, 2]]}),
    ('L2NormalizeGrad', {
        'block': G.L2NormalizeGrad(),
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[2, 2]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1004 1005 1006
    ('LayerNorm', {
        'block': P.LayerNorm(),
        'desc_inputs': [[2, 16], [16], [16]],
P
panyifeng 已提交
1007
        'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
Z
zhunaipan 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    ('LayerNormGrad', {
        'block': G.LayerNormGrad(),
        'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
        'desc_bprop': [[2, 16], [16], [16]],
        'skip': ['backward']}),
    ('FusedBatchNorm', {
        'block': P.FusedBatchNorm(),
        'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'skip': []}),
    ('FusedBatchNormGrad', {
        'block': G.FusedBatchNormGrad(),
        'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'skip': ['backward']}),
    ('BatchNorm', {
        'block': P.BatchNorm(),
        'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'skip': []}),
    ('BatchNormGrad', {
        'block': G.BatchNormGrad(),
高东海's avatar
高东海 已提交
1030
        'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
Z
zhunaipan 已提交
1031 1032
        'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1033 1034
    ('BasicLSTMCell', {
        'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
J
jinyaohui 已提交
1035
        'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1], [512, 1, 1, 1]],
Z
zhaozhenlong 已提交
1036 1037
        'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
        'skip': []}),
Z
zhunaipan 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    ('TopK', {
        'block': P.TopK(),
        'desc_const': [5],
        'desc_inputs': [[20, 20, 10]],
        'desc_bprop': [[20, 20, 5]],
        'skip': ['backward']}),
    ('GatherV2_0', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[2, 1, 2]]}),
    ('GatherV2_1', {
        'block': P.GatherV2(),
        'desc_const': [2],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[3, 1, 2]]}),
    ('GatherV2_2', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[3, 2, 1, 3]]}),
    ('GatherV2_3', {
        'block': P.GatherV2(),
        'desc_const': [2],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[3, 1, 3, 2]]}),
    ('GatherV2_4', {
        'block': P.GatherV2(),
        'desc_const': [1],
        'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
        'desc_bprop': [[32, 1, 1024]]}),
    ('GatherV2_5', {
        'block': P.GatherV2(),
        'desc_const': [-1],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[3, 1, 2]]}),
    ('GatherV2_6', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
        'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
Z
zhaozhenlong 已提交
1079 1080 1081 1082 1083
    ('SparseGatherV2_0', {
        'block': P.SparseGatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[2, 1, 2]]}),
L
liuxiao 已提交
1084
    ('Range', {
J
jiangjinsheng 已提交
1085
        'block': inner.Range(1.0, 5.0),
L
liuxiao 已提交
1086 1087
        'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
        'desc_bprop': [[10]]}),
Z
zhunaipan 已提交
1088 1089 1090
    ('UnsortedSegmentSum', {
        'block': P.UnsortedSegmentSum(),
        'desc_const': [1280],
1091 1092
        'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
        'desc_bprop': [[8192, 1024]],
Z
zhunaipan 已提交
1093 1094 1095 1096 1097 1098 1099
        'skip': ['backward']}),
    ('UnsortedSegmentSum_1', {
        'block': P.UnsortedSegmentSum(),
        'desc_const': [4],
        'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[4, 1, 3]],
        'skip': ['backward']}),
L
liuxiao 已提交
1100 1101 1102 1103 1104
    ('UnsortedSegmentMin', {
        'block': P.UnsortedSegmentMin(),
        'desc_const': [4],
        'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
        'desc_bprop': [[4, 2, 1, 3]]}),
Z
zhunaipan 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    ('DropoutGenMask', {
        'block': P.DropoutGenMask(),
        'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
        'desc_inputs': [],
        'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
        'skip': ['backward']}),
    ('DropoutDoMask', {
        'block': P.DropoutDoMask(),
        'desc_const': [Tensor(0.5)],
        'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
        'desc_bprop': [[64, 12, 128, 128]]}),
    ('Dropout', {
        'block': nn.Dropout(0.5),
        'desc_inputs': [[64, 12, 128, 128]],
        'desc_bprop': [[64, 12, 128, 128]]}),
    ('ReduceMean0', {
        'block': P.ReduceMean(),
        'desc_const': [(2,)],
        'desc_inputs': [[3, 2, 2]],
        'desc_bprop': [[3, 2]]}),
    ('ReduceMean1', {
        'block': P.ReduceMean(),
        'desc_const': [2],
        'desc_inputs': [[3, 2, 2]],
        'desc_bprop': [[3, 2]]}),
    ('All', {
        'block': P.ReduceAll(),
        'desc_const': [(1,)],
        'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
        'desc_bprop': [[3]],
        'skip': ['backward']}),
    ('DescConst', {
        'block': Tensor(np.array([2], np.float32)),
        'desc_inputs': [],
        'desc_bprop': [[1]],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('Fill', {
        'block': P.Fill(),
        'desc_const': [mstype.float32, (2, 3), 1.0],
        'desc_inputs': [],
        'desc_bprop': [[2, 3]],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('OnesLike', {
        'block': P.OnesLike(),
        'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
    }),
    ('ZerosLike', {
        'block': P.ZerosLike(),
        'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
    }),
    ('Softmax', {
        'block': P.Softmax(),
        'desc_inputs': [[5, 5]],
        'desc_bprop': [[5, 5]]}),
    ('DepthwiseConv2dNative_1', {
        'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
L
liuxiao 已提交
1165 1166
        'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
        'desc_bprop': [[10, 32, 16, 16]]}),
Z
zhunaipan 已提交
1167 1168 1169
    ('DepthwiseConv2dNative_2', {
        'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
        'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
L
liuxiao 已提交
1170
        'desc_bprop': [[2592, 2048, 4, 4]]}),
Z
zhunaipan 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    ('SigmoidCrossEntropyWithLogits', {
        'block': P.SigmoidCrossEntropyWithLogits(),
        'desc_inputs': [[128, 10], [128, 10]],
        'desc_bprop': [[128, 10]]}),
    ('Pad', {
        'block': P.Pad(((1, 2), (2, 3))),
        'desc_inputs': [[7, 7]],
        'desc_bprop': [[10, 12]]}),
    ('BinaryCrossEntropy', {
        'block': P.BinaryCrossEntropy(),
        'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
        'desc_bprop': []}),
    ('SparseApplyAdagrad', {
        'block': P.SparseApplyAdagrad(0.5),
        'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
1186
        'desc_bprop': [[3, 3], [3, 3]],
Z
zhunaipan 已提交
1187
        'skip': ['backward']}),
1188 1189 1190 1191 1192 1193
    ('SparseApplyFtrl', {
        'block': SparseApplyFtrlNet(),
        'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
        'skip': ['backward']}),
    ('ApplyProximalAdagrad', {
        'block': ApplyProximalAdagradNet(),
L
liuxiao 已提交
1194
        'desc_inputs': [[3, 3]],
1195 1196 1197
        'skip': ['backward']}),
    ('SparseApplyProximalAdagrad', {
        'block': SparseApplyProximalAdagradNet(),
L
liuxiao 已提交
1198
        'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
1199
        'skip': ['backward']}),
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    ('ApplyAdaMax', {
        'block': ApplyAdaMaxNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyAdadelta', {
        'block': ApplyAdadeltaNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyAdagrad', {
        'block': ApplyAdagradNet(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
    ('ApplyAdagradV2', {
        'block': ApplyAdagradV2Net(),
        'desc_inputs': [[3, 3]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    ('Flatten_1', {
        'block': NetForFlatten(),
        'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
        'skip': ['backward']}),
    ('Flatten_2', {
        'block': NetForFlatten(),
        'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1226 1227 1228 1229 1230
    ('Flatten_3', {
        'block': NetForFlattenComposed(),
        'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
        'skip': []}),
Z
zhunaipan 已提交
1231 1232
    ('ArgmaxNet', {
        'block': ArgmaxNet(),
1233 1234
        'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
Z
zhunaipan 已提交
1235 1236 1237
        'skip': ['backward']}),
    ('ArgminNet', {
        'block': ArgminNet(),
1238 1239
        'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
Z
zhunaipan 已提交
1240 1241 1242 1243 1244
        'skip': ['backward']}),
    ('OneHot', {
        'block': P.OneHot(),
        'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
        'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
P
panyifeng 已提交
1245
        'desc_bprop': [[1, 3]]}),
Z
zhunaipan 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    ('ReduceProd_0', {
        'block': P.ReduceProd(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('ReduceProd_1', {
        'block': P.ReduceProd(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('CumProd', {
        'block': P.CumProd(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3, 2]]}),
    ('ApplyFtrl', {
1262 1263
        'block': ApplyFtrlNet(),
        'desc_inputs': [[3, 3]],
Z
zhunaipan 已提交
1264 1265
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
Z
zhaoting 已提交
1266
    ('ApplyRMSProp', {
Z
zhaojichen 已提交
1267 1268
        'block': ApplyRMSNet(),
        'desc_inputs': [[3, 3]],
Z
zhaoting 已提交
1269 1270 1271 1272 1273
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
    ('ApplyCenteredRMSProp', {
        'block': P.ApplyCenteredRMSProp(),
        'desc_const': [0.9, 0.0, 1e-10, 0.001],
Z
zhouneng 已提交
1274 1275 1276
        'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32),
                        Tensor(2., mstype.float32), Tensor(1., mstype.float32)],
        'desc_bprop': [1],
Z
zhaoting 已提交
1277
        'skip': ['backward']}),
L
liuxiao 已提交
1278 1279 1280 1281 1282 1283 1284
    ('CTCLoss', {
        'block': P.CTCLoss(),
        'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
                        Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
                        Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
                        Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
        'desc_bprop': [[4], [6, 4, 6]]}),
L
liuxiao 已提交
1285 1286
    ('L2Loss_1', {
        'block': P.L2Loss(),
L
liuxiao 已提交
1287
        'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
L
liuxiao 已提交
1288 1289 1290 1291 1292
        'desc_bprop': []}),
    ('L2Loss_2', {
        'block': P.L2Loss(),
        'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
        'desc_bprop': []}),
1293 1294 1295 1296 1297 1298 1299 1300 1301
    ('ResizeBilinear', {
        'block': P.ResizeBilinear((5, 5)),
        'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
        'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}),
    ('ResizeBilinearGrad', {
        'block': G.ResizeBilinearGrad(),
        'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
        'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
        'skip': ['backward']}),
1302 1303 1304
    ('ROIAlign', {
        'block': P.ROIAlign(7, 7, 0.03125, 2),
        'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
J
jinyaohui 已提交
1305
        'desc_bprop': [[7, 7]]}),
1306 1307 1308 1309 1310
    ('ROIAlignGrad', {
        'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
        'desc_inputs': [[1, 1, 2, 2], [1, 5]],
        'desc_bprop': [[1, 1, 2, 2]],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1311 1312 1313 1314 1315 1316 1317
    ('LARSUpdate', {
        'block': P.LARSUpdate(1e-05, 0.001, False),
        'desc_const': [0.0, 0.001],
        'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
    ('SGD', {
J
jinyaohui 已提交
1318
        'block': P.SGD(0.0, 0.0, False),
Z
zhaozhenlong 已提交
1319 1320 1321
        'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    ('BinaryCrossEntropy', {
        'block': P.BinaryCrossEntropy(),
        'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
                        Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
                        Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
        'desc_bprop': []}),
    ('BinaryCrossEntropyGrad', {
        'block': G.BinaryCrossEntropyGrad(),
        'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
                        Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
                        Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
        'desc_bprop': [],
        'skip': ['backward']}),
L
lihongkang 已提交
1335 1336 1337 1338 1339 1340 1341
    ('SparseApplyAdagrad', {
        'block': P.SparseApplyAdagrad(0.5),
        'desc_inputs': [Tensor([[0.7, 0.2], [0.1, 0.07]], mstype.float32),
                        Tensor([[0.2, 0.2], [0.1, 0.4]], mstype.float32),
                        Tensor([[0.5, 0.4], [0.6, 0.1]], mstype.float32), Tensor([1, 1], mstype.int32)],
        'desc_bprop': [Tensor([[0.7, 0.2], [0.1, 0.07]], mstype.float32)],
        'skip': ['backward']}),
1342 1343 1344 1345 1346
    ('DataFormatDimMap', {
        'block': P.DataFormatDimMap(),
        'desc_inputs': [Tensor([0, 1, 2, 3], mstype.int32)],
        'desc_bprop': [],
        'skip': ['backward']}),
Z
zhunaipan 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
]

test_case_array_ops = [
    ('SpaceToDepth', {
        'block': P.SpaceToDepth(2),
        'desc_inputs': [[1, 3, 2, 2]],
        'desc_bprop': [[1, 12, 1, 1]]}),
    ('DepthToSpace', {
        'block': P.DepthToSpace(2),
        'desc_inputs': [[1, 12, 1, 1]],
        'desc_bprop': [[1, 3, 2, 2]]}),
    ('Split', {
        'block': P.Split(1, 2),
        'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
        'skip': ['backward']}),
    ('Argmax', {
        'block': P.Argmax(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [0],
        'skip': ['backward']}),
    ('Argmin', {
        'block': P.Argmin(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [1],
        'skip': ['backward']}),
    ('ArgMaxWithValue', {
        'block': P.ArgMaxWithValue(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[1], [1]],
        'skip': ['backward']}),
    ('ArgMinWithValue', {
        'block': P.ArgMinWithValue(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[1], [1]],
        'skip': ['backward']}),
    ('Transpose_dim3', {
        'block': P.Transpose(),
        'desc_const': [(0, 2, 1)],
        'desc_inputs': [[1, 2, 3]],
        'desc_bprop': [[1, 3, 2]]}),
    ('Transpose_dim4', {
        'block': P.Transpose(),
        'desc_const': [(0, 1, 2, 3)],
        'desc_inputs': [[1, 2, 3, 4]],
        'desc_bprop': [[1, 2, 4, 3]]}),
    ('AddN', {
        'block': NetForTupleInput(P.AddN()),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Shape', {
        'block': P.Shape(),
        'desc_inputs': [[3, 3, 2, 2]],
        'skip': ['backward']}),
    ('Reshape', {
        'block': P.Reshape(),
        'desc_const': [(64,)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64]]}),
    ('Cast', {
        'block': P.Cast(),
        'desc_const': [mstype.int32],
        'desc_inputs': [[2, 3, 4, 5]],
P
panyifeng 已提交
1410
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
Z
zhunaipan 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    ('ExpandDims', {
        'block': P.ExpandDims(),
        'desc_const': [0],
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[1, 2, 2]]}),
    ('ExpandDims_1', {
        'block': P.ExpandDims(),
        'desc_const': [-1],
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[2, 2, 1]]}),
    ('Squeeze', {
        'block': P.Squeeze(2),
        'desc_inputs': [[3, 2, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Squeeze_0', {
        'block': P.Squeeze(),
        'desc_inputs': [[3, 1, 2, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Squeeze_1', {
        'block': P.Squeeze(),
        'desc_inputs': [[1, 1, 1, 1]],
        'desc_bprop': [1.0],
        'skip': ['backward']}),
    ('Squeeze_2', {
        'block': P.Squeeze((2, 3)),
        'desc_inputs': [[3, 2, 1, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Size', {
        'block': P.Size(),
        'desc_inputs': [[2, 3, 5]],
        'skip': ['backward']}),
    ('Tile_0', {
        'block': P.Tile(),
        'desc_const': [(1, 2)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64, 2]]}),
    ('Tile_1', {
        'block': P.Tile(),
        'desc_const': [(1, 1)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64, 1]]}),
    ('Tile_2', {
        'block': P.Tile(),
        'desc_const': [(2, 1, 1, 2)],
        'desc_inputs': [[2, 2, 2]],
        'desc_bprop': [[2, 2, 2, 4]]}),
    ('ConcatV2_0', {
        'block': P.Concat(),
        'desc_inputs': [
            (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
             Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
P
panyifeng 已提交
1462
        'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
Z
zhunaipan 已提交
1463 1464 1465 1466
    ('ConcatV2_1', {
        'block': P.Concat(axis=2),
        'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
                         Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
P
panyifeng 已提交
1467
        'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
Z
zhunaipan 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
    ('ConcatV2_2', {
        'block': NetForConcat(),
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[4, 2]]}),
    ('ConcatV2_3', {
        'block': NetForConcat1(),
        'desc_inputs': [[2, 2], [2, 2]],
        'desc_bprop': [[4, 2]]}),
    ('ConcatV2_4', {
        'block': P.Concat(axis=0),
        'desc_inputs': [
            (Tensor(np.ones((3, 2, 3), np.float32)),
             Tensor(np.ones((5, 2, 3), np.float32)),
             Tensor(np.ones((6, 2, 3), np.float32)))],
        'desc_bprop': [[14, 2, 3]]}),
    ('ConcatV2_5', {
        'block': P.Concat(axis=-1),
        'desc_inputs': [(Tensor(np.array([1], np.float32)),
                         Tensor(np.array([1], np.float32)),
                         Tensor(np.array([1], np.float32)))],
J
jiangjinsheng 已提交
1488
        'desc_bprop': [[3, ]]}),
1489 1490
    ('Pack_0', {
        'block': NetForPackInput(P.Pack()),
1491 1492
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[3, 2, 2]],
L
liuxiao 已提交
1493
    }),
1494 1495
    ('Pack_1', {
        'block': NetForPackInput(P.Pack(axis=-2)),
1496 1497
        'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
        'desc_bprop': [[3, 2, 3, 3]],
L
liuxiao 已提交
1498
    }),
1499 1500
    ('Pack_2', {
        'block': NetForPackInput(P.Pack()),
1501 1502
        'desc_inputs': [[128, 128], [128, 128]],
        'desc_bprop': [[2, 128, 128]],
L
liuxiao 已提交
1503
    }),
1504 1505
    ('Unpack_0', {
        'block': NetForUnpackInput(P.Unpack(axis=0)),
1506 1507
        'desc_inputs': [[2, 4]],
        'desc_bprop': [[4], [4]],
L
liuxiao 已提交
1508
    }),
1509 1510
    ('Unpack_1', {
        'block': NetForUnpackInput(P.Unpack(axis=-1)),
1511 1512
        'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
        'desc_bprop': [[1], [1], [1]],
L
liuxiao 已提交
1513
    }),
1514
    ('Diag_1', {
Z
zhaozhenlong 已提交
1515 1516 1517 1518
        'block': P.Diag(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4, 4]],
    }),
1519 1520 1521 1522 1523 1524
    ('Diag_2', {
        'block': P.Diag(),
        'desc_inputs': [[4, 4]],
        'desc_bprop': [[4, 4, 4, 4]],
    }),
    ('DiagPart_1', {
Z
zhaozhenlong 已提交
1525 1526 1527 1528
        'block': P.DiagPart(),
        'desc_inputs': [[4, 4]],
        'desc_bprop': [[4]],
    }),
1529 1530 1531 1532 1533
    ('DiagPart_2', {
        'block': P.DiagPart(),
        'desc_inputs': [[4, 4, 4, 4]],
        'desc_bprop': [[4, 4]],
    }),
1534 1535 1536 1537 1538 1539 1540 1541
    ('SpaceToBatch_1', {
        'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
        'desc_inputs': [[1, 3, 2, 2]],
        'desc_bprop': [[4, 3, 1, 1]],
    }),
    ('SpaceToBatch_2', {
        'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
        'desc_inputs': [[1, 3, 2, 2]],
P
panyifeng 已提交
1542
        'desc_bprop': [[4, 3, 2, 3]],
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    }),
    ('BatchToSpace_1', {
        'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
        'desc_inputs': [[4, 3, 1, 1]],
        'desc_bprop': [[1, 3, 2, 2]],
    }),
    ('BatchToSpace_2', {
        'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
        'desc_inputs': [[4, 3, 1, 1]],
        'desc_bprop': [[1, 3, 2, 1]],
    }),
L
lihongkang 已提交
1554 1555 1556 1557 1558 1559
    ('UnsortedSegmentMin_1', {
        'block': P.UnsortedSegmentMin(),
        'desc_const': [2],
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)),
                        Tensor(np.array([0, 1, 1]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
Z
zhaozhenlong 已提交
1560
    ('BroadcastTo', {
J
jiangjinsheng 已提交
1561
        'block': P.BroadcastTo((2, 3)),
Z
zhaozhenlong 已提交
1562 1563
        'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
        'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    ('InTopK', {
        'block': P.InTopK(2),
        'desc_inputs': [Tensor(np.array([[1, 2, 3], [2, 3, 6], [4, 2, 1]]).astype(np.float32)),
                        Tensor(np.array([2, 1, 2]).astype(np.int32))],
        'skip': ['backward'],
    }),
    ('InplaceUpdate', {
        'block': P.InplaceUpdate((0, 2)),
        'desc_inputs': [Tensor(np.arange(24).reshape(3, 4, 2).astype(np.float32)),
                        Tensor(np.arange(16).reshape(2, 4, 2).astype(np.float32))],
        'skip': ['backward'],
    }),
Z
zhunaipan 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
]

test_case_other_ops = [
    ('ScalarLog', {
        'block': F.scalar_log,
        'desc_const': [0.0],
        'desc_inputs': [],
        'desc_bprop': [1],
        'skip': ['backward']}),
    ('BoundingBoxEncode', {
        'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]],
        'skip': ['backward']}),
    ('BoundingBoxDecode', {
        'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]],
        'skip': ['backward']}),
    ('GatherNd', {
        'block': P.GatherNd(),
        'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
                        Tensor(np.ones((2, 4), np.int32))),
        'desc_bprop': [[2]]}),
    ('ScatterNd', {
        'block': P.ScatterNd(),
        'desc_const': [(3, 3)],
        'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
                        Tensor(np.ones((2,), np.int32))),
P
panyifeng 已提交
1605
        'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
1606 1607 1608 1609 1610 1611
    ('TensorScatterUpdate', {
        'block': P.TensorScatterUpdate(),
        'desc_inputs': (Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)),  mstype.float32),
                        Tensor(np.array([[0, 1], [1, 2]], np.int32)),
                        Tensor(np.ones([2, 5], np.float32) * 99)),
        'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}),
1612 1613 1614 1615 1616
    ('ScatterMax', {
        'block': ScatterMax(),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.float32) * 99)),
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    ('ScatterAdd', {
        'block': ScatterAdd((6,)),
        'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
                        Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
        'skip': ['backward']}),
    ('ScatterAdd2d', {
        'block': ScatterAdd((3, 4)),
        'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
                        Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
                                         [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
        'skip': ['backward']}),
Z
zhunaipan 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    ('SmoothL1Loss', {
        'block': P.SmoothL1Loss(),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]]}),
    ('IOU', {
        'block': P.IOU(),
        'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
        'desc_bprop': [[128, 256]]}),
    ('Summary', {
        'block': SummaryNet(),
        'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
                        Tensor(np.array([1.2]).astype(np.float32))],
        'skip': ['backward']}),
1641
    ('ConfusionMulGrad_1', {
1642
        'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
1643 1644 1645 1646
        'desc_inputs': [[3, 2], [3, 2], [3, 2]],
        'desc_bprop': [[3, 2], [2]],
        'skip': ['backward']}),
    ('ConfusionMulGrad_2', {
1647
        'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
1648 1649 1650 1651
        'desc_inputs': [[3, 2], [3, 2], [3, 2]],
        'desc_bprop': [[3, 2], [1, 2]],
        'skip': ['backward']}),
    ('ConfusionMulGrad_3', {
1652
        'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
1653 1654 1655
        'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
        'desc_bprop': [[2, 3, 4], [1, 1, 1]],
        'skip': ['backward']}),
O
ougongchang 已提交
1656 1657 1658 1659 1660
    ('HistogramSummary', {
        'block': HistogramSummaryNet(),
        'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
                        Tensor(np.array([1.2]).astype(np.float32))],
        'skip': ['backward']}),
1661

Z
zhunaipan 已提交
1662 1663
]

Z
zhaozhenlong 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

test_case_quant_ops = [
    ('AscendQuant_1', {
        'block': P.AscendQuant(0.5, 0.0, False, "Round"),
        'desc_inputs': [Tensor(np.random.rand(1,2,4,4), mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_2', {
        'block': P.AscendQuant(80.0, 10.0, True, "Round"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_3', {
        'block': P.AscendQuant(80.0, 0.0, False, "Floor"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_4', {
        'block': P.AscendQuant(80.0, 0.0, False, "Ceil"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_5', {
        'block': P.AscendQuant(80.0, 0.0, False, "Trunc"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_6', {
        'block': P.AscendQuant(-80.0, 10.0, False, "Round"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_7', {
        'block': P.AscendQuant(80.0, -10.0, False, "Round"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
        'skip': ['backward']}),
    ('AscendQuant_8', {
        'block': P.AscendQuant(80.0, 10.0, False, "Round"),
        'desc_inputs': [Tensor([100.0, 200.0], mstype.float16)],
        'skip': ['backward']}),
]

test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops, test_case_quant_ops]
Z
zhunaipan 已提交
1701 1702 1703 1704 1705 1706 1707
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm


test_exec_case = test_case

J
jinyaohui 已提交
1708
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
Z
zhunaipan 已提交
1709 1710 1711 1712 1713


@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
1714
    context.set_context(mode=context.GRAPH_MODE)
Z
zhunaipan 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    return test_exec_case


@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
def test_backward_exec():
    context.set_context(mode=context.GRAPH_MODE)
    return test_backward_exec_case


raise_set = [
    ('Cast_Error', {
        'block': (P.Cast(), {'exception': TypeError}),
        'desc_const': [mstype.int32],
        'desc_inputs': ['wrong input'],
        'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
    ('Maximum_Error', {
        'block': (P.Maximum(), {'exception': TypeError}),
        'desc_const': [(1, 2, 3)],
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Shape_error', {
        'block': (P.Shape(), {'exception': TypeError}),
        'desc_inputs': [(64, 1)],
        'desc_bprop': [[64]]}),
    ('Flatten_Error', {
        'block': (NetForFlatten0D(), {'exception': ValueError}),
        'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
        'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
1743 1744 1745
    ('ScatterNdUpdate', {
        'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
        'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
B
buxue 已提交
1746
                        Tensor(np.ones((2, 2), np.float32)),
1747 1748
                        Tensor(np.ones((2,), np.float32))),
        'desc_bprop': [[2, 3]]}),
1749 1750
    ('Pack', {
        'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
1751 1752
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[1, 2, 2]]}),
1753 1754
    ('PReLU', {
        'block': (P.PReLU(), {'exception': ValueError}),
1755 1756
        'desc_inputs': [[2], [1]],
        'desc_bprop': [[1]]}),
1757

Z
zhunaipan 已提交
1758 1759 1760 1761 1762 1763
]


@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception():
    return raise_set