提交 acf46baf 编写于 作者: P pkuliuliu

add Normal op

上级 e9670f3c
......@@ -25,3 +25,4 @@ from .squeeze import _squeeze_aicpu
from .expand_dims import _expand_dims_aicpu
from .random_choice_with_mask import _random_choice_with_mask_aicpu
from .pack import _pack_aicpu
from .normal import _normal_aicpu
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Normal op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
normal_op_info = AiCPURegOp("Normal") \
.fusion_type("OPAQUE") \
.input(0, "shape", "required") \
.input(1, "mean", "required") \
.input(2, "stddev", "required") \
.output(0, "y", "required") \
.attr("seed", "int") \
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
.get_op_info()
@op_info_register(normal_op_info)
def _normal_aicpu():
"""Normal AiCPU register"""
return
......@@ -53,7 +53,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e,
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh)
from .random_ops import (RandomChoiceWithMask)
from .random_ops import (RandomChoiceWithMask, Normal)
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
BiasAdd, Conv2D,
DepthwiseConv2dNative,
......@@ -163,6 +163,7 @@ __all__ = [
'HSigmoid',
'Tanh',
'RandomChoiceWithMask',
'Normal',
'ResizeBilinear',
'ScalarSummary',
'ImageSummary',
......
......@@ -64,3 +64,47 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
def infer_dtype(self, x_dtype):
validator.check_tensor_type_same({'x': x_dtype}, [mstype.bool_], self.name)
return (mstype.int32, mstype.bool_)
class Normal(PrimitiveWithInfer):
"""
Generates random samples from a normal(Gaussian) distribution.
Args:
seed (int): Random seed. Default: 0.
Inputs:
- **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed.
- **mean** (Tensor) - The mean of the distribution, with float32 data type.
- **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type.
Outputs:
Tensor, with the given shape from the specific distribution and float32 data type.
Examples:
>>> normal = P.Normal()
>>> mean = Tensor(0., mstype.float32)
>>> stddev = Tensor(1., mstype.float32)
>>> out = normal((32, 3, 3), mean, stddev)
"""
@prim_attr_register
def __init__(self, seed=0):
"""Init Normal"""
validator.check_value_type("seed", seed, [int], self.name)
def __infer__(self, shape, mean, stddev):
shape_value = shape["value"]
if shape_value is None:
raise ValueError(f"For {self.name}, shape must be const.")
validator.check_value_type("shape", shape_value, [tuple], self.name)
for i, shape_i in enumerate(shape_value):
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name)
validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name)
validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name)
out = {"shape": shape_value,
"dtype": mstype.float32,
"value": None}
return out
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import mindspore.context as context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common import Tensor
from mindspore.common import dtype as mstype
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0):
super(Net, self).__init__()
self._mean = Tensor(mean, mstype.float32)
self._stddev = Tensor(stddev, mstype.float32)
self._normal = P.Normal(seed=seed)
self._shape = shape
def construct(self):
return self._normal(self._shape, self._mean, self._stddev)
def test_net_3x2x4():
mean = 0.0
stddev = 1.0
seed = 0
net = Net((3, 2, 4), mean, stddev, seed)
out = net()
assert out.shape == (3, 2, 4)
......@@ -399,6 +399,19 @@ class InplaceSubNet(nn.Cell):
return out
class NormalNet(nn.Cell):
def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0):
super(NormalNet, self).__init__()
self.normal = P.Normal(seed=seed)
self.shape = shape
self.mean = Tensor(mean, mstype.float32)
self.stddev = Tensor(stddev, mstype.float32)
def construct(self):
out = self.normal(self.shape, self.mean, self.stddev)
return out
test_case_math_ops = [
('BitwiseAnd', {
'block': P.BitwiseAnd(),
......@@ -895,6 +908,10 @@ test_case_math_ops = [
'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
'desc_bprop': [],
'skip': ['backward']}),
('Normal', {
'block': NormalNet((3, 2, 4), 0.0, 1.0, 0),
'desc_inputs': [],
'skip': ['backward']}),
]
test_case_nn_ops = [
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册