Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
218ade30
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
218ade30
编写于
5月 20, 2020
作者:
Z
zhouneng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vm support sin and cumsum
上级
2224fa09
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
131 addition
and
12 deletion
+131
-12
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
+2
-1
mindspore/ccsrc/operator/ops.cc
mindspore/ccsrc/operator/ops.cc
+1
-0
mindspore/ccsrc/operator/ops.h
mindspore/ccsrc/operator/ops.h
+1
-0
mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
...e/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
+1
-1
mindspore/ops/_op_impl/tbe/__init__.py
mindspore/ops/_op_impl/tbe/__init__.py
+3
-0
mindspore/ops/_op_impl/tbe/cos.py
mindspore/ops/_op_impl/tbe/cos.py
+37
-0
mindspore/ops/_op_impl/tbe/cum_sum.py
mindspore/ops/_op_impl/tbe/cum_sum.py
+42
-0
mindspore/ops/_op_impl/tbe/sin.py
mindspore/ops/_op_impl/tbe/sin.py
+37
-0
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+7
-10
未找到文件。
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
浏览文件 @
218ade30
...
...
@@ -91,7 +91,8 @@ static std::map<string, string> tbe_func_adapter_map = {
{
"s_gd"
,
"sgd"
},
{
"l_ars_update"
,
"lars_v2_update"
},
{
"n_ms_with_mask"
,
"nms_with_mask"
},
{
"square_sum_all"
,
"square_sum_all"
}};
{
"square_sum_all"
,
"square_sum_all"
},
{
"cum_sum"
,
"cumsum_d"
}};
void
TbeAdapter
::
NormalizeFuncName
(
std
::
string
*
func_name
)
{
if
(
func_name
==
nullptr
)
{
...
...
mindspore/ccsrc/operator/ops.cc
浏览文件 @
218ade30
...
...
@@ -166,6 +166,7 @@ const PrimitivePtr kPrimSquare = std::make_shared<Primitive>("Square");
const
PrimitivePtr
kPrimEqual
=
std
::
make_shared
<
Primitive
>
(
"Equal"
);
const
PrimitivePtr
kPrimLess
=
std
::
make_shared
<
Primitive
>
(
"Less"
);
const
PrimitivePtr
kPrimLessEqual
=
std
::
make_shared
<
Primitive
>
(
"LessEqual"
);
const
PrimitivePtr
kPrimCumSum
=
std
::
make_shared
<
Primitive
>
(
"CumSum"
);
// NN
const
PrimitivePtr
kPrimFlatten
=
std
::
make_shared
<
Primitive
>
(
"Flatten"
);
...
...
mindspore/ccsrc/operator/ops.h
浏览文件 @
218ade30
...
...
@@ -172,6 +172,7 @@ extern const PrimitivePtr kPrimSquare;
extern
const
PrimitivePtr
kPrimEqual
;
extern
const
PrimitivePtr
kPrimLess
;
extern
const
PrimitivePtr
kPrimLessEqual
;
extern
const
PrimitivePtr
kPrimCumSum
;
// NN
extern
const
PrimitivePtr
kPrimFlatten
;
...
...
mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
浏览文件 @
218ade30
...
...
@@ -40,6 +40,7 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() {
Register
(
prim
::
kPrimUnsortedSegmentSum
->
name
(),
{
2
});
Register
(
prim
::
kPrimOneHot
->
name
(),
{
1
});
Register
(
prim
::
kPrimConcat
->
name
(),
{
0
});
Register
(
prim
::
kPrimCumSum
->
name
(),
{
1
});
Register
(
kUnsortedSegmentProdOpName
,
{
2
});
Register
(
kUnsortedSegmentMinOpName
,
{
2
});
Register
(
kSimpleMeanGradOpName
,
{
1
});
...
...
@@ -60,7 +61,6 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() {
Register
(
kResizeNearestNeighborV2OpName
,
{
1
});
Register
(
kResizeNearestNeighborV2GradOpName
,
{
1
});
Register
(
kApplyRMSPropOpname
,
{
4
,
5
,
6
});
Register
(
kCumsumOpName
,
{
1
});
Register
(
kResizeBilinearV2OpName
,
{
1
});
Register
(
kReduceProdOpName
,
{
1
});
Register
(
kCumprodOpName
,
{
1
});
...
...
mindspore/ops/_op_impl/tbe/__init__.py
浏览文件 @
218ade30
...
...
@@ -191,3 +191,6 @@ from .prelu import _prelu_tbe
from
.prelu_grad
import
_prelu_grad_tbe
from
.binary_cross_entropy
import
_binary_cross_entropy_tbe
from
.binary_cross_entropy_grad
import
_binary_cross_entropy_grad_tbe
from
.sin
import
_sin_tbe
from
.cos
import
_cos_tbe
from
.cum_sum
import
_cum_sum_tbe
mindspore/ops/_op_impl/tbe/cos.py
0 → 100644
浏览文件 @
218ade30
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Cos op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
cos_op_info
=
TBERegOp
(
"Cos"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"cos.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"cos"
)
\
.
partial_flag
(
True
)
\
.
op_pattern
(
"formatAgnostic"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
get_op_info
()
@
op_info_register
(
cos_op_info
)
def
_cos_tbe
():
"""Cos TBE register"""
return
mindspore/ops/_op_impl/tbe/cum_sum.py
0 → 100644
浏览文件 @
218ade30
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CumSum op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
cum_sum_op_info
=
TBERegOp
(
"CumSum"
)
\
.
fusion_type
(
"OPAQUE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"cumsum_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"cumsum_d"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"axis"
,
"optional"
,
"int"
,
"all"
,
"0"
)
\
.
attr
(
"exclusive"
,
"optional"
,
"bool"
,
"true,false"
,
"fales"
)
\
.
attr
(
"reverse"
,
"optional"
,
"bool"
,
"true,false"
,
"false"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
I8_Default
,
DataType
.
I8_Default
)
\
.
dtype_format
(
DataType
.
U8_Default
,
DataType
.
U8_Default
)
\
.
get_op_info
()
@
op_info_register
(
cum_sum_op_info
)
def
_cum_sum_tbe
():
"""CumSum TBE register"""
return
mindspore/ops/_op_impl/tbe/sin.py
0 → 100644
浏览文件 @
218ade30
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Sin op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
sin_op_info
=
TBERegOp
(
"Sin"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"sin.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"sin"
)
\
.
partial_flag
(
True
)
\
.
op_pattern
(
"formatAgnostic"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
get_op_info
()
@
op_info_register
(
sin_op_info
)
def
_sin_tbe
():
"""Sin TBE register"""
return
tests/ut/python/ops/test_ops.py
浏览文件 @
218ade30
...
...
@@ -504,10 +504,9 @@ test_case_math_ops = [
'desc_inputs'
:
[[
4
]],
'desc_bprop'
:
[[
4
]]}),
(
'CumSum'
,
{
'block'
:
P
.
CumSum
(),
'desc_const'
:
[
0
],
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
3
,
4
],
[
1
,
6
]]).
astype
(
np
.
float16
))],
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
3
,
4
],
[
4
,
10
]]).
astype
(
np
.
float16
))]}),
'block'
:
CumSumNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float32
))],
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float32
))]}),
(
'ReduceSum_3'
,
{
'block'
:
P
.
ReduceSum
(),
'desc_const'
:
[
0
],
...
...
@@ -579,6 +578,10 @@ test_case_math_ops = [
'desc_inputs'
:
[
Tensor
(
np
.
array
([
0
,
1
,
4
,
5
]).
astype
(
np
.
float32
)),
Tensor
(
np
.
array
([
1
,
1
,
3
,
7
]).
astype
(
np
.
float32
))],
'skip'
:
[
'backward'
]}),
(
'Cos'
,
{
'block'
:
P
.
Cos
(),
'desc_inputs'
:
[[
2
,
3
]],
'desc_bprop'
:
[[
2
,
3
]]}),
]
test_case_nn_ops
=
[
...
...
@@ -885,12 +888,6 @@ test_case_nn_ops = [
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
128
,
32
,
32
,
64
],
[
128
,
32
,
32
,
64
]]).
astype
(
np
.
float16
))],
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
128
,
32
,
32
,
64
],
[
128
,
32
,
32
,
64
]]).
astype
(
np
.
float16
))],
'skip'
:
[
'backward'
]}),
(
'CumSumNet'
,
{
'block'
:
CumSumNet
(),
'desc_const'
:
[
0
],
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float16
))],
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float16
))]}),
(
'OneHot'
,
{
'block'
:
P
.
OneHot
(),
'desc_const'
:
[
3
,
Tensor
(
1.0
,
mstype
.
float32
),
Tensor
(
0.0
,
mstype
.
float32
)],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录