Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a36880f0
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a36880f0
编写于
5月 26, 2020
作者:
L
lihongkang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vms for reducealld etc.
上级
14f9a6e3
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
156 addition
and
1 deletion
+156
-1
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
+3
-0
mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
...e/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
+2
-1
mindspore/ops/_op_impl/tbe/__init__.py
mindspore/ops/_op_impl/tbe/__init__.py
+3
-0
mindspore/ops/_op_impl/tbe/reduce_all.py
mindspore/ops/_op_impl/tbe/reduce_all.py
+38
-0
mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py
mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py
+44
-0
mindspore/ops/_op_impl/tbe/unsorted_segment_min.py
mindspore/ops/_op_impl/tbe/unsorted_segment_min.py
+48
-0
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+18
-0
未找到文件。
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
浏览文件 @
a36880f0
...
...
@@ -97,6 +97,9 @@ static std::map<string, string> tbe_func_adapter_map = {
{
"cum_sum"
,
"cumsum_d"
},
{
"apply_rms_prop"
,
"apply_rms_prop_d"
},
{
"cum_prod"
,
"cumprod_d"
},
{
"reduce_all"
,
"reduce_all_d"
},
{
"sparse_apply_adagrad"
,
"sparse_apply_adagrad_d"
},
{
"unsorted_segment_min"
,
"unsorted_segment_min_d"
},
{
"reduce_prod"
,
"reduce_prod_d"
}};
void
TbeAdapter
::
NormalizeFuncName
(
std
::
string
*
func_name
)
{
...
...
mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
浏览文件 @
a36880f0
...
...
@@ -42,8 +42,9 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() {
Register
(
prim
::
kPrimConcat
->
name
(),
{
0
});
Register
(
prim
::
kPrimCumSum
->
name
(),
{
1
});
Register
(
prim
::
kPrimCumProd
->
name
(),
{
1
});
Register
(
prim
::
kPrimReduceAll
->
name
(),
{
1
});
Register
(
prim
::
kPrimUnsortedSegmentMin
->
name
(),
{
2
});
Register
(
kUnsortedSegmentProdOpName
,
{
2
});
Register
(
kUnsortedSegmentMinOpName
,
{
2
});
Register
(
kSimpleMeanGradOpName
,
{
1
});
Register
(
kMeanGradOpName
,
{
1
});
Register
(
kSliceOpName
,
{
1
,
2
});
...
...
mindspore/ops/_op_impl/tbe/__init__.py
浏览文件 @
a36880f0
...
...
@@ -205,3 +205,6 @@ from .space_to_batch_nd import _space_to_batch_nd_tbe
from
.bitwise_and
import
bitwise_and_op_info
from
.bitwise_or
import
bitwise_or_op_info
from
.bitwise_xor
import
bitwise_xor_op_info
from
.reduce_all
import
_reduce_all_tbe
from
.sparse_apply_adagrad
import
_sparse_apply_adagrad_tbe
from
.unsorted_segment_min
import
_unsorted_segment_min_tbe
mindspore/ops/_op_impl/tbe/reduce_all.py
0 → 100644
浏览文件 @
a36880f0
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ReduceAll op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
reduce_all_op_info
=
TBERegOp
(
"ReduceAll"
)
\
.
fusion_type
(
"OPAQUE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"reduce_all_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"reduce_all_d"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"axis"
,
"required"
,
"listInt"
,
"all"
)
\
.
attr
(
"keep_dims"
,
"optional"
,
"bool"
,
"all"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
BOOL_Default
,
DataType
.
BOOL_Default
)
\
.
dtype_format
(
DataType
.
BOOL_FracZ
,
DataType
.
BOOL_FracZ
)
\
.
get_op_info
()
@
op_info_register
(
reduce_all_op_info
)
def
_reduce_all_tbe
():
"""ReduceAll TBE register"""
return
mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py
0 → 100644
浏览文件 @
a36880f0
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SparseApplyAdagrad op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
sparse_apply_adagrad_op_info
=
TBERegOp
(
"SparseApplyAdagrad"
)
\
.
fusion_type
(
"OPAQUE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"sparse_apply_adagrad.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"sparse_apply_adagrad"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"lr"
,
"required"
,
"float"
,
"all"
)
\
.
attr
(
"update_slots"
,
"optional"
,
"bool"
,
"all"
)
\
.
attr
(
"use_locking"
,
"optional"
,
"bool"
,
"all"
)
\
.
input
(
0
,
"var"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"accum"
,
False
,
"required"
,
"all"
)
\
.
input
(
2
,
"grad"
,
False
,
"required"
,
"all"
)
\
.
input
(
3
,
"indices"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"var"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F32_NCHW
,
DataType
.
F32_NCHW
,
DataType
.
F32_NCHW
,
DataType
.
I32_NCHW
,
DataType
.
F32_NCHW
)
\
.
dtype_format
(
DataType
.
F32_NHWC
,
DataType
.
F32_NHWC
,
DataType
.
F32_NHWC
,
DataType
.
I32_NHWC
,
DataType
.
F32_NHWC
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
,
DataType
.
I32_Default
,
DataType
.
F32_Default
)
\
.
get_op_info
()
@
op_info_register
(
sparse_apply_adagrad_op_info
)
def
_sparse_apply_adagrad_tbe
():
"""SparseApplyAdagrad TBE register"""
return
mindspore/ops/_op_impl/tbe/unsorted_segment_min.py
0 → 100644
浏览文件 @
a36880f0
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""UnsortedSegmentMin op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
unsorted_segment_min_op_info
=
TBERegOp
(
"UnsortedSegmentMin"
)
\
.
fusion_type
(
"OPAQUE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"unsorted_segment_min_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"unsorted_segment_min_d"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"num_segments"
,
"required"
,
"int"
,
"all"
)
\
.
input
(
0
,
"data"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"segment_ids"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
I32_Default
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F16_FracZ
,
DataType
.
I32_Default
,
DataType
.
F16_FracZ
)
\
.
dtype_format
(
DataType
.
F16_C1HWNCoC0
,
DataType
.
I32_Default
,
DataType
.
F16_C1HWNCoC0
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
I32_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
I32_Default
,
DataType
.
F32_5HD
)
\
.
dtype_format
(
DataType
.
F32_FracZ
,
DataType
.
I32_Default
,
DataType
.
F32_FracZ
)
\
.
dtype_format
(
DataType
.
F32_C1HWNCoC0
,
DataType
.
I32_Default
,
DataType
.
F32_C1HWNCoC0
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
I32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I32_5HD
,
DataType
.
I32_Default
,
DataType
.
I32_5HD
)
\
.
dtype_format
(
DataType
.
I32_FracZ
,
DataType
.
I32_Default
,
DataType
.
I32_FracZ
)
\
.
dtype_format
(
DataType
.
I32_C1HWNCoC0
,
DataType
.
I32_Default
,
DataType
.
I32_C1HWNCoC0
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
get_op_info
()
@
op_info_register
(
unsorted_segment_min_op_info
)
def
_unsorted_segment_min_tbe
():
"""UnsortedSegmentMin TBE register"""
return
tests/ut/python/ops/test_ops.py
浏览文件 @
a36880f0
...
...
@@ -651,6 +651,11 @@ test_case_math_ops = [
'block'
:
P
.
Cos
(),
'desc_inputs'
:
[[
2
,
3
]],
'desc_bprop'
:
[[
2
,
3
]]}),
(
'ReduceAll'
,
{
'block'
:
P
.
ReduceAll
(),
'desc_const'
:
[
1
],
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
True
,
False
],
[
True
,
True
]]))],
'desc_bprop'
:
[]}),
]
test_case_nn_ops
=
[
...
...
@@ -1059,6 +1064,13 @@ test_case_nn_ops = [
Tensor
([[
-
1.4
,
-
0.7
],
[
0.9
,
0.7
]],
mstype
.
float16
)],
'desc_bprop'
:
[],
'skip'
:
[
'backward'
]}),
(
'SparseApplyAdagrad'
,
{
'block'
:
P
.
SparseApplyAdagrad
(
0.5
),
'desc_inputs'
:
[
Tensor
([[
0.7
,
0.2
],
[
0.1
,
0.07
]],
mstype
.
float32
),
Tensor
([[
0.2
,
0.2
],
[
0.1
,
0.4
]],
mstype
.
float32
),
Tensor
([[
0.5
,
0.4
],
[
0.6
,
0.1
]],
mstype
.
float32
),
Tensor
([
1
,
1
],
mstype
.
int32
)],
'desc_bprop'
:
[
Tensor
([[
0.7
,
0.2
],
[
0.1
,
0.07
]],
mstype
.
float32
)],
'skip'
:
[
'backward'
]}),
]
test_case_array_ops
=
[
...
...
@@ -1266,6 +1278,12 @@ test_case_array_ops = [
'desc_inputs'
:
[[
4
,
3
,
1
,
1
]],
'desc_bprop'
:
[[
1
,
3
,
2
,
1
]],
}),
(
'UnsortedSegmentMin_1'
,
{
'block'
:
P
.
UnsortedSegmentMin
(),
'desc_const'
:
[
2
],
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
],
[
4
,
2
,
1
]]).
astype
(
np
.
float32
)),
Tensor
(
np
.
array
([
0
,
1
,
1
]).
astype
(
np
.
int32
))],
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
2
,
1
]]).
astype
(
np
.
float32
))]}),
]
test_case_other_ops
=
[
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录