提交 ac869967 编写于 作者: B buxue

develop op ScatterMax and dock ge process

上级 a5572f15
......@@ -102,6 +102,7 @@ const char kNameReLU6Grad[] = "ReLU6Grad";
const char kNameElu[] = "Elu";
const char kNameEluGrad[] = "EluGrad";
const char kNameScatterNdUpdate[] = "ScatterNdUpdate";
const char kNameScatterMax[] = "ScatterMax";
const char kNameNMSWithMask[] = "NMSWithMask";
const char kNameCheckValid[] = "CheckValid";
const char kNameSmoothL1Loss[] = "SmoothL1Loss";
......@@ -253,6 +254,7 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
{string(kNameZerosLike), ADPT_DESC(ZerosLike)},
{string(kNameOnesLike), ADPT_DESC(OnesLike)},
{string(kNameScatterNdUpdate), ADPT_DESC(ScatterNdUpdate)},
{string(kNameScatterMax), ADPT_DESC(ScatterMax)},
{string(kNameNMSWithMask), ADPT_DESC(NMSWithMask)},
{string(kNameCheckValid), ADPT_DESC(CheckValid)},
{string(kNameSmoothL1Loss), ADPT_DESC(SmoothL1Loss)},
......
......@@ -530,6 +530,11 @@ INPUT_MAP(ScatterNdUpdate) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(indices)}, {3
ATTR_MAP(ScatterNdUpdate) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
OUTPUT_MAP(ScatterNdUpdate) = {{0, OUTPUT_DESC(var)}};
// ScatterMax
INPUT_MAP(ScatterMax) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(indices)}, {3, INPUT_DESC(updates)}};
ATTR_MAP(ScatterMax) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
OUTPUT_MAP(ScatterMax) = {{0, OUTPUT_DESC(var)}};
// CheckValid
INPUT_MAP(CheckValid) = {{1, INPUT_DESC(bbox_tensor)}, {2, INPUT_DESC(img_metas)}};
ATTR_MAP(CheckValid) = EMPTY_ATTR_MAP;
......
......@@ -136,6 +136,8 @@ DECLARE_OP_ADAPTER(OnesLike)
DECLARE_OP_USE_OUTPUT(OnesLike)
DECLARE_OP_ADAPTER(ScatterNdUpdate)
DECLARE_OP_USE_OUTPUT(ScatterNdUpdate)
DECLARE_OP_ADAPTER(ScatterMax)
DECLARE_OP_USE_OUTPUT(ScatterMax)
DECLARE_OP_ADAPTER(NMSWithMask)
DECLARE_OP_USE_OUTPUT(NMSWithMask)
DECLARE_OP_ADAPTER(Unpack)
......
......@@ -24,7 +24,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
Fill, GatherNd, GatherV2, InvertPermutation,
IsInstance, IsSubClass, ArgMaxWithValue, OnesLike, ZerosLike,
Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue,
SameTypeShape,
SameTypeShape, ScatterMax,
ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select,
Shape, Size, Slice, Split,
Squeeze, StridedSlice, Tile,
......@@ -184,6 +184,7 @@ __all__ = [
'BoundingBoxDecode',
'L2Normalize',
'ScatterNd',
'ScatterMax',
'ResizeNearestNeighbor',
'Pad',
'MirrorPad',
......
......@@ -1953,7 +1953,7 @@ class ScatterNdUpdate(PrimitiveWithInfer):
Using given values to update tensor value, along with the input indices.
Args:
use_locking (bool): Whether protect the assignment by a lock. Defaule: True.
use_locking (bool): Whether protect the assignment by a lock. Default: True.
Inputs:
- **input_x** (Tensor) - The target tensor.
......@@ -1995,6 +1995,53 @@ class ScatterNdUpdate(PrimitiveWithInfer):
return x_dtype
class ScatterMax(PrimitiveWithInfer):
"""
Update the value of the input tensor through the max operation.
Using given values to update tensor value through the max operation, along with the input indices,.
Args:
use_locking (bool): Whether protect the assignment by a lock. Default: True.
Inputs:
- **input_x** (Tensor) - The target tensor.
- **indices** (Tensor) - The index to do max operation whose data type should be int.
- **updates** (Tensor) - The tensor doing the maximum operation with 'input_x',
the data type is same as 'input_x', the shape is 'indices_shape + x_shape[1:]'.
Outputs:
Tensor, has the same shape and data type as `input_x`.
Examples:
>>> input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> update = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32)
>>> scatter_max = P.ScatterMax()
>>> output = scatter_max(input_x, indices, update)
[[88.0, 88.0, 88.0], [88.0, 88.0, 88.0]]
"""
@prim_attr_register
def __init__(self, use_locking=True):
"""Init ScatterMax"""
self.init_prim_io_names(inputs=['x', 'indices', 'updates'], outputs=['y'])
validator.check_value_type('use_locking', use_locking, (bool,), self.name)
def infer_shape(self, x_shape, indices_shape, updates_shape):
if updates_shape and updates_shape != indices_shape + x_shape[1:]:
raise ValueError(f"For '{self.name}', the shape of update should be [] or "
f"update_shape = indices_shape + x_shape[1:], but got x_shape: {x_shape}, "
f"indices_shape: {indices_shape}, update_shape: {updates_shape}.")
return x_shape
def infer_dtype(self, x_dtype, indices_dtype, updates_dtype):
validator.check_tensor_type_same({'indices': indices_dtype}, mstype.int_type, self.name)
args = {"x": x_dtype, "updates": updates_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
return x_dtype
class SpaceToDepth(PrimitiveWithInfer):
r"""
Rearrange blocks of spatial data into depth.
......
......@@ -15,7 +15,7 @@
""" test ops """
import functools
import numpy as np
from mindspore import ops
from mindspore import ops, Parameter, context
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
......@@ -26,10 +26,10 @@ from mindspore.common import dtype as mstype
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward\
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
......@@ -150,7 +150,7 @@ class CumSumNet(nn.Cell):
class SummaryNet(nn.Cell):
def __init__(self,):
def __init__(self):
super(SummaryNet, self).__init__()
self.s = P.ScalarSummary()
self.add = P.TensorAdd()
......@@ -161,7 +161,7 @@ class SummaryNet(nn.Cell):
class HistogramSummaryNet(nn.Cell):
def __init__(self,):
def __init__(self):
super(HistogramSummaryNet, self).__init__()
self.summary = P.HistogramSummary()
self.add = P.TensorAdd()
......@@ -173,6 +173,19 @@ class HistogramSummaryNet(nn.Cell):
return out
class ScatterMax(nn.Cell):
"""ScatterMax net definition"""
def __init__(self):
super(ScatterMax, self).__init__()
self.scatter_max = P.ScatterMax()
self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
def construct(self, indices, updates):
out = self.scatter_max(self.ref, indices, updates)
return out
test_case_math_ops = [
('Neg', {
'block': P.Neg(),
......@@ -298,28 +311,28 @@ test_case_math_ops = [
('StridedSlice', {
'block': P.StridedSlice(),
'desc_const': [(0, 1, 2, 1),
(2, 3, 3, 4),
(1, 1, 1, 1)],
(2, 3, 3, 4),
(1, 1, 1, 1)],
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[2, 2, 1, 3]]}),
('Slice_1', {
'block': P.Slice(),
'desc_const': [(0, 1, 2, 1),
(1, 1, 1, 2)],
(1, 1, 1, 2)],
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[1, 1, 1, 2]]}),
('StridedSliceGrad', {
'block': G.StridedSliceGrad(),
'desc_const': [(64, 1, 1024),
(0, 1, 0),
(64, 2, 1024),
(1, 1, 1)],
(0, 1, 0),
(64, 2, 1024),
(1, 1, 1)],
'desc_inputs': [[64, 128, 1024]],
'skip': ['backward']}),
('RandomChoiceWithMask', {
'block': P.RandomChoiceWithMask(256),
'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
'desc_bprop': [[256,4], [256,4]],
'desc_bprop': [[256, 4], [256, 4]],
'skip': ['backward']}),
('LessEqual', {
'block': P.LessEqual(),
......@@ -419,7 +432,7 @@ test_case_math_ops = [
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
('NotEqual_0', {
'block': P.NotEqual(),
'desc_inputs': [ 1, [2, 3, 4, 5]],
'desc_inputs': [1, [2, 3, 4, 5]],
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
'skip': ['backward']}),
('Greater', {
......@@ -435,13 +448,13 @@ test_case_math_ops = [
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
('LogicalAnd', {
'block': P.LogicalAnd(),
'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
'block': P.LogicalAnd(),
'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
('LogicalOr', {
'block': P.LogicalOr(),
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
'block': P.LogicalOr(),
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
('NpuAllocFloatStatus', {
'block': P.NPUAllocFloatStatus(),
'desc_inputs': [],
......@@ -476,8 +489,8 @@ test_case_math_ops = [
('CumSum', {
'block': P.CumSum(),
'desc_const': [0],
'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
'desc_inputs': [Tensor(np.array([[3, 4], [1, 6]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[3, 4], [4, 10]]).astype(np.float16))]}),
('ReduceSum_3', {
'block': P.ReduceSum(),
'desc_const': [0],
......@@ -717,8 +730,8 @@ test_case_nn_ops = [
('UnsortedSegmentSum', {
'block': P.UnsortedSegmentSum(),
'desc_const': [1280],
'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
'desc_bprop': [[8192,1024]],
'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
'desc_bprop': [[8192, 1024]],
'skip': ['backward']}),
('UnsortedSegmentSum_1', {
'block': P.UnsortedSegmentSum(),
......@@ -821,19 +834,20 @@ test_case_nn_ops = [
'skip': ['backward']}),
('ArgmaxNet', {
'block': ArgmaxNet(),
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
'skip': ['backward']}),
('ArgminNet', {
'block': ArgminNet(),
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
'skip': ['backward']}),
('CumSumNet', {
'block': CumSumNet(),
'desc_const': [0],
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))],
'desc_bprop': [
Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))]}),
('OneHot', {
'block': P.OneHot(),
'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
......@@ -1021,31 +1035,31 @@ test_case_array_ops = [
'desc_inputs': [(Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)))],
'desc_bprop': [[3,]]}),
'desc_bprop': [[3, ]]}),
('Pack_0', {
'block': NetForPackInput(P.Pack()),
'desc_inputs':[[2, 2], [2, 2], [2, 2]],
'desc_bprop':[[3, 2, 2]],
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
'desc_bprop': [[3, 2, 2]],
}),
('Pack_1', {
'block': NetForPackInput(P.Pack(axis=-2)),
'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
'desc_bprop':[[3, 2, 3, 3]],
'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
'desc_bprop': [[3, 2, 3, 3]],
}),
('Pack_2', {
'block': NetForPackInput(P.Pack()),
'desc_inputs':[[128, 128], [128, 128]],
'desc_bprop':[[2, 128, 128]],
'desc_inputs': [[128, 128], [128, 128]],
'desc_bprop': [[2, 128, 128]],
}),
('Unpack_0', {
'block': NetForUnpackInput(P.Unpack(axis=0)),
'desc_inputs':[[2, 4]],
'desc_bprop':[[4], [4]],
'desc_inputs': [[2, 4]],
'desc_bprop': [[4], [4]],
}),
('Unpack_1', {
'block': NetForUnpackInput(P.Unpack(axis=-1)),
'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
'desc_bprop':[[1], [1], [1]],
'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
'desc_bprop': [[1], [1], [1]],
}),
('Diag_1', {
'block': P.Diag(),
......@@ -1117,6 +1131,11 @@ test_case_other_ops = [
'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
Tensor(np.ones((2,), np.int32))),
'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
('ScatterMax', {
'block': ScatterMax(),
'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
Tensor(np.ones([2, 2, 3], np.float32) * 99)),
'skip': ['backward']}),
('SmoothL1Loss', {
'block': P.SmoothL1Loss(),
'desc_inputs': [[256, 4], [256, 4]],
......@@ -1131,17 +1150,17 @@ test_case_other_ops = [
Tensor(np.array([1.2]).astype(np.float32))],
'skip': ['backward']}),
('ConfusionMulGrad_1', {
'block': P.ConfusionMulGrad(axis = [0], keep_dims = False),
'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
'desc_bprop': [[3, 2], [2]],
'skip': ['backward']}),
('ConfusionMulGrad_2', {
'block': P.ConfusionMulGrad(axis = [0], keep_dims = True),
'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
'desc_bprop': [[3, 2], [1, 2]],
'skip': ['backward']}),
('ConfusionMulGrad_3', {
'block': P.ConfusionMulGrad(axis = (), keep_dims = True),
'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
'desc_bprop': [[2, 3, 4], [1, 1, 1]],
'skip': ['backward']}),
......@@ -1150,7 +1169,7 @@ test_case_other_ops = [
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
Tensor(np.array([1.2]).astype(np.float32))],
'skip': ['backward']}),
]
test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
......@@ -1162,15 +1181,13 @@ test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
test_exec_case = test_case
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
'backward' not in x[1]['skip'], test_case)
'backward' not in x[1]['skip'], test_case)
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
context.set_context(mode=context.GRAPH_MODE)
return test_exec_case
......@@ -1207,12 +1224,12 @@ raise_set = [
'desc_bprop': [[2, 3]]}),
('Pack', {
'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
'desc_inputs':[[2, 2]],
'desc_bprop':[[1, 2, 2]]}),
'desc_inputs': [[2, 2]],
'desc_bprop': [[1, 2, 2]]}),
('PReLU', {
'block': (P.PReLU(), {'exception': ValueError}),
'desc_inputs':[[2], [1]],
'desc_bprop':[[1]]}),
'desc_inputs': [[2], [1]],
'desc_bprop': [[1]]}),
]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册