test_ops.py 45.3 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ops """
import functools
import numpy as np
J
jinyaohui 已提交
18 19 20 21

import mindspore.nn as nn
import mindspore.ops.composite as C
from mindspore import Tensor
22
from mindspore import ops, Parameter, context
J
jinyaohui 已提交
23
from mindspore.common import dtype as mstype
Z
zhunaipan 已提交
24 25 26 27 28
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
29
from ....mindspore_test_framework.pipeline.forward.compile_forward \
Z
zhunaipan 已提交
30 31
    import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
            pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
32
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
Z
zhunaipan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    import pipeline_for_compile_grad_ge_graph_for_case_by_case_config


class InputBackward(nn.Cell):
    def __init__(self, network):
        super(InputBackward, self).__init__()
        self.network = network
        self.network.set_train()
        self.grad = C.grad_all_with_sens

    def construct(self, x1, x2, x3, sens):
        return self.grad(self.network)(x1, x2, x3, sens)


class NetForTupleInput(nn.Cell):
    def __init__(self, op):
        super(NetForTupleInput, self).__init__()
        self.op = op

    def construct(self, x1, x2):
        return self.op((x1, x2))


class StridedSlicessdNet(nn.Cell):
    def __init__(self):
        super(StridedSlicessdNet, self).__init__()
        self.rank = P.Rank()

    def construct(self, x1):
        return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))


class NetForConcat(nn.Cell):
    def __init__(self):
        super(NetForConcat, self).__init__()
        self.concat = P.Concat()

    def construct(self, x1):
        return self.concat((x1, x1))


class NetForConcat1(nn.Cell):
    def __init__(self):
        super(NetForConcat1, self).__init__()
        self.concat = P.Concat()

    def construct(self, x1, x2):
        return self.concat((x1, x2))


83
class NetForPackInput(nn.Cell):
L
liuxiao 已提交
84
    def __init__(self, op):
85
        super(NetForPackInput, self).__init__()
L
liuxiao 已提交
86 87 88 89 90 91 92 93 94 95
        self.op = op
        self.mul = P.Mul()

    def construct(self, *args):
        t = ()
        for i in range(len(args)):
            t = t + (self.mul(args[i], args[i]),)
        return self.op(t)


96
class NetForUnpackInput(nn.Cell):
L
liuxiao 已提交
97
    def __init__(self, op):
98
        super(NetForUnpackInput, self).__init__()
L
liuxiao 已提交
99 100 101 102 103 104 105
        self.op = op
        self.mul = P.Mul()

    def construct(self, x1):
        return self.op((self.mul(x1, x1)))


Z
zhunaipan 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
class NetForFlatten(nn.Cell):
    def __init__(self):
        super(NetForFlatten, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x, y):
        return self.flatten(x) + y


class NetForFlatten0D(nn.Cell):
    def __init__(self):
        super(NetForFlatten0D, self).__init__()
        self.flatten = P.Flatten()

    def construct(self, x):
        return self.flatten(x)


class ArgmaxNet(nn.Cell):
    def __init__(self):
        super(ArgmaxNet, self).__init__()
        self.argmax = P.Argmax(axis=1)

    def construct(self, input):
        return self.argmax(input)


class ArgminNet(nn.Cell):
    def __init__(self):
        super(ArgminNet, self).__init__()
        self.argmin = P.Argmin(axis=1)

    def construct(self, input):
        return self.argmin(input)


class CumSumNet(nn.Cell):
    def __init__(self):
        super(CumSumNet, self).__init__()
        self.cumsum = P.CumSum()
        self.axis = 1

    def construct(self, input):
        return self.cumsum(input, self.axis)


class SummaryNet(nn.Cell):
153
    def __init__(self):
Z
zhunaipan 已提交
154 155 156 157 158 159 160 161 162
        super(SummaryNet, self).__init__()
        self.s = P.ScalarSummary()
        self.add = P.TensorAdd()

    def construct(self, x, y):
        self.s("x1", x)
        return self.add(x, y)


O
ougongchang 已提交
163
class HistogramSummaryNet(nn.Cell):
164
    def __init__(self):
O
ougongchang 已提交
165 166 167 168 169 170 171 172 173 174 175
        super(HistogramSummaryNet, self).__init__()
        self.summary = P.HistogramSummary()
        self.add = P.TensorAdd()

    def construct(self, x, y):
        out = self.add(x, y)
        string_in = "out"
        self.summary(string_in, out)
        return out


176 177 178 179 180 181 182 183 184 185 186 187
class ScatterMax(nn.Cell):
    """ScatterMax net definition"""

    def __init__(self):
        super(ScatterMax, self).__init__()
        self.scatter_max = P.ScatterMax()
        self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")

    def construct(self, indices, updates):
        out = self.scatter_max(self.ref, indices, updates)
        return out

J
jinyaohui 已提交
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
class ApplyFtrlNet(nn.Cell):
    def __init__(self):
        super(ApplyFtrlNet, self).__init__()
        self.apply_ftrl = P.ApplyFtrl()
        self.lr = 0.001
        self.l1 = 0.0
        self.l2 = 0.0
        self.lr_power = -0.5
        self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
        self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
        self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")

    def construct(self, grad):
        out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
        return out

205

Z
zhunaipan 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
test_case_math_ops = [
    ('Neg', {
        'block': P.Neg(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('Sub', {
        'block': P.Sub(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('TensorAdd', {
        'block': P.TensorAdd(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul0', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul1', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Mul2', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Mul3', {
        'block': P.Mul(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Mul4', {
        'block': P.Mul(),
        'desc_inputs': [[2, 3, 3, 5], [3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add0', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Add1', {
        'block': P.TensorAdd(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add2', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add3', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Add4', {
        'block': P.TensorAdd(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Minimum', {
        'block': P.Minimum(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
270
    ('Pow_0', {
Z
zhunaipan 已提交
271 272 273 274
        'block': P.Pow(),
        'desc_const': [2.0],
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
275 276 277 278
    ('Pow_1', {
        'block': P.Pow(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
Z
zhunaipan 已提交
279 280 281 282
    ('Exp', {
        'block': P.Exp(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
L
liuxiao 已提交
283 284 285 286
    ('Erf', {
        'block': P.Erf(),
        'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
Z
zhunaipan 已提交
287 288 289 290 291 292 293 294 295
    ('Floor', {
        'block': P.Floor(),
        'desc_inputs': [[2, 512, 56, 56]],
        'desc_bprop': [[2, 512, 56, 56]],
        'skip': ['backward']}),
    ('ACos', {
        'block': P.ACos(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
Z
zhangz0911gm 已提交
296 297
    ('Acosh', {
        'block': P.Acosh(),
298 299
        'desc_inputs': [[3, 4, 5]],
        'desc_bprop': [[3, 4, 5]]}),
Z
zhunaipan 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    ('Sin', {
        'block': P.Sin(),
        'desc_inputs': [[2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('Reciprocal', {
        'block': P.Reciprocal(),
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Minimum_0', {
        'block': P.Minimum(),
        'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Maximum', {
        'block': P.Maximum(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Maximum_0', {
        'block': P.Maximum(),
        'desc_inputs': [[3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('MaximumGrad', {
        'block': G.MaximumGrad(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
        'skip': ['backward']}),
    ('MinimumGrad', {
        'block': G.MinimumGrad(),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
        'skip': ['backward']}),
    ('StridedSlice', {
        'block': P.StridedSlice(),
        'desc_const': [(0, 1, 2, 1),
331 332
                       (2, 3, 3, 4),
                       (1, 1, 1, 1)],
Z
zhunaipan 已提交
333 334 335 336 337
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 2, 1, 3]]}),
    ('Slice_1', {
        'block': P.Slice(),
        'desc_const': [(0, 1, 2, 1),
338
                       (1, 1, 1, 2)],
Z
zhunaipan 已提交
339 340 341 342 343
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[1, 1, 1, 2]]}),
    ('StridedSliceGrad', {
        'block': G.StridedSliceGrad(),
        'desc_const': [(64, 1, 1024),
344 345 346
                       (0, 1, 0),
                       (64, 2, 1024),
                       (1, 1, 1)],
Z
zhunaipan 已提交
347 348 349 350 351
        'desc_inputs': [[64, 128, 1024]],
        'skip': ['backward']}),
    ('RandomChoiceWithMask', {
        'block': P.RandomChoiceWithMask(256),
        'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
352
        'desc_bprop': [[256, 4], [256, 4]],
Z
zhunaipan 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        'skip': ['backward']}),
    ('LessEqual', {
        'block': P.LessEqual(),
        'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
                        Tensor(np.random.rand(4).astype(np.float16))],
        'skip': ['backward']}),
    ('Less', {
        'block': P.Less(),
        'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
        'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
        'skip': ['backward']}),
    ('RealDiv_0', {
        'block': P.RealDiv(),
        'desc_const': [Tensor(2048.0), Tensor(0.0)],
        'desc_inputs': [],
        'skip': ['backward']}),
    ('RealDiv', {
        'block': P.RealDiv(),
        'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
        'desc_bprop': [[4]]}),
    ('RealDiv_1', {
        'block': P.RealDiv(),
        'desc_inputs': [[512, 1024], [512, 1024]],
        'desc_bprop': [[512, 1024]]}),
    ('FloorDiv', {
        'block': P.FloorDiv(),
        'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
                        Tensor(np.random.rand(4).astype(np.float16))],
        'skip': ['backward']}),
Z
zhangz0911gm 已提交
382 383
    ('FloorMod', {
        'block': P.FloorMod(),
B
buxue 已提交
384 385
        'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
Z
zhunaipan 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    ('identity', {
        'block': ops.functional.identity,
        'desc_inputs': [[2, 2]],
        'skip': ['backward']}),
    ('MatMul_1', {
        'block': P.MatMul(transpose_a=False, transpose_b=False),
        'desc_inputs': [[1024, 160], [160, 1024]],
        'desc_bprop': [[1024, 1024]]}),
    ('MatMul_2', {
        'block': P.MatMul(transpose_a=True, transpose_b=True),
        'desc_inputs': [[160, 1024], [1024, 160]],
        'desc_bprop': [[1024, 1024]]}),
    ('Sub', {
        'block': P.Sub(),
        'desc_inputs': [[3], [3]],
        'desc_bprop': [[3]]}),
    ('TruncatedNormal', {
        'block': P.TruncatedNormal(),
404
        'desc_const': [(1, 2, 3)],
Z
zhunaipan 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        'desc_inputs': [],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('Select', {
        'block': P.Select(),
        'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
                        [2, 3], [2, 3]],
        'desc_bprop': [[2, 3]]}),
    ('Rank', {
        'block': P.Rank(),
        'desc_inputs': [[2, 3]],
        'skip': ['backward']}),
    ('InvertPermutation', {
        'block': P.InvertPermutation(),
        'desc_const': [(0, 3, 1, 2)],
        'desc_inputs': [],
        'skip': ['backward']}),
    ('Square', {
        'block': P.Square(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('Rsqrt', {
        'block': P.Rsqrt(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('Sqrt', {
        'block': P.Sqrt(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('RealDiv', {
        'block': P.RealDiv(),
        'desc_inputs': [[4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
    ('Div', {
        'block': P.Div(),
        'desc_inputs': [[4, 5], [2, 3, 4, 5]],
        'desc_bprop': [[2, 3, 4, 5]]}),
    ('Equal', {
        'block': P.Equal(),
        'desc_inputs': [[3, 4, 5], [4, 5]],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
    ('NotEqual', {
        'block': P.NotEqual(),
        'desc_inputs': [[4, 1], [2, 3, 4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
C
candanzg 已提交
450 451
    ('NotEqual_0', {
        'block': P.NotEqual(),
452
        'desc_inputs': [1, [2, 3, 4, 5]],
C
candanzg 已提交
453 454
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
        'skip': ['backward']}),
Z
zhunaipan 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467
    ('Greater', {
        'block': P.Greater(),
        'desc_inputs': [[2, 3, 4, 1], [4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
    ('GreaterEqual', {
        'block': P.GreaterEqual(),
        'desc_inputs': [[2, 3, 4, 1], [4, 5]],
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
    ('LogicalNot', {
        'block': P.LogicalNot(),
        'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
        'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
    ('LogicalAnd', {
468 469 470
        'block': P.LogicalAnd(),
        'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
        'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
Z
zhunaipan 已提交
471
    ('LogicalOr', {
472 473 474
        'block': P.LogicalOr(),
        'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
        'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
Z
zhunaipan 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    ('NpuAllocFloatStatus', {
        'block': P.NPUAllocFloatStatus(),
        'desc_inputs': [],
        'add_fack_input': True,
        'fack_input_type': np.float32,
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('NpuGetFloatStatus', {
        'block': P.NPUGetFloatStatus(),
        'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('NpuClearFloatStatus', {
        'block': P.NPUClearFloatStatus(),
        'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
        'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
        'skip': ['backward']}),
    ('CheckValid', {
        'block': P.CheckValid(),
        'desc_inputs': [[20000, 4], [3]],
        'desc_bprop': [[20000]],
        'skip': ['backward']}),
    ('NMSWithMask', {
        'block': P.NMSWithMask(0.5),
        'desc_inputs': [[128, 5]],
        'desc_bprop': [[128, 5], [128], [128]],
        'skip': ['backward']}),
    ('Abs', {
        'block': P.Abs(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4]]}),
    ('CumSum', {
        'block': P.CumSum(),
        'desc_const': [0],
509 510
        'desc_inputs': [Tensor(np.array([[3, 4], [1, 6]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[3, 4], [4, 10]]).astype(np.float16))]}),
Z
zhunaipan 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    ('ReduceSum_3', {
        'block': P.ReduceSum(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('ReduceSum_4', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('ReduceSum_5', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1, 1, 1]]}),
    ('ReduceSum_6', {
        'block': P.ReduceSum(),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1]]}),
    ('Sum_0', {
        'block': P.ReduceSum(),
        'desc_const': [(1,)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3]]}),
    ('Sum_1', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [(1,)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3, 1]]}),
    ('Sum_2', {
        'block': P.ReduceSum(),
        'desc_const': [(0, 1)],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1]]}),
    ('Sum_3', {
        'block': P.ReduceSum(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('Sum_4', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('Sum_5', {
        'block': P.ReduceSum(keep_dims=True),
        'desc_const': [()],
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1, 1, 1]]}),
    ('Sum_6', {
        'block': P.ReduceSum(),
        'desc_const': [()],
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[1]]}),
    ('Sign', {
        'block': P.Sign(),
        'desc_inputs': [[3]],
        'desc_bprop': [[3]]}),
    ('Round', {
        'block': P.Round(),
        'desc_inputs': [[3]],
Z
zhaozhenlong 已提交
571 572 573 574 575 576
        'desc_bprop': [[3]]}),
    ('Atan2', {
        'block': P.Atan2(),
        'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
                        Tensor(np.array([1, 1]).astype(np.float32))],
        'desc_bprop': [[2]]})
Z
zhunaipan 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
]

test_case_nn_ops = [
    ('BiasAdd', {
        'block': P.BiasAdd(),
        'desc_inputs': [[1, 3, 3, 3], [3]],
        'desc_bprop': [[1, 3, 3, 3]]}),
    ('BiasAddGrad', {
        'block': G.BiasAddGrad(),
        'desc_inputs': [[1, 3, 3, 3]],
        'skip': ['backward']}),
    ('Gelu', {
        'block': P.Gelu(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('GeluGrad', {
        'block': G.GeluGrad(),
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[2, 2]],
        'skip': ['backward']}),
    ('Tanh', {
        'block': P.Tanh(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('TanhGrad', {
        'block': G.TanhGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]],
        'skip': ['backward']}),
    ('ReLU', {
        'block': P.ReLU(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('ReLU6', {
        'block': P.ReLU6(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
614 615 616
    ('ReLUV2', {
        'block': P.ReLUV2(),
        'desc_inputs': [[1, 3, 4, 4]],
P
panyifeng 已提交
617
        'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
Z
zhunaipan 已提交
618 619 620 621
    ('ReLUGrad', {
        'block': G.ReluGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'skip': ['backward']}),
622 623 624 625 626 627 628 629
    ('Softplus', {
        'block': P.Softplus(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('SoftplusGrad', {
        'block': G.SoftplusGrad(),
        'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    ('Elu', {
        'block': P.Elu(),
        'desc_inputs': [[2, 3, 4]],
        'desc_bprop': [[2, 3, 4]]}),
    ('EluGrad', {
        'block': G.EluGrad(),
        'desc_inputs': [[2, 3, 4], [2, 3, 4]],
        'desc_bprop': [[2, 3, 4]],
        'skip': ['backward']}),
    ('Sigmoid', {
        'block': P.Sigmoid(),
        'desc_inputs': [[1, 3, 4, 4]],
        'desc_bprop': [[1, 3, 4, 4]]}),
    ('MaxPool', {
        'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[100, 3, 28, 28]],
        'desc_bprop': [[100, 3, 14, 14]]}),
    ('MaxPoolGrad', {
        'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
        'desc_bprop': [[3, 4, 6, 6]],
        'skip': ['backward']}),
    ('AvgPool', {
        'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_inputs': [[100, 3, 28, 28]],
        'desc_bprop': [[100, 3, 14, 14]]}),
    ('AvgPoolGrad', {
        'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
        'desc_const': [(3, 4, 6, 6)],
        'const_first': True,
        'desc_inputs': [[3, 4, 6, 6]],
        'desc_bprop': [[3, 4, 6, 6]],
        'skip': ['backward']}),
    ('MaxPoolWithArgmax', {
B
buxue 已提交
664
        'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
Z
zhunaipan 已提交
665
        'desc_inputs': [[128, 32, 32, 64]],
P
panyifeng 已提交
666
        'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
Z
zhunaipan 已提交
667 668 669 670 671 672 673 674 675 676 677 678
    ('SoftmaxCrossEntropyWithLogits', {
        'block': P.SoftmaxCrossEntropyWithLogits(),
        'desc_inputs': [[1, 10], [1, 10]],
        'desc_bprop': [[1], [1, 10]],
        'skip': ['backward_exec']}),
    ('Flatten', {
        'block': P.Flatten(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[128 * 32 * 8 * 16]]}),
    ('LogSoftmax', {
        'block': P.LogSoftmax(),
        'desc_inputs': [[64, 2]],
P
panyifeng 已提交
679
        'desc_bprop': [[64, 2]]}),
Z
zhunaipan 已提交
680 681 682 683 684
    ('LogSoftmaxGrad', {
        'block': G.LogSoftmaxGrad(),
        'desc_inputs': [[16, 1234], [16, 1234]],
        'desc_bprop': [[64, 2]],
        'skip': ['backward']}),
685 686 687 688 689 690 691 692 693
    ('L2Normalize', {
        'block': P.L2Normalize(),
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[2, 2]]}),
    ('L2NormalizeGrad', {
        'block': G.L2NormalizeGrad(),
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[2, 2]],
        'skip': ['backward']}),
Z
zhunaipan 已提交
694 695 696
    ('LayerNorm', {
        'block': P.LayerNorm(),
        'desc_inputs': [[2, 16], [16], [16]],
P
panyifeng 已提交
697
        'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
Z
zhunaipan 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    ('LayerNormGrad', {
        'block': G.LayerNormGrad(),
        'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
        'desc_bprop': [[2, 16], [16], [16]],
        'skip': ['backward']}),
    ('FusedBatchNorm', {
        'block': P.FusedBatchNorm(),
        'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'skip': []}),
    ('FusedBatchNormGrad', {
        'block': G.FusedBatchNormGrad(),
        'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
        'skip': ['backward']}),
    ('BatchNorm', {
        'block': P.BatchNorm(),
        'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'skip': []}),
    ('BatchNormGrad', {
        'block': G.BatchNormGrad(),
高东海's avatar
高东海 已提交
720
        'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
Z
zhunaipan 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
        'skip': ['backward']}),
    ('TopK', {
        'block': P.TopK(),
        'desc_const': [5],
        'desc_inputs': [[20, 20, 10]],
        'desc_bprop': [[20, 20, 5]],
        'skip': ['backward']}),
    ('GatherV2_0', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[2, 1, 2]]}),
    ('GatherV2_1', {
        'block': P.GatherV2(),
        'desc_const': [2],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[3, 1, 2]]}),
    ('GatherV2_2', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[3, 2, 1, 3]]}),
    ('GatherV2_3', {
        'block': P.GatherV2(),
        'desc_const': [2],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[3, 1, 3, 2]]}),
    ('GatherV2_4', {
        'block': P.GatherV2(),
        'desc_const': [1],
        'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
        'desc_bprop': [[32, 1, 1024]]}),
    ('GatherV2_5', {
        'block': P.GatherV2(),
        'desc_const': [-1],
        'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
        'desc_bprop': [[3, 1, 2]]}),
    ('GatherV2_6', {
        'block': P.GatherV2(),
        'desc_const': [0],
        'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
        'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
    ('UnsortedSegmentSum', {
        'block': P.UnsortedSegmentSum(),
        'desc_const': [1280],
767 768
        'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
        'desc_bprop': [[8192, 1024]],
Z
zhunaipan 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
        'skip': ['backward']}),
    ('UnsortedSegmentSum_1', {
        'block': P.UnsortedSegmentSum(),
        'desc_const': [4],
        'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
        'desc_bprop': [[4, 1, 3]],
        'skip': ['backward']}),
    ('DropoutGenMask', {
        'block': P.DropoutGenMask(),
        'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
        'desc_inputs': [],
        'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
        'skip': ['backward']}),
    ('DropoutDoMask', {
        'block': P.DropoutDoMask(),
        'desc_const': [Tensor(0.5)],
        'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
        'desc_bprop': [[64, 12, 128, 128]]}),
    ('Dropout', {
        'block': nn.Dropout(0.5),
        'desc_inputs': [[64, 12, 128, 128]],
        'desc_bprop': [[64, 12, 128, 128]]}),
    ('ReduceMean0', {
        'block': P.ReduceMean(),
        'desc_const': [(2,)],
        'desc_inputs': [[3, 2, 2]],
        'desc_bprop': [[3, 2]]}),
    ('ReduceMean1', {
        'block': P.ReduceMean(),
        'desc_const': [2],
        'desc_inputs': [[3, 2, 2]],
        'desc_bprop': [[3, 2]]}),
    ('All', {
        'block': P.ReduceAll(),
        'desc_const': [(1,)],
        'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
        'desc_bprop': [[3]],
        'skip': ['backward']}),
    ('DescConst', {
        'block': Tensor(np.array([2], np.float32)),
        'desc_inputs': [],
        'desc_bprop': [[1]],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('Fill', {
        'block': P.Fill(),
        'desc_const': [mstype.float32, (2, 3), 1.0],
        'desc_inputs': [],
        'desc_bprop': [[2, 3]],
        'skip': ['backward'],
        'add_fake_input': True}),
    ('OnesLike', {
        'block': P.OnesLike(),
        'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
    }),
    ('ZerosLike', {
        'block': P.ZerosLike(),
        'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
        'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
    }),
    ('Softmax', {
        'block': P.Softmax(),
        'desc_inputs': [[5, 5]],
        'desc_bprop': [[5, 5]]}),
    ('DepthwiseConv2dNative_1', {
        'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
L
liuxiao 已提交
836 837
        'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
        'desc_bprop': [[10, 32, 16, 16]]}),
Z
zhunaipan 已提交
838 839 840
    ('DepthwiseConv2dNative_2', {
        'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
        'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
L
liuxiao 已提交
841
        'desc_bprop': [[2592, 2048, 4, 4]]}),
Z
zhunaipan 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    ('SigmoidCrossEntropyWithLogits', {
        'block': P.SigmoidCrossEntropyWithLogits(),
        'desc_inputs': [[128, 10], [128, 10]],
        'desc_bprop': [[128, 10]]}),
    ('Pad', {
        'block': P.Pad(((1, 2), (2, 3))),
        'desc_inputs': [[7, 7]],
        'desc_bprop': [[10, 12]]}),
    ('BinaryCrossEntropy', {
        'block': P.BinaryCrossEntropy(),
        'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
        'desc_bprop': []}),
    ('SparseApplyAdagrad', {
        'block': P.SparseApplyAdagrad(0.5),
        'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
        'skip': ['backward']}),
    ('Flatten_1', {
        'block': NetForFlatten(),
        'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
        'skip': ['backward']}),
    ('Flatten_2', {
        'block': NetForFlatten(),
        'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
        'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
        'skip': ['backward']}),
    ('ArgmaxNet', {
        'block': ArgmaxNet(),
870 871
        'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
Z
zhunaipan 已提交
872 873 874
        'skip': ['backward']}),
    ('ArgminNet', {
        'block': ArgminNet(),
875 876
        'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
        'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
Z
zhunaipan 已提交
877 878 879 880
        'skip': ['backward']}),
    ('CumSumNet', {
        'block': CumSumNet(),
        'desc_const': [0],
881 882 883
        'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))],
        'desc_bprop': [
            Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))]}),
Z
zhunaipan 已提交
884 885 886 887
    ('OneHot', {
        'block': P.OneHot(),
        'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
        'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
P
panyifeng 已提交
888
        'desc_bprop': [[1, 3]]}),
Z
zhunaipan 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    ('ReduceProd_0', {
        'block': P.ReduceProd(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[2]]}),
    ('ReduceProd_1', {
        'block': P.ReduceProd(keep_dims=True),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[1, 2]]}),
    ('CumProd', {
        'block': P.CumProd(),
        'desc_const': [0],
        'desc_inputs': [[3, 2]],
        'desc_bprop': [[3, 2]]}),
    ('ApplyFtrl', {
905 906
        'block': ApplyFtrlNet(),
        'desc_inputs': [[3, 3]],
Z
zhunaipan 已提交
907 908
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
Z
zhaoting 已提交
909 910 911 912 913 914 915 916 917 918 919 920
    ('ApplyRMSProp', {
        'block': P.ApplyRMSProp(),
        'desc_const': [0.9, 0.0, 1e-10, 0.001],
        'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
    ('ApplyCenteredRMSProp', {
        'block': P.ApplyCenteredRMSProp(),
        'desc_const': [0.9, 0.0, 1e-10, 0.001],
        'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
L
liuxiao 已提交
921 922 923 924 925 926 927
    ('CTCLoss', {
        'block': P.CTCLoss(),
        'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
                        Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
                        Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
                        Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
        'desc_bprop': [[4], [6, 4, 6]]}),
L
liuxiao 已提交
928 929
    ('L2Loss_1', {
        'block': P.L2Loss(),
L
liuxiao 已提交
930
        'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
L
liuxiao 已提交
931 932 933 934 935
        'desc_bprop': []}),
    ('L2Loss_2', {
        'block': P.L2Loss(),
        'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
        'desc_bprop': []}),
936 937 938 939 940 941 942 943 944
    ('ResizeBilinear', {
        'block': P.ResizeBilinear((5, 5)),
        'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
        'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}),
    ('ResizeBilinearGrad', {
        'block': G.ResizeBilinearGrad(),
        'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
        'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
        'skip': ['backward']}),
945 946 947
    ('ROIAlign', {
        'block': P.ROIAlign(7, 7, 0.03125, 2),
        'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
J
jinyaohui 已提交
948
        'desc_bprop': [[7, 7]]}),
949 950 951 952 953
    ('ROIAlignGrad', {
        'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
        'desc_inputs': [[1, 1, 2, 2], [1, 5]],
        'desc_bprop': [[1, 1, 2, 2]],
        'skip': ['backward']}),
Z
zhaozhenlong 已提交
954 955 956 957 958 959 960
    ('LARSUpdate', {
        'block': P.LARSUpdate(1e-05, 0.001, False),
        'desc_const': [0.0, 0.001],
        'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
    ('SGD', {
J
jinyaohui 已提交
961
        'block': P.SGD(0.0, 0.0, False),
Z
zhaozhenlong 已提交
962 963 964
        'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
        'desc_bprop': [3, 3],
        'skip': ['backward']}),
Z
zhunaipan 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
]

test_case_array_ops = [
    ('SpaceToDepth', {
        'block': P.SpaceToDepth(2),
        'desc_inputs': [[1, 3, 2, 2]],
        'desc_bprop': [[1, 12, 1, 1]]}),
    ('DepthToSpace', {
        'block': P.DepthToSpace(2),
        'desc_inputs': [[1, 12, 1, 1]],
        'desc_bprop': [[1, 3, 2, 2]]}),
    ('Split', {
        'block': P.Split(1, 2),
        'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
        'skip': ['backward']}),
    ('Argmax', {
        'block': P.Argmax(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [0],
        'skip': ['backward']}),
    ('Argmin', {
        'block': P.Argmin(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [1],
        'skip': ['backward']}),
    ('ArgMaxWithValue', {
        'block': P.ArgMaxWithValue(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[1], [1]],
        'skip': ['backward']}),
    ('ArgMinWithValue', {
        'block': P.ArgMinWithValue(),
        'desc_inputs': [[128, 32, 32, 64]],
        'desc_bprop': [[1], [1]],
        'skip': ['backward']}),
    ('Transpose_dim3', {
        'block': P.Transpose(),
        'desc_const': [(0, 2, 1)],
        'desc_inputs': [[1, 2, 3]],
        'desc_bprop': [[1, 3, 2]]}),
    ('Transpose_dim4', {
        'block': P.Transpose(),
        'desc_const': [(0, 1, 2, 3)],
        'desc_inputs': [[1, 2, 3, 4]],
        'desc_bprop': [[1, 2, 4, 3]]}),
    ('AddN', {
        'block': NetForTupleInput(P.AddN()),
        'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]],
        'skip': ['backward']}),
    ('Shape', {
        'block': P.Shape(),
        'desc_inputs': [[3, 3, 2, 2]],
        'skip': ['backward']}),
    ('Reshape', {
        'block': P.Reshape(),
        'desc_const': [(64,)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64]]}),
    ('Cast', {
        'block': P.Cast(),
        'desc_const': [mstype.int32],
        'desc_inputs': [[2, 3, 4, 5]],
P
panyifeng 已提交
1028
        'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
Z
zhunaipan 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    ('ExpandDims', {
        'block': P.ExpandDims(),
        'desc_const': [0],
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[1, 2, 2]]}),
    ('ExpandDims_1', {
        'block': P.ExpandDims(),
        'desc_const': [-1],
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[2, 2, 1]]}),
    ('Squeeze', {
        'block': P.Squeeze(2),
        'desc_inputs': [[3, 2, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Squeeze_0', {
        'block': P.Squeeze(),
        'desc_inputs': [[3, 1, 2, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Squeeze_1', {
        'block': P.Squeeze(),
        'desc_inputs': [[1, 1, 1, 1]],
        'desc_bprop': [1.0],
        'skip': ['backward']}),
    ('Squeeze_2', {
        'block': P.Squeeze((2, 3)),
        'desc_inputs': [[3, 2, 1, 1]],
        'desc_bprop': [[3, 2]]}),
    ('Size', {
        'block': P.Size(),
        'desc_inputs': [[2, 3, 5]],
        'skip': ['backward']}),
    ('Tile_0', {
        'block': P.Tile(),
        'desc_const': [(1, 2)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64, 2]]}),
    ('Tile_1', {
        'block': P.Tile(),
        'desc_const': [(1, 1)],
        'desc_inputs': [[64, 1]],
        'desc_bprop': [[64, 1]]}),
    ('Tile_2', {
        'block': P.Tile(),
        'desc_const': [(2, 1, 1, 2)],
        'desc_inputs': [[2, 2, 2]],
        'desc_bprop': [[2, 2, 2, 4]]}),
    ('ConcatV2_0', {
        'block': P.Concat(),
        'desc_inputs': [
            (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
             Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
P
panyifeng 已提交
1080
        'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
Z
zhunaipan 已提交
1081 1082 1083 1084
    ('ConcatV2_1', {
        'block': P.Concat(axis=2),
        'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
                         Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
P
panyifeng 已提交
1085
        'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
Z
zhunaipan 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    ('ConcatV2_2', {
        'block': NetForConcat(),
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[4, 2]]}),
    ('ConcatV2_3', {
        'block': NetForConcat1(),
        'desc_inputs': [[2, 2], [2, 2]],
        'desc_bprop': [[4, 2]]}),
    ('ConcatV2_4', {
        'block': P.Concat(axis=0),
        'desc_inputs': [
            (Tensor(np.ones((3, 2, 3), np.float32)),
             Tensor(np.ones((5, 2, 3), np.float32)),
             Tensor(np.ones((6, 2, 3), np.float32)))],
        'desc_bprop': [[14, 2, 3]]}),
    ('ConcatV2_5', {
        'block': P.Concat(axis=-1),
        'desc_inputs': [(Tensor(np.array([1], np.float32)),
                         Tensor(np.array([1], np.float32)),
                         Tensor(np.array([1], np.float32)))],
1106
        'desc_bprop': [[3, ]]}),
1107 1108
    ('Pack_0', {
        'block': NetForPackInput(P.Pack()),
1109 1110
        'desc_inputs': [[2, 2], [2, 2], [2, 2]],
        'desc_bprop': [[3, 2, 2]],
L
liuxiao 已提交
1111
    }),
1112 1113
    ('Pack_1', {
        'block': NetForPackInput(P.Pack(axis=-2)),
1114 1115
        'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
        'desc_bprop': [[3, 2, 3, 3]],
L
liuxiao 已提交
1116
    }),
1117 1118
    ('Pack_2', {
        'block': NetForPackInput(P.Pack()),
1119 1120
        'desc_inputs': [[128, 128], [128, 128]],
        'desc_bprop': [[2, 128, 128]],
L
liuxiao 已提交
1121
    }),
1122 1123
    ('Unpack_0', {
        'block': NetForUnpackInput(P.Unpack(axis=0)),
1124 1125
        'desc_inputs': [[2, 4]],
        'desc_bprop': [[4], [4]],
L
liuxiao 已提交
1126
    }),
1127 1128
    ('Unpack_1', {
        'block': NetForUnpackInput(P.Unpack(axis=-1)),
1129 1130
        'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
        'desc_bprop': [[1], [1], [1]],
L
liuxiao 已提交
1131
    }),
1132
    ('Diag_1', {
Z
zhaozhenlong 已提交
1133 1134 1135 1136
        'block': P.Diag(),
        'desc_inputs': [[4]],
        'desc_bprop': [[4, 4]],
    }),
1137 1138 1139 1140 1141 1142
    ('Diag_2', {
        'block': P.Diag(),
        'desc_inputs': [[4, 4]],
        'desc_bprop': [[4, 4, 4, 4]],
    }),
    ('DiagPart_1', {
Z
zhaozhenlong 已提交
1143 1144 1145 1146
        'block': P.DiagPart(),
        'desc_inputs': [[4, 4]],
        'desc_bprop': [[4]],
    }),
1147 1148 1149 1150 1151
    ('DiagPart_2', {
        'block': P.DiagPart(),
        'desc_inputs': [[4, 4, 4, 4]],
        'desc_bprop': [[4, 4]],
    }),
1152 1153 1154 1155 1156 1157 1158 1159
    ('SpaceToBatch_1', {
        'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
        'desc_inputs': [[1, 3, 2, 2]],
        'desc_bprop': [[4, 3, 1, 1]],
    }),
    ('SpaceToBatch_2', {
        'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
        'desc_inputs': [[1, 3, 2, 2]],
P
panyifeng 已提交
1160
        'desc_bprop': [[4, 3, 2, 3]],
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    }),
    ('BatchToSpace_1', {
        'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
        'desc_inputs': [[4, 3, 1, 1]],
        'desc_bprop': [[1, 3, 2, 2]],
    }),
    ('BatchToSpace_2', {
        'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
        'desc_inputs': [[4, 3, 1, 1]],
        'desc_bprop': [[1, 3, 2, 1]],
    }),
Z
zhunaipan 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
]

test_case_other_ops = [
    ('ScalarLog', {
        'block': F.scalar_log,
        'desc_const': [0.0],
        'desc_inputs': [],
        'desc_bprop': [1],
        'skip': ['backward']}),
    ('BoundingBoxEncode', {
        'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]],
        'skip': ['backward']}),
    ('BoundingBoxDecode', {
        'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]],
        'skip': ['backward']}),
    ('GatherNd', {
        'block': P.GatherNd(),
        'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
                        Tensor(np.ones((2, 4), np.int32))),
        'desc_bprop': [[2]]}),
    ('ScatterNd', {
        'block': P.ScatterNd(),
        'desc_const': [(3, 3)],
        'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
                        Tensor(np.ones((2,), np.int32))),
P
panyifeng 已提交
1201
        'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
1202 1203 1204 1205 1206
    ('ScatterMax', {
        'block': ScatterMax(),
        'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
                        Tensor(np.ones([2, 2, 3], np.float32) * 99)),
        'skip': ['backward']}),
Z
zhunaipan 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    ('SmoothL1Loss', {
        'block': P.SmoothL1Loss(),
        'desc_inputs': [[256, 4], [256, 4]],
        'desc_bprop': [[256, 4]]}),
    ('IOU', {
        'block': P.IOU(),
        'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
        'desc_bprop': [[128, 256]]}),
    ('Summary', {
        'block': SummaryNet(),
        'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
                        Tensor(np.array([1.2]).astype(np.float32))],
        'skip': ['backward']}),
1220
    ('ConfusionMulGrad_1', {
1221
        'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
1222 1223 1224 1225
        'desc_inputs': [[3, 2], [3, 2], [3, 2]],
        'desc_bprop': [[3, 2], [2]],
        'skip': ['backward']}),
    ('ConfusionMulGrad_2', {
1226
        'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
1227 1228 1229 1230
        'desc_inputs': [[3, 2], [3, 2], [3, 2]],
        'desc_bprop': [[3, 2], [1, 2]],
        'skip': ['backward']}),
    ('ConfusionMulGrad_3', {
1231
        'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
1232 1233 1234
        'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
        'desc_bprop': [[2, 3, 4], [1, 1, 1]],
        'skip': ['backward']}),
O
ougongchang 已提交
1235 1236 1237 1238 1239
    ('HistogramSummary', {
        'block': HistogramSummaryNet(),
        'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
                        Tensor(np.array([1.2]).astype(np.float32))],
        'skip': ['backward']}),
1240

Z
zhunaipan 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
]

test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm


test_exec_case = test_case

test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
1252
                                           'backward' not in x[1]['skip'], test_case)
Z
zhunaipan 已提交
1253 1254 1255 1256 1257


@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
1258
    context.set_context(mode=context.GRAPH_MODE)
Z
zhunaipan 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    return test_exec_case


@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
def test_backward_exec():
    context.set_context(mode=context.GRAPH_MODE)
    return test_backward_exec_case


raise_set = [
    ('Cast_Error', {
        'block': (P.Cast(), {'exception': TypeError}),
        'desc_const': [mstype.int32],
        'desc_inputs': ['wrong input'],
        'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
    ('Maximum_Error', {
        'block': (P.Maximum(), {'exception': TypeError}),
        'desc_const': [(1, 2, 3)],
        'desc_inputs': [[2, 3, 3, 5]],
        'desc_bprop': [[2, 3, 3, 5]]}),
    ('Shape_error', {
        'block': (P.Shape(), {'exception': TypeError}),
        'desc_inputs': [(64, 1)],
        'desc_bprop': [[64]]}),
    ('Flatten_Error', {
        'block': (NetForFlatten0D(), {'exception': ValueError}),
        'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
        'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
1287 1288 1289 1290 1291 1292
    ('ScatterNdUpdate', {
        'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
        'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
                        Tensor(np.ones((2, 2), np.int32)),
                        Tensor(np.ones((2,), np.float32))),
        'desc_bprop': [[2, 3]]}),
1293 1294
    ('Pack', {
        'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
1295 1296
        'desc_inputs': [[2, 2]],
        'desc_bprop': [[1, 2, 2]]}),
1297 1298
    ('PReLU', {
        'block': (P.PReLU(), {'exception': ValueError}),
1299 1300
        'desc_inputs': [[2], [1]],
        'desc_bprop': [[1]]}),
1301

Z
zhunaipan 已提交
1302 1303 1304 1305 1306 1307
]


@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception():
    return raise_set