Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a7ad0d0a
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a7ad0d0a
编写于
5月 28, 2020
作者:
L
liuwenhao4
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fixing some tiny faults about Pylint in my code(ops)
上级
fb7e4eac
变更
39
隐藏空白更改
内联
并排
Showing
39 changed file
with
114 addition
and
133 deletion
+114
-133
tests/st/ops/ascend/test_add.py
tests/st/ops/ascend/test_add.py
+2
-2
tests/st/ops/ascend/test_biasAddGrad.py
tests/st/ops/ascend/test_biasAddGrad.py
+2
-2
tests/st/ops/ascend/test_conv2dGradFilter.py
tests/st/ops/ascend/test_conv2dGradFilter.py
+2
-2
tests/st/ops/ascend/test_drop_out_gen_mask.py
tests/st/ops/ascend/test_drop_out_gen_mask.py
+3
-3
tests/st/ops/ascend/test_equal_count.py
tests/st/ops/ascend/test_equal_count.py
+2
-2
tests/st/ops/ascend/test_matmul.py
tests/st/ops/ascend/test_matmul.py
+2
-2
tests/st/ops/ascend/test_maxpool_with_argmax.py
tests/st/ops/ascend/test_maxpool_with_argmax.py
+0
-2
tests/st/ops/ascend/test_sparseSoftmaxCrossEntropyWithLogits.py
...st/ops/ascend/test_sparseSoftmaxCrossEntropyWithLogits.py
+1
-1
tests/st/ops/ascend/test_tbe_ops/test_add.py
tests/st/ops/ascend/test_tbe_ops/test_add.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_filter.py
...st/ops/ascend/test_tbe_ops/test_conv2d_backprop_filter.py
+4
-6
tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_input.py
.../st/ops/ascend/test_tbe_ops/test_conv2d_backprop_input.py
+7
-9
tests/st/ops/ascend/test_tbe_ops/test_gelu_grad_sens.py
tests/st/ops/ascend/test_tbe_ops/test_gelu_grad_sens.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_less.py
tests/st/ops/ascend/test_tbe_ops/test_less.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_less_equal.py
tests/st/ops/ascend/test_tbe_ops/test_less_equal.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_logical_and.py
tests/st/ops/ascend/test_tbe_ops/test_logical_and.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_logical_not.py
tests/st/ops/ascend/test_tbe_ops/test_logical_not.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_logical_or.py
tests/st/ops/ascend/test_tbe_ops/test_logical_or.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_matmul.py
tests/st/ops/ascend/test_tbe_ops/test_matmul.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_matmul_failed.py
tests/st/ops/ascend/test_tbe_ops/test_matmul_failed.py
+2
-2
tests/st/ops/ascend/test_tbe_ops/test_maximum_grad.py
tests/st/ops/ascend/test_tbe_ops/test_maximum_grad.py
+4
-4
tests/st/ops/ascend/test_tbe_ops/test_minimum_grad.py
tests/st/ops/ascend/test_tbe_ops/test_minimum_grad.py
+4
-4
tests/st/ops/ascend/test_tbe_ops/test_relu_grad.py
tests/st/ops/ascend/test_tbe_ops/test_relu_grad.py
+2
-2
tests/st/ops/ascend/test_tdt_data_ms.py
tests/st/ops/ascend/test_tdt_data_ms.py
+12
-12
tests/st/ops/cpu/test_concat_op.py
tests/st/ops/cpu/test_concat_op.py
+1
-1
tests/st/ops/cpu/test_conv2d_backprop_filter_op.py
tests/st/ops/cpu/test_conv2d_backprop_filter_op.py
+4
-6
tests/st/ops/cpu/test_conv2d_backprop_input_op.py
tests/st/ops/cpu/test_conv2d_backprop_input_op.py
+8
-10
tests/st/ops/cpu/test_conv2d_op.py
tests/st/ops/cpu/test_conv2d_op.py
+7
-10
tests/st/ops/cpu/test_gather_op.py
tests/st/ops/cpu/test_gather_op.py
+2
-3
tests/st/ops/cpu/test_momentum_op.py
tests/st/ops/cpu/test_momentum_op.py
+3
-5
tests/st/ops/cpu/test_slice_op.py
tests/st/ops/cpu/test_slice_op.py
+2
-2
tests/st/ops/custom_ops_tbe/add3_impl.py
tests/st/ops/custom_ops_tbe/add3_impl.py
+4
-4
tests/st/ops/custom_ops_tbe/cus_add3.py
tests/st/ops/custom_ops_tbe/cus_add3.py
+0
-3
tests/st/ops/custom_ops_tbe/cus_square.py
tests/st/ops/custom_ops_tbe/cus_square.py
+2
-3
tests/st/ops/gpu/test_select_op.py
tests/st/ops/gpu/test_select_op.py
+2
-2
tests/ut/python/ops/test_array_ops.py
tests/ut/python/ops/test_array_ops.py
+4
-4
tests/ut/python/ops/test_math_ops_check.py
tests/ut/python/ops/test_math_ops_check.py
+2
-2
tests/ut/python/ops/test_multitype_ops.py
tests/ut/python/ops/test_multitype_ops.py
+1
-1
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+3
-2
tests/ut/python/ops/test_ops_reid.py
tests/ut/python/ops/test_ops_reid.py
+4
-4
未找到文件。
tests/st/ops/ascend/test_add.py
浏览文件 @
a7ad0d0a
...
...
@@ -27,8 +27,8 @@ class Net(nn.Cell):
super
(
Net
,
self
).
__init__
()
self
.
add
=
P
.
TensorAdd
()
def
construct
(
self
,
x
,
y
):
return
self
.
add
(
x
,
y
)
def
construct
(
self
,
x
_
,
y_
):
return
self
.
add
(
x
_
,
y_
)
x
=
np
.
ones
([
1
,
3
,
3
,
4
]).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_biasAddGrad.py
浏览文件 @
a7ad0d0a
...
...
@@ -31,8 +31,8 @@ class Net(nn.Cell):
# 'normal', [2, 3, 3, 4]), name='dout')
@
ms_function
def
construct
(
self
,
dout
):
return
self
.
bias_add_grad
(
dout
)
def
construct
(
self
,
dout
_
):
return
self
.
bias_add_grad
(
dout
_
)
dout
=
np
.
ones
([
2
,
3
,
4
,
4
]).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_conv2dGradFilter.py
浏览文件 @
a7ad0d0a
...
...
@@ -34,8 +34,8 @@ class Net(nn.Cell):
self
.
get_shape
=
P
.
Shape
()
@
ms_function
def
construct
(
self
,
x
,
out
):
return
self
.
conv2d_grad
(
out
,
x
,
self
.
get_shape
(
self
.
y
))
def
construct
(
self
,
x
_
,
out_
):
return
self
.
conv2d_grad
(
out
_
,
x_
,
self
.
get_shape
(
self
.
y
))
x
=
Tensor
(
np
.
array
([[[
...
...
tests/st/ops/ascend/test_drop_out_gen_mask.py
浏览文件 @
a7ad0d0a
...
...
@@ -29,9 +29,9 @@ class Net(nn.Cell):
self
.
mask
=
P
.
DropoutGenMask
(
10
,
28
)
self
.
shape
=
P
.
Shape
()
def
construct
(
self
,
x
,
y
):
shape_x
=
self
.
shape
(
x
)
return
self
.
mask
(
shape_x
,
y
)
def
construct
(
self
,
x
_
,
y_
):
shape_x
=
self
.
shape
(
x
_
)
return
self
.
mask
(
shape_x
,
y
_
)
x
=
np
.
ones
([
2
,
4
,
2
,
2
]).
astype
(
np
.
int32
)
...
...
tests/st/ops/ascend/test_equal_count.py
浏览文件 @
a7ad0d0a
...
...
@@ -27,8 +27,8 @@ class Net(nn.Cell):
super
(
Net
,
self
).
__init__
()
self
.
equal_count
=
P
.
EqualCount
()
def
construct
(
self
,
x
,
y
):
return
self
.
equal_count
(
x
,
y
)
def
construct
(
self
,
x
_
,
y_
):
return
self
.
equal_count
(
x
_
,
y_
)
x
=
np
.
random
.
randn
(
32
).
astype
(
np
.
int32
)
...
...
tests/st/ops/ascend/test_matmul.py
浏览文件 @
a7ad0d0a
...
...
@@ -29,8 +29,8 @@ class Net(nn.Cell):
self
.
matmul
=
P
.
MatMul
()
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
matmul
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
matmul
(
x1
_
,
x2_
)
x1
=
np
.
random
.
randn
(
1
,
3
).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_maxpool_with_argmax.py
浏览文件 @
a7ad0d0a
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore.common.api
import
ms_function
...
...
tests/st/ops/ascend/test_sparseSoftmaxCrossEntropyWithLogits.py
浏览文件 @
a7ad0d0a
...
...
@@ -63,7 +63,7 @@ def test_net():
expect
=
loss_np
SparseSoftmaxCrossEntropyWithLogits
=
Net
()
loss_me
=
SparseSoftmaxCrossEntropyWithLogits
(
Tensor
(
logits
),
Tensor
(
labels
))
'''assert'''
# assert
assert
np
.
allclose
(
expect
.
flatten
(),
loss_me
.
asnumpy
().
flatten
(),
0.01
,
0.01
)
print
(
loss_me
.
asnumpy
().
flatten
())
print
(
"-------------------------"
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_add.py
浏览文件 @
a7ad0d0a
...
...
@@ -25,8 +25,8 @@ class Net(nn.Cell):
super
(
Net
,
self
).
__init__
()
self
.
add
=
P
.
TensorAdd
()
def
construct
(
self
,
x
,
y
):
return
self
.
add
(
x
,
y
)
def
construct
(
self
,
x
_
,
y_
):
return
self
.
add
(
x
_
,
y_
)
x
=
np
.
random
.
randn
(
1
,
3
,
3
,
4
).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_filter.py
浏览文件 @
a7ad0d0a
...
...
@@ -65,12 +65,10 @@ def test_conv2d_backprop_filter():
conv2d_filter
=
Net
()
output
=
conv2d_filter
()
print
(
"================================"
)
"""
expect output:
[[[[ -60, -142, -265]
[-104, -211, -322]
[-102, -144, -248]]]]
"""
# expect output:
# [[[[ -60, -142, -265]
# [-104, -211, -322]
# [-102, -144, -248]]]]
expect
=
np
.
array
([[[[
-
60
,
-
142
,
-
265
],
[
-
104
,
-
211
,
-
322
],
[
-
102
,
-
144
,
-
248
]]]]).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_input.py
浏览文件 @
a7ad0d0a
...
...
@@ -64,15 +64,13 @@ def test_conv2d_backprop_input():
conv2d_input
=
Net
()
output
=
conv2d_input
()
print
(
"================================"
)
"""
expect output:
[[[[ -5, -4, 5, 12, 0, -8]
[-15, -6, 17, 17, -2, -11]
[-15, -8, 13, 12, 2, -4]
[-13, -6, 8, -14, 5, 20]
[ -3, -4, -4, -19, 7, 23]
[ -3, -2, 0, -14, 3, 16]]]]
"""
# expect output:
# [[[[ -5, -4, 5, 12, 0, -8]
# [-15, -6, 17, 17, -2, -11]
# [-15, -8, 13, 12, 2, -4]
# [-13, -6, 8, -14, 5, 20]
# [ -3, -4, -4, -19, 7, 23]
# [ -3, -2, 0, -14, 3, 16]]]]
expect
=
np
.
array
([[[[
-
5
,
-
4
,
5
,
12
,
0
,
-
8
],
[
-
15
,
-
6
,
17
,
17
,
-
2
,
-
11
],
[
-
15
,
-
8
,
13
,
12
,
2
,
-
4
],
...
...
tests/st/ops/ascend/test_tbe_ops/test_gelu_grad_sens.py
浏览文件 @
a7ad0d0a
...
...
@@ -59,7 +59,7 @@ def gelu_backward_cmp(input_shape):
class
MEGeluLargeIn
(
Cell
):
def
__init__
(
self
):
super
(
GELU
,
self
).
__init__
()
super
(
MEGeluLargeIn
,
self
).
__init__
()
self
.
matmul
=
P
.
MatMul
()
self
.
gelu
=
P
.
Gelu
()
...
...
@@ -79,7 +79,7 @@ class GradLargeIn(Cell):
def
gelu_backward_me_large_in_impl
(
x1
,
x2
,
output_grad
):
n
=
G
radLargeIn
()
n
=
G
ELU
()
grad_with_sense
=
GradLargeIn
(
n
)
grad_with_sense
.
set_train
()
input_grad
=
grad_with_sense
(
x1
,
x2
,
output_grad
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_less.py
浏览文件 @
a7ad0d0a
...
...
@@ -29,8 +29,8 @@ class Net(nn.Cell):
self
.
less
=
P
.
Less
()
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
less
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
less
(
x1
_
,
x2_
)
x1
=
np
.
random
.
randn
(
3
,
4
).
astype
(
np
.
float16
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_less_equal.py
浏览文件 @
a7ad0d0a
...
...
@@ -29,8 +29,8 @@ class Net(nn.Cell):
self
.
less_equal
=
P
.
LessEqual
()
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
less_equal
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
less_equal
(
x1
_
,
x2_
)
x1
=
np
.
random
.
randn
(
3
,
4
).
astype
(
np
.
float16
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_logical_and.py
浏览文件 @
a7ad0d0a
...
...
@@ -28,8 +28,8 @@ class Net(nn.Cell):
self
.
logical_and
=
P
.
LogicalAnd
()
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
logical_and
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
logical_and
(
x1
_
,
x2_
)
x1
=
[
True
,
True
,
False
,
False
,
True
,
True
,
False
,
False
]
...
...
tests/st/ops/ascend/test_tbe_ops/test_logical_not.py
浏览文件 @
a7ad0d0a
...
...
@@ -28,8 +28,8 @@ class Net(nn.Cell):
self
.
logical_not
=
P
.
LogicalNot
()
@
ms_function
def
construct
(
self
,
x
1
):
return
self
.
logical_not
(
x
1
)
def
construct
(
self
,
x
):
return
self
.
logical_not
(
x
)
x1
=
[
True
,
True
,
False
,
False
,
True
,
True
,
False
,
False
]
...
...
tests/st/ops/ascend/test_tbe_ops/test_logical_or.py
浏览文件 @
a7ad0d0a
...
...
@@ -28,8 +28,8 @@ class Net(nn.Cell):
self
.
logical_or
=
P
.
LogicalOr
()
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
logical_or
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
logical_or
(
x1
_
,
x2_
)
x1
=
[
True
,
True
,
False
,
False
,
True
,
True
,
False
,
False
]
...
...
tests/st/ops/ascend/test_tbe_ops/test_matmul.py
浏览文件 @
a7ad0d0a
...
...
@@ -27,8 +27,8 @@ class Net(nn.Cell):
self
.
matmul
=
P
.
MatMul
()
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
matmul
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
matmul
(
x1
_
,
x2_
)
x1
=
np
.
random
.
randn
(
1
,
3
).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_matmul_failed.py
浏览文件 @
a7ad0d0a
...
...
@@ -29,8 +29,8 @@ class Net(nn.Cell):
self
.
matmul
=
P
.
MatMul
(
transpose_b
=
True
)
@
ms_function
def
construct
(
self
,
x1
,
x2
):
return
self
.
matmul
(
x1
,
x2
)
def
construct
(
self
,
x1
_
,
x2_
):
return
self
.
matmul
(
x1
_
,
x2_
)
x1
=
np
.
random
.
randn
(
10
,
1
).
astype
(
np
.
float32
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_maximum_grad.py
浏览文件 @
a7ad0d0a
...
...
@@ -44,15 +44,15 @@ class GradWrap(Cell):
return
gout
def
gen_data
(
inputA_np
,
inputB_np
,
grad
=
None
):
def
gen_data
(
inputA_np
,
inputB_np
,
grad
_
=
None
):
inputA_me
=
inputA_np
if
isinstance
(
inputA_np
,
np
.
ndarray
):
inputA_me
=
Tensor
(
inputA_me
)
inputB_me
=
inputB_np
if
isinstance
(
inputB_np
,
np
.
ndarray
):
inputB_me
=
Tensor
(
inputB_np
)
if
grad
is
None
:
grad
=
np
.
random
.
randn
(
2
).
astype
(
np
.
float32
)
if
grad
_
is
None
:
grad
_
=
np
.
random
.
randn
(
2
).
astype
(
np
.
float32
)
print
(
"----inputA---"
)
print
(
inputA_np
)
print
(
"----inputB---"
)
...
...
@@ -60,7 +60,7 @@ def gen_data(inputA_np, inputB_np, grad=None):
net_me
=
GradWrap
(
MaxNetMe
())
net_me
.
set_train
()
output
=
net_me
(
inputA_me
,
inputB_me
,
Tensor
(
grad
))
output
=
net_me
(
inputA_me
,
inputB_me
,
Tensor
(
grad
_
))
print
(
"---me---"
)
print
(
output
[
0
].
asnumpy
())
print
(
output
[
1
].
asnumpy
())
...
...
tests/st/ops/ascend/test_tbe_ops/test_minimum_grad.py
浏览文件 @
a7ad0d0a
...
...
@@ -44,7 +44,7 @@ class GradWrap(Cell):
return
gout
def
gen_data
(
inputA_np
,
inputB_np
,
grad
=
None
):
def
gen_data
(
inputA_np
,
inputB_np
,
grad
_
=
None
):
inputA_me
=
inputA_np
if
isinstance
(
inputA_np
,
np
.
ndarray
):
inputA_me
=
Tensor
(
inputA_me
)
...
...
@@ -53,12 +53,12 @@ def gen_data(inputA_np, inputB_np, grad=None):
if
isinstance
(
inputB_np
,
np
.
ndarray
):
inputB_me
=
Tensor
(
inputB_np
)
if
grad
is
None
:
grad
=
np
.
random
.
randn
(
1
,
3
,
2
,
2
).
astype
(
np
.
float32
)
if
grad
_
is
None
:
grad
_
=
np
.
random
.
randn
(
1
,
3
,
2
,
2
).
astype
(
np
.
float32
)
print
(
inputA_np
)
print
(
inputB_np
)
print
(
grad
)
print
(
grad
_
)
net_me
=
GradWrap
(
MinNetMe
())
net_me
.
set_train
()
...
...
tests/st/ops/ascend/test_tbe_ops/test_relu_grad.py
浏览文件 @
a7ad0d0a
...
...
@@ -31,8 +31,8 @@ class Grad(nn.Cell):
self
.
network
=
network
@
ms_function
def
construct
(
self
,
input
,
output_grad
):
return
self
.
grad
(
self
.
network
)(
input
,
output_grad
)
def
construct
(
self
,
input
Value
,
output_grad
):
return
self
.
grad
(
self
.
network
)(
input
Value
,
output_grad
)
class
Net
(
nn
.
Cell
):
...
...
tests/st/ops/ascend/test_tdt_data_ms.py
浏览文件 @
a7ad0d0a
...
...
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
sys
import
numpy
as
np
import
mindspore.context
as
context
import
mindspore.dataset
as
ds
...
...
@@ -31,8 +31,8 @@ SCHEMA_DIR = "{0}/resnet_all_datasetSchema.json".format(data_path)
def
test_me_de_train_dataset
():
data_list
=
[
"{0}/train-00001-of-01024.data"
.
format
(
data_path
)]
data_set
=
ds
.
TFRecordDataset
(
data_list
,
schema
=
SCHEMA_DIR
,
columns_list
=
[
"image/encoded"
,
"image/class/label"
])
data_set
_new
=
ds
.
TFRecordDataset
(
data_list
,
schema
=
SCHEMA_DIR
,
columns_list
=
[
"image/encoded"
,
"image/class/label"
])
resize_height
=
224
resize_width
=
224
...
...
@@ -42,21 +42,21 @@ def test_me_de_train_dataset():
# define map operations
decode_op
=
vision
.
Decode
()
resize_op
=
vision
.
Resize
(
resize_height
,
resize_width
,
resize_op
=
vision
.
Resize
(
(
resize_height
,
resize_width
)
,
Inter
.
LINEAR
)
# Bilinear as default
rescale_op
=
vision
.
Rescale
(
rescale
,
shift
)
# apply map operations on images
data_set
=
data_set
.
map
(
input_columns
=
"image/encoded"
,
operations
=
decode_op
)
data_set
=
data_set
.
map
(
input_columns
=
"image/encoded"
,
operations
=
resize_op
)
data_set
=
data_set
.
map
(
input_columns
=
"image/encoded"
,
operations
=
rescale_op
)
data_set
_new
=
data_set_new
.
map
(
input_columns
=
"image/encoded"
,
operations
=
decode_op
)
data_set
_new
=
data_set_new
.
map
(
input_columns
=
"image/encoded"
,
operations
=
resize_op
)
data_set
_new
=
data_set_new
.
map
(
input_columns
=
"image/encoded"
,
operations
=
rescale_op
)
hwc2chw_op
=
vision
.
HWC2CHW
()
data_set
=
data_set
.
map
(
input_columns
=
"image/encoded"
,
operations
=
hwc2chw_op
)
data_set
=
data_set
.
repeat
(
1
)
data_set
_new
=
data_set_new
.
map
(
input_columns
=
"image/encoded"
,
operations
=
hwc2chw_op
)
data_set
_new
=
data_set_new
.
repeat
(
1
)
# apply batch operations
batch_size
=
32
data_set
=
data_set
.
batch
(
batch_size
,
drop_remainder
=
True
)
return
data_set
batch_size
_new
=
32
data_set
_new
=
data_set_new
.
batch
(
batch_size_new
,
drop_remainder
=
True
)
return
data_set
_new
def
convert_type
(
shapes
,
types
):
...
...
tests/st/ops/cpu/test_concat_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -14,10 +14,10 @@
# ============================================================================
import
pytest
import
numpy
as
np
from
mindspore
import
Tensor
from
mindspore.ops
import
operations
as
P
import
mindspore.nn
as
nn
import
numpy
as
np
import
mindspore.context
as
context
from
mindspore.common
import
dtype
as
mstype
...
...
tests/st/ops/cpu/test_conv2d_backprop_filter_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -68,12 +68,10 @@ def test_conv2d_backprop_filter():
conv2d_filter
=
Net4
()
output
=
conv2d_filter
()
print
(
"================================"
)
"""
expect output:
[[[[ -60, -142, -265]
[-104, -211, -322]
[-102, -144, -248]]]]
"""
# expect output:
# [[[[ -60, -142, -265]
# [-104, -211, -322]
# [-102, -144, -248]]]]
expect
=
np
.
array
([[[[
-
60
,
-
142
,
-
265
],
[
-
104
,
-
211
,
-
322
],
[
-
102
,
-
144
,
-
248
]]]]).
astype
(
np
.
float32
)
...
...
tests/st/ops/cpu/test_conv2d_backprop_input_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -66,16 +66,14 @@ class Net5(nn.Cell):
def
test_conv2d_backprop_input
():
conv2d_input
=
Net5
()
output
=
conv2d_input
()
print
(
"================================"
)
"""
expect output:
[[[[ -5, -4, 5, 12, 0, -8]
[-15, -6, 17, 17, -2, -11]
[-15, -8, 13, 12, 2, -4]
[-13, -6, 8, -14, 5, 20]
[ -3, -4, -4, -19, 7, 23]
[ -3, -2, 0, -14, 3, 16]]]]
"""
print
(
"================================"
)
# expect output:
# [[[[ -5, -4, 5, 12, 0, -8]
# [-15, -6, 17, 17, -2, -11]
# [-15, -8, 13, 12, 2, -4]
# [-13, -6, 8, -14, 5, 20]
# [ -3, -4, -4, -19, 7, 23]
# [ -3, -2, 0, -14, 3, 16]]]]
expect
=
np
.
array
([[[[
-
5
,
-
4
,
5
,
12
,
0
,
-
8
],
[
-
15
,
-
6
,
17
,
17
,
-
2
,
-
11
],
[
-
15
,
-
8
,
13
,
12
,
2
,
-
4
],
...
...
tests/st/ops/cpu/test_conv2d_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -55,16 +55,13 @@ def test_conv2d():
conv2d
=
NetConv2d
()
output
=
conv2d
()
print
(
"================================"
)
"""
expect output:
[[[[ 45. 48. 51.]
[ 54. 57. 60.]
[ 63. 66. 69.]]
[[126. 138. 150.]
[162. 174. 186.]
[198. 210. 222.]]]]
"""
# expect output:
# [[[[ 45. 48. 51.]
# [ 54. 57. 60.]
# [ 63. 66. 69.]]
# [[126. 138. 150.]
# [162. 174. 186.]
# [198. 210. 222.]]]]
expect
=
np
.
array
([[[[
45
,
48
,
51
],
[
54
,
57
,
60
],
[
63
,
66
,
69
]],
...
...
tests/st/ops/cpu/test_gather_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -14,11 +14,10 @@
# ============================================================================
import
pytest
import
numpy
as
np
from
mindspore
import
Tensor
from
mindspore.ops
import
operations
as
P
import
mindspore.nn
as
nn
from
mindspore.common.api
import
ms_function
import
numpy
as
np
import
mindspore.context
as
context
from
mindspore.common
import
dtype
as
mstype
...
...
@@ -96,7 +95,7 @@ def test_gatherv2_axisN1():
expect
=
np
.
array
([[[
1.
,
2.
],
[
4.
,
5.
]],
[[
7.
,
8.
],
[
10.
,
11.
]]])
[
10.
,
11.
]]])
error
=
np
.
ones
(
shape
=
ms_output
.
asnumpy
().
shape
)
*
1.0e-6
diff
=
ms_output
.
asnumpy
()
-
expect
assert
np
.
all
(
diff
<
error
)
...
...
tests/st/ops/cpu/test_momentum_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -65,10 +65,8 @@ def test_momentum():
print
(
"================================"
)
print
(
losses
)
"""
expect output:
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
"""
# expect output:
# [[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
# 0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
return
losses
tests/st/ops/cpu/test_slice_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -41,8 +41,8 @@ def test_slice():
expect
=
[[[
2.
,
-
2.
,
2.
]],
[[
4.
,
-
4.
,
4.
]]]
slice
=
Slice
()
output
=
slice
(
x
)
slice
_op
=
Slice
()
output
=
slice
_op
(
x
)
print
(
"output:
\n
"
,
output
)
assert
(
output
.
asnumpy
()
==
expect
).
all
()
...
...
tests/st/ops/custom_ops_tbe/add3_impl.py
浏览文件 @
a7ad0d0a
...
...
@@ -13,17 +13,17 @@
# limitations under the License.
# ============================================================================
from
__future__
import
absolute_import
import
te.lang.cce
from
te
import
tvm
from
te.platform.fusion_manager
import
fusion_manager
from
topi
import
generic
import
te.lang.cce
from
topi.cce
import
util
from
te.platform.fusion_manager
import
fusion_manager
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
@
fusion_manager
.
register
(
"add3"
)
def
add3_compute
(
input1
,
input2
,
const_bias
):
sum2
=
te
.
lang
.
cce
.
vadd
(
input1
,
input2
)
sum3
=
te
.
lang
.
cce
.
vadds
(
sum2
,
tvm
.
const
(
const_bias
,
dtype
=
input1
.
dtype
))
sum3
=
te
.
lang
.
cce
.
vadds
(
sum2
,
tvm
.
const
(
const_bias
,
dtype
=
input1
.
dtype
))
return
sum3
...
...
@@ -44,7 +44,7 @@ cus_add3_op_info = TBERegOp("CusAdd3") \
@
op_info_register
(
cus_add3_op_info
)
def
CusAdd3Impl
(
input1
,
inptu2
,
sum
,
const_bias
,
kernel_name
=
"CusAdd3Impl"
):
def
CusAdd3Impl
(
input1
,
inptu2
,
sum
1
,
const_bias
,
kernel_name
=
"CusAdd3Impl"
):
shape
=
input1
.
get
(
"shape"
)
shape
=
util
.
shape_refine
(
shape
)
dtype
=
input1
.
get
(
"dtype"
).
lower
()
...
...
tests/st/ops/custom_ops_tbe/cus_add3.py
浏览文件 @
a7ad0d0a
...
...
@@ -12,10 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
from
mindspore.ops
import
prim_attr_register
,
PrimitiveWithInfer
from
mindspore.ops
import
operations
as
P
from
mindspore
import
Tensor
# sum = input1 + input2 + const_bias
class
CusAdd3
(
PrimitiveWithInfer
):
...
...
tests/st/ops/custom_ops_tbe/cus_square.py
浏览文件 @
a7ad0d0a
...
...
@@ -15,7 +15,6 @@
import
numpy
as
np
from
mindspore
import
Tensor
from
mindspore.ops
import
prim_attr_register
,
PrimitiveWithInfer
from
mindspore.ops
import
operations
as
P
# y = x^2
class
CusSquare
(
PrimitiveWithInfer
):
...
...
@@ -36,10 +35,10 @@ class CusSquare(PrimitiveWithInfer):
def
infer_dtype
(
self
,
data_dtype
):
return
data_dtype
def
get_bprop
(
self
):
def
bprop
(
data
,
out
,
dout
):
gradient
=
data
*
2
dx
=
gradient
*
dout
return
(
dx
,
)
return
(
dx
,)
return
bprop
tests/st/ops/gpu/test_select_op.py
浏览文件 @
a7ad0d0a
...
...
@@ -27,8 +27,8 @@ class Net(nn.Cell):
super
(
Net
,
self
).
__init__
()
self
.
select
=
P
.
Select
()
def
construct
(
self
,
cond
,
input_x
,
input_y
):
return
self
.
select
(
cond
,
input_x
,
input_y
)
def
construct
(
self
,
cond
_op
,
input_x
,
input_y
):
return
self
.
select
(
cond
_op
,
input_x
,
input_y
)
cond
=
np
.
array
([[
True
,
False
],
[
True
,
False
]]).
astype
(
np
.
bool
)
...
...
tests/ut/python/ops/test_array_ops.py
浏览文件 @
a7ad0d0a
...
...
@@ -315,16 +315,16 @@ test_case_array_ops = [
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
1
,
2
],
[
3
,
4
]]).
astype
(
np
.
float16
))]}),
(
'SpaceToDepthNet'
,
{
'block'
:
SpaceToDepthNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
3
,
2
,
2
).
astype
(
np
.
float16
))]}),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
3
,
2
,
2
).
astype
(
np
.
float16
))]}),
(
'DepthToSpaceNet'
,
{
'block'
:
DepthToSpaceNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
12
,
1
,
1
).
astype
(
np
.
float16
))]}),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
12
,
1
,
1
).
astype
(
np
.
float16
))]}),
(
'SpaceToBatchNDNet'
,
{
'block'
:
SpaceToBatchNDNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
1
,
2
,
2
).
astype
(
np
.
float16
))]}),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
1
,
2
,
2
).
astype
(
np
.
float16
))]}),
(
'BatchToSpaceNDNet'
,
{
'block'
:
BatchToSpaceNDNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
4
,
1
,
1
,
1
).
astype
(
np
.
float16
))]}),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
4
,
1
,
1
,
1
).
astype
(
np
.
float16
))]}),
]
test_case_lists
=
[
test_case_array_ops
]
...
...
tests/ut/python/ops/test_math_ops_check.py
浏览文件 @
a7ad0d0a
...
...
@@ -26,7 +26,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
class
AssignAddNet
(
nn
.
Cell
):
def
__init__
(
self
,
):
def
__init__
(
self
,):
super
(
AssignAddNet
,
self
).
__init__
()
self
.
op
=
P
.
AssignAdd
()
self
.
inputdata
=
Parameter
(
Tensor
(
np
.
zeros
([
1
]).
astype
(
np
.
bool_
),
mstype
.
bool_
),
name
=
"assign_add1"
)
...
...
@@ -37,7 +37,7 @@ class AssignAddNet(nn.Cell):
class
AssignSubNet
(
nn
.
Cell
):
def
__init__
(
self
,
):
def
__init__
(
self
,):
super
(
AssignSubNet
,
self
).
__init__
()
self
.
op
=
P
.
AssignSub
()
self
.
inputdata
=
Parameter
(
Tensor
(
np
.
zeros
([
1
]).
astype
(
np
.
bool_
),
mstype
.
bool_
),
name
=
"assign_sub1"
)
...
...
tests/ut/python/ops/test_multitype_ops.py
浏览文件 @
a7ad0d0a
...
...
@@ -13,8 +13,8 @@
# limitations under the License.
# ============================================================================
"""multitype_ops directory test case"""
import
numpy
as
np
from
functools
import
partial
,
reduce
import
numpy
as
np
import
mindspore.nn
as
nn
import
mindspore.context
as
context
...
...
tests/ut/python/ops/test_ops.py
浏览文件 @
a7ad0d0a
...
...
@@ -231,7 +231,7 @@ class ApplyRMSNet(nn.Cell):
self
.
apply_rms
=
P
.
ApplyRMSProp
()
self
.
lr
=
0.001
self
.
rho
=
0.0
self
.
momentum
=
0.0
self
.
momentum
=
0.0
self
.
epsilon
=
1e-10
self
.
var
=
Parameter
(
Tensor
(
np
.
random
.
rand
(
3
,
3
).
astype
(
np
.
float32
)),
name
=
"var"
)
self
.
ms
=
Parameter
(
Tensor
(
np
.
random
.
rand
(
3
,
3
).
astype
(
np
.
float32
)),
name
=
"ms"
)
...
...
@@ -574,7 +574,8 @@ test_case_math_ops = [
(
'CumSum'
,
{
'block'
:
CumSumNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float32
))],
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float32
))]}),
'desc_bprop'
:
[
Tensor
(
np
.
array
([[
3
,
4
,
6
,
10
],
[
1
,
6
,
7
,
9
],
[
4
,
3
,
8
,
7
],
[
1
,
3
,
7
,
9
]]).
astype
(
np
.
float32
))]}),
(
'ReduceSum_3'
,
{
'block'
:
P
.
ReduceSum
(),
'desc_const'
:
[
0
],
...
...
tests/ut/python/ops/test_ops_reid.py
浏览文件 @
a7ad0d0a
...
...
@@ -103,7 +103,7 @@ test_case_reid_ops = [
'desc_bprop'
:
[[
128
,
64
,
112
,
112
]]}),
(
'PRelu'
,
{
'block'
:
P
.
PReLU
(),
'desc_inputs'
:
[[
128
,
64
,
112
,
112
],
[
64
,
]],
'desc_inputs'
:
[[
128
,
64
,
112
,
112
],
[
64
,]],
'desc_bprop'
:
[[
128
,
64
,
112
,
112
]]}),
(
'Cos'
,
{
'block'
:
P
.
Cos
(),
...
...
@@ -155,11 +155,11 @@ test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
test_exec_case
=
filter
(
lambda
x
:
'skip'
not
in
x
[
1
]
or
'exec'
not
in
x
[
1
][
'skip'
],
test_case
)
'exec'
not
in
x
[
1
][
'skip'
],
test_case
)
test_backward_exec_case
=
filter
(
lambda
x
:
'skip'
not
in
x
[
1
]
or
'backward'
not
in
x
[
1
][
'skip'
]
and
'backward_exec'
not
in
x
[
1
][
'skip'
],
test_case
)
'backward'
not
in
x
[
1
][
'skip'
]
and
'backward_exec'
not
in
x
[
1
][
'skip'
],
test_case
)
@
mindspore_test
(
pipeline_for_compile_forward_ge_graph_for_case_by_case_config
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录