layers.py 255.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnAvgInclPadPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
151
    'factorization_machine',
Q
qijun 已提交
152
]
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159


class LayerType(object):
    """
    Layer type enumerations.
    """

160 161 162 163 164 165 166 167
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
168
    POOLING_AVG = 'average'
169
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
170
    COST = 'cost'
171 172
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
173
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
174
    HSIGMOID = 'hsigmoid'
175 176 177 178 179
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
180
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
181
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
182
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
183 184 185
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
186
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
187 188 189 190
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
191
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
199
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
200 201 202
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
203
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
204
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
205
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
206
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
218
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
219
    BLOCK_EXPAND = "blockexpand"
220
    MAXOUT = "maxout"
Q
qijun 已提交
221
    SPP_LAYER = "spp"
D
dangqingqing 已提交
222
    PAD_LAYER = "pad"
W
wwhu 已提交
223
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
224
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
225 226 227

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
228 229
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
230
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
231 232 233 234 235

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
236
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
237

238 239 240
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

241 242
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
243
    HUBER_REGRESSION = 'huber_regression'
244
    HUBER_CLASSIFICATION = 'huber_classification'
245 246
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
247
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
248 249 250 251 252 253
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
254
    SWITCH_ORDER_LAYER = 'switch_order'
255
    CROP_LAYER = 'crop'
C
caoying03 已提交
256
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
257
    CLIP_LAYER = 'clip'
258
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
259

260
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
261
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
262

263
    RESIZE = 'resize'
Y
yangyaming 已提交
264
    SUB_SEQ_LAYER = 'subseq'
265

Y
yangyaming 已提交
266
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
267

268 269
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
290
    """
L
Luo Tao 已提交
291
    PaddlePaddle supports three sequence types:
292 293 294

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
295 296
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
297

L
Luo Tao 已提交
298
    Accordingly, AggregateLevel supports two modes:
299

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
301
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
302 303
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
304
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
305 306 307
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
308 309
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
310 311 312
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
335
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
336 337
    """

Q
qijun 已提交
338 339 340 341 342 343 344 345 346
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
347
                 reverse=None):
Z
zhangjinchao01 已提交
348 349
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
350
        assert size is not None
Z
zhangjinchao01 已提交
351 352
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
353
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
354
        self.layer_type = layer_type
355 356
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
365
        self.reverse = reverse
Z
zhangjinchao01 已提交
366

367 368 369 370 371 372 373 374
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

375 376 377 378
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

379 380 381 382 383 384 385 386
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
387 388 389

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
390
DEVICE = 'device'
Z
zhangjinchao01 已提交
391 392 393


def layer_support(*attrs):
394
    attrs_list = list(attrs)
395
    attrs_list.append(DEVICE)
Q
qijun 已提交
396

Z
zhangjinchao01 已提交
397 398 399
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
400
            for attr in attrs_list:
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
417 418 419 420 421
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
452
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
463 464 465 466
    proj.origin = input
    return proj


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
488
    :param input: The input of this layer.
489 490 491 492 493 494 495 496
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
497 498
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
499 500 501 502
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
533
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
542 543
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
544 545 546 547
    proj.origin = input
    return proj


548
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
578
    :param input: The input of this layer.
579
    :type input: LayerOutput
Z
zhangjinchao01 已提交
580 581
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
582
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
583 584 585 586 587 588
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
589 590
        if size is None:
            size = input.size - offset
Q
qijun 已提交
591
        proj = IdentityOffsetProjection(
592
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
593 594 595 596
        proj.origin = input
    return proj


597 598
def slice_projection(input, slices):
    """
599 600
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
601 602

    .. math::
603
       output = [input.slices()]
604 605 606 607 608 609 610 611 612

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
613
    :param input: The input of this layer.
614 615 616 617
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
618
    :type slices: pair of int
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
651
    :param input: The input of this layer.
X
xuwei06 已提交
652 653 654 655 656 657
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
658
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
659 660 661 662
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
663
@wrap_param_attr_default()
664
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
665
    """
666
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
680
    :param input: The input of this layer.
681 682 683 684 685 686
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
687 688
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
689
    proj.origin = input
690
    return proj
Z
zhangjinchao01 已提交
691

692 693

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
694 695
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
696

Z
zhangjinchao01 已提交
697
    .. math::
L
Luo Tao 已提交
698
       out.row[i] += scale * (a.row[i] .* b.row[i])
699

Z
zhangjinchao01 已提交
700 701
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
702

Z
zhangjinchao01 已提交
703
    The example usage is:
704

Z
zhangjinchao01 已提交
705
    .. code-block:: python
706

L
Luo Tao 已提交
707
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
708

709 710 711 712
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
713 714
    :param scale: config scalar, default value is one.
    :type scale: float
715 716
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
717
    """
718 719 720
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
721
    a = kwargs.get('x', a)  # For Backward capacity.
722 723 724 725 726 727
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
728
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
729
    op.origin = [a, b]
730
    return op
Z
zhangjinchao01 已提交
731

732

Z
zhangjinchao01 已提交
733
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
734 735 736
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
751
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
752 753 754 755 756 757 758 759 760
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
761
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
773 774 775 776 777 778
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
792
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
793 794 795 796 797 798
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
799
        :param act: Activation type.
Z
zhangjinchao01 已提交
800
        :type act: BaseActivation
R
ranqiu 已提交
801 802 803
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
804
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
805 806 807
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
808 809 810 811 812 813 814
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
815 816 817 818 819
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

820
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
821 822 823 824 825 826 827 828
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
829
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
830
            self.inputs.append(other)
831 832 833 834
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
835 836 837 838 839 840 841 842
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

843
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
844 845
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
846
        assert len(self.inputs) != 0
847
        ml = MixedLayer(
Z
zhangjinchao01 已提交
848 849 850 851 852
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
853
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
854 855 856
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
857
        self.finalized = True
Z
zhangjinchao01 已提交
858 859 860 861 862 863


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
864 865 866 867 868
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
896
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
897
                  then this function will just return layer's name.
898
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
899
    :type act: BaseActivation
R
ranqiu 已提交
900 901 902
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
903
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
904 905 906 907 908 909 910 911 912
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
913 914 915 916 917 918
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
919
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
928 929
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
930 931 932 933 934 935 936
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
937
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
938

R
ranqiu 已提交
939
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
940 941 942
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
943
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
944
    :type height: int | None
L
Luo Tao 已提交
945
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
946
    :type width: int | None
Z
zhangjinchao01 已提交
947 948
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
950 951
    :rtype: LayerOutput
    """
Q
qijun 已提交
952 953 954 955
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
956
        depth=depth,
L
Luo Tao 已提交
957 958
        height=height,
        width=width,
Q
qijun 已提交
959
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
960

C
chengduoZH 已提交
961 962
    if depth is None:
        depth = 1
963 964
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
965 966
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
967
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
968 969

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
970 971 972 973


@wrap_name_default("embedding")
@wrap_param_attr_default()
974
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
975 976 977 978
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

979
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
980
    :type name: basestring
R
ranqiu 已提交
981
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
982 983 984 985 986
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
987
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
988
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
989
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
990
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
991 992
    :rtype: LayerOutput
    """
Q
qijun 已提交
993 994 995 996 997 998
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1008 1009 1010 1011 1012 1013 1014
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1027
    which is equal to:
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1034
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1035
    :type name: basestring
R
ranqiu 已提交
1036 1037
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1038 1039
    :param size: The layer dimension.
    :type size: int
1040
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1041 1042 1043
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1044 1045 1046
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1047
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1048
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1049
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1051 1052 1053 1054
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1055
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1056 1057
        param_attr = [param_attr]
    else:
1058
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1059 1060
            assert len(input) == len(param_attr)
        else:
1061
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1062
                logger.fatal(
W
wangmeng28 已提交
1063 1064 1065 1066 1067
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1068 1069
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1070
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1071 1072

    Layer(
Q
qijun 已提交
1073 1074 1075
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1076 1077 1078 1079 1080
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1081 1082 1083
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1084

1085

1086
@wrap_name_default("print")
1087
def printer_layer(input, format=None, name=None):
1088 1089
    """
    Print the output value of input layers. This layer is useful for debugging.
1090

1091
    :param name: The name of this layer. It is optional.
1092
    :type name: basestring
R
ranqiu 已提交
1093 1094
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1095
    :return: LayerOutput
1096
    """
1097 1098 1099 1100 1101
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1102 1103 1104

    Layer(
        name=name,
1105
        format=format,
1106
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1107
        inputs=[l.name for l in input], )
1108
    # this layer don't return anything, can not be input of other layer.
1109

X
xuwei06 已提交
1110 1111 1112 1113 1114 1115 1116
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1117

Y
yuan 已提交
1118
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1119
def priorbox_layer(input,
G
gaoyuan 已提交
1120
                   image,
G
gaoyuan 已提交
1121 1122 1123 1124 1125
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1126 1127 1128
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1129
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1130
    :type name: basestring
R
ranqiu 已提交
1131
    :param input: The input of this layer.
Y
yuan 已提交
1132
    :type input: LayerOutput
G
gaoyuan 已提交
1133 1134
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1146
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1147 1148 1149
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1150
        inputs=[input.name, image.name],
Y
yuan 已提交
1151 1152 1153 1154 1155 1156
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1157 1158
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1159
        parents=[input, image],
G
gaoyuan 已提交
1160 1161 1162
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1178
    :param name: The name of this layer. It is optional.
1179
    :type name: basestring
Y
yangyaming 已提交
1180 1181
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1182
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1183
    :type input_conf: LayerOutput | List of LayerOutput
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1205
    input_loc_num = len(input_loc)
1206 1207 1208 1209 1210 1211

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1212
    input_conf_num = len(input_conf)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1250 1251
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1252

1253
    :param name: The name of this layer. It is optional.
1254
    :type name: basestring
Y
yangyaming 已提交
1255 1256
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1257
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1258
    :type input_conf: LayerOutput | List of LayerOutput.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1280
    input_loc_num = len(input_loc)
1281 1282 1283 1284 1285 1286

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1287 1288
    input_conf_num = len(input_conf)

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1317 1318 1319 1320 1321 1322
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1323
                   num_channels=None,
G
guosheng 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1341 1342
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1343 1344
    :return: LayerOutput
    """
G
guosheng 已提交
1345 1346 1347 1348
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1349 1350 1351 1352 1353 1354
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1355 1356
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1357 1358
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1359 1360


1361 1362
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1363 1364 1365 1366 1367
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1368

1369
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1370
    :type name: basestring
R
ranqiu 已提交
1371
    :param input: The input of this layer.
G
gaoyuan 已提交
1372 1373 1374 1375 1376
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1377
    assert input.num_filters is not None
G
gaoyuan 已提交
1378 1379
    Layer(
        name=name,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1393 1394
    return LayerOutput(
        name,
1395
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1396 1397 1398 1399 1400
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1401 1402 1403 1404
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1405 1406 1407 1408
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1409
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1410
                  stride=-1,
Z
zhangjinchao01 已提交
1411 1412 1413 1414
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1415 1416
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1417 1418 1419
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1420
    operation. Note that for sequence with sub-sequence, the default value
1421 1422
    of stride is -1.

Z
zhangjinchao01 已提交
1423 1424 1425 1426 1427 1428
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1429
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1430

L
Luo Tao 已提交
1431 1432
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1433
    :type agg_level: AggregateLevel
1434
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1435
    :type name: basestring
R
ranqiu 已提交
1436
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1437 1438 1439
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1440
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1441
    :param stride: The step size between successive pooling regions.
1442
    :type stride: Int
R
ranqiu 已提交
1443 1444 1445
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1446
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1447
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1448
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1449
    :return: LayerOutput object.
Y
Yu Yang 已提交
1450
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1451 1452
    """
    extra_dict = dict()
1453
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1454 1455
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1456 1457 1458 1459
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1460 1461
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1462 1463 1464
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469 1470
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1471
        stride=stride,
Q
qijun 已提交
1472
        **extra_dict)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474 1475
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1476

Q
qijun 已提交
1477

Z
zhangjinchao01 已提交
1478 1479
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1480
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1481 1482
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1483
@layer_support()
Q
qijun 已提交
1484 1485
def lstmemory(input,
              name=None,
1486
              size=None,
Q
qijun 已提交
1487 1488 1489 1490 1491 1492
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498 1499 1500
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1501
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1502

L
luotao02 已提交
1503
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1504

L
luotao02 已提交
1505
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1506

L
luotao02 已提交
1507
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1508

L
luotao02 已提交
1509
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1510 1511


C
caoying03 已提交
1512
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1513
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1514 1515 1516 1517
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1518

C
caoying03 已提交
1519
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1520 1521
    to config a simple plain lstm layer.

C
caoying03 已提交
1522 1523 1524 1525
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1526 1527 1528 1529 1530

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1531 1532
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1533
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1534 1535 1536
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1537
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1538 1539 1540 1541 1542
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1543 1544 1545
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1546
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1547
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1548
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1549
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1550
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1551
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1552 1553 1554 1555 1556 1557
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1558
    assert input.size is not None and input.size % 4 == 0
1559

1560 1561 1562 1563 1564
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1565 1566 1567
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1568

Q
qijun 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1579

Q
qijun 已提交
1580 1581 1582 1583 1584
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1585

Z
zhangjinchao01 已提交
1586 1587 1588

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1589
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1590 1591
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1592
@layer_support()
Q
qijun 已提交
1593
def grumemory(input,
1594
              size=None,
Q
qijun 已提交
1595 1596 1597 1598 1599 1600
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1622 1623
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1624 1625 1626 1627 1628

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1629 1630 1631
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1632 1633 1634 1635 1636

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1637
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1638
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1639 1640 1641
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1642

C
caoying03 已提交
1643 1644 1645
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1646 1647 1648 1649 1650 1651 1652 1653

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1654 1655
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1656
    :type input: LayerOutput.
1657 1658
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1659
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1660
    :type reverse: bool
R
ranqiu 已提交
1661
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1662 1663 1664 1665 1666 1667
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1668 1669 1670
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1671
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1672
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1673
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1674
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1675
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1676
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1677 1678 1679 1680
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1681 1682 1683 1684 1685 1686
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1687 1688 1689
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1690

Q
qijun 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1700

Q
qijun 已提交
1701 1702 1703 1704 1705
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1706

Z
zhangjinchao01 已提交
1707 1708 1709

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1710 1711
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1712
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1713
             stride=-1,
Z
zhangjinchao01 已提交
1714 1715 1716 1717
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1718 1719 1720
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1721
    of stride is -1.
1722

L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1729
    :param agg_level: Aggregated level
1730
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1731
    :type name: basestring
R
ranqiu 已提交
1732
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1733
    :type input: LayerOutput
L
Luo Tao 已提交
1734
    :param stride: The step size between successive pooling regions.
1735
    :type stride: Int
Z
zhangjinchao01 已提交
1736 1737
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1739 1740
    :rtype: LayerOutput
    """
1741 1742 1743 1744 1745 1746
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1747
    if agg_level == AggregateLevel.TO_SEQUENCE:
1748 1749
        assert stride == -1

Z
zhangjinchao01 已提交
1750 1751 1752 1753 1754
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1755
        stride=stride,
Q
qijun 已提交
1756 1757 1758 1759 1760 1761
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1762 1763 1764 1765


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1766 1767
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1768
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1769
              stride=-1,
Z
zhangjinchao01 已提交
1770 1771 1772 1773
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1774 1775 1776
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1777
    of stride is -1.
1778

L
Luo Tao 已提交
1779 1780 1781 1782 1783 1784
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1785
    :param agg_level: aggregation level
1786
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1787
    :type name: basestring
R
ranqiu 已提交
1788
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1789
    :type input: LayerOutput
L
Luo Tao 已提交
1790
    :param stride: The step size between successive pooling regions.
1791
    :type stride: Int
Z
zhangjinchao01 已提交
1792 1793
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1794
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1795 1796
    :rtype: LayerOutput
    """
1797 1798 1799 1800 1801 1802 1803

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1804
    if agg_level == AggregateLevel.TO_SEQUENCE:
1805 1806
        assert stride == -1

Z
zhangjinchao01 已提交
1807 1808 1809 1810 1811
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1812
        stride=stride,
Q
qijun 已提交
1813 1814 1815 1816 1817 1818
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1819 1820 1821


class ExpandLevel(object):
1822 1823 1824 1825 1826
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1827 1828
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1829 1830
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1831 1832
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1833 1834
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1835 1836
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1837 1838
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1839

1840

Z
zhangjinchao01 已提交
1841 1842
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1843 1844
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1845 1846
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1847
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1859
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1860

R
ranqiu 已提交
1861
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1862 1863 1864
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1865
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1866
    :type name: basestring
R
ranqiu 已提交
1867 1868 1869
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1870
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1871 1872 1873 1874
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1875
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1885 1886 1887 1888 1889 1890
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1891 1892


X
xuwei06 已提交
1893
@wrap_name_default()
X
xuwei06 已提交
1894
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1895
@layer_support()
X
xuwei06 已提交
1896 1897 1898
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1899
                 act=None,
X
xuwei06 已提交
1900 1901
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1902
    """
X
xuwei06 已提交
1903
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1904

X
xuwei06 已提交
1905
    If as_row_vector:
R
ranqiu 已提交
1906

X
xuwei06 已提交
1907
    .. math::
X
xuwei06 已提交
1908
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1909

X
xuwei06 已提交
1910
    If not as_row_vector:
R
ranqiu 已提交
1911

X
xuwei06 已提交
1912 1913 1914
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1915 1916 1917 1918 1919

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1920
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1921

R
ranqiu 已提交
1922
    :param input: The input of this layer.
X
xuwei06 已提交
1923
    :type input: LayerOutput
R
ranqiu 已提交
1924
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1925
    :type num_repeats: int
1926
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1927 1928 1929 1930 1931
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1932
    :type as_row_vector: bool
1933
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1934
    :type act: BaseActivation
R
ranqiu 已提交
1935 1936
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1937 1938 1939 1940 1941 1942 1943 1944
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1945
        active_type=act.name,
X
xuwei06 已提交
1946
        num_filters=num_repeats,
X
xuwei06 已提交
1947
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1948
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1949 1950 1951 1952 1953
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1954
        activation=act,
Q
qijun 已提交
1955 1956
        parents=[input])

X
xuwei06 已提交
1957

1958 1959 1960
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1961
@layer_support(ERROR_CLIPPING, DROPOUT)
1962 1963 1964 1965 1966 1967 1968 1969
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1970
    the dimension of each instance is M, and the input reshape_size is N, then the
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1981
    :param input: The input of this layer.
1982
    :type input: LayerOutput
R
ranqiu 已提交
1983
    :param reshape_size: The dimension of the reshaped sequence.
1984
    :type reshape_size: int
1985
    :param name: The name of this layer. It is optional.
1986
    :type name: basestring
1987
    :param act: Activation type. IdentityActivation is the default activation.
1988
    :type act: BaseActivation
R
ranqiu 已提交
1989 1990
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
1991
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1992 1993 1994
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1995
    :type bias_attr: ParameterAttribute | None | bool | Any
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2014 2015 2016 2017
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2018
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2034 2035
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2036 2037
    :param weight: Weight layer.
    :type weight: LayerOutput
2038
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2039
    :type name: basestring
R
ranqiu 已提交
2040 2041
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2042
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2043
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2044 2045
    :rtype: LayerOutput
    """
2046
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2047
    assert len(input) == 2
2048 2049 2050 2051 2052 2053 2054
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2055 2056 2057 2058
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2059 2060 2061 2062 2063 2064
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2065 2066


L
liaogang 已提交
2067 2068 2069 2070 2071 2072 2073 2074
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2075
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2076 2077 2078 2079 2080 2081 2082

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2083
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2084

R
ranqiu 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2096
    :return: LayerOutput object.
R
ranqiu 已提交
2097
    :rtype: LayerOutput
L
liaogang 已提交
2098 2099 2100 2101
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2102
    assert input.num_filters is not None
L
liaogang 已提交
2103
    num_channels = input.num_filters
Q
qijun 已提交
2104 2105 2106 2107 2108 2109 2110
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2111
                channels=num_channels)),
Q
qijun 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2121

Z
zhangjinchao01 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2132 2133
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2134 2135 2136 2137 2138 2139 2140

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2141
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2142
    :type input: LayerOutput
R
ranqiu 已提交
2143
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2144
    :type weight: LayerOutput
2145
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2146
    :type name: basestring
R
ranqiu 已提交
2147 2148
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2149
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2150
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2151 2152
    :rtype: LayerOutput
    """
2153 2154 2155
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2156 2157 2158
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2159
        inputs=[weight.name, input.name],
Q
qijun 已提交
2160 2161 2162
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2163 2164 2165 2166 2167 2168


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2169
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2170 2171

    .. math::
2172
       y  = w x
Z
zhangjinchao01 已提交
2173

2174 2175 2176 2177 2178
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2179 2180 2181 2182 2183 2184 2185

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2186
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2187
    :type input: LayerOutput
R
ranqiu 已提交
2188
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2189
    :type weight: LayerOutput
2190
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2191
    :type name: basestring
R
ranqiu 已提交
2192 2193
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2194
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2195
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2196 2197
    :rtype: LayerOutput
    """
2198 2199 2200
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2201 2202 2203 2204
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2205 2206 2207
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2208 2209 2210 2211 2212 2213


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2214
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2227
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2228
    :type input: LayerOutput
2229
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2230
    :type name: basestring
R
ranqiu 已提交
2231 2232
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2233
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2234
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2235 2236 2237 2238 2239 2240
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2241 2242 2243
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2244 2245


2246 2247
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2248
def rotate_layer(input, height, width, name=None, layer_attr=None):
2249
    """
H
Haonan 已提交
2250 2251
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2252 2253

    .. math::
H
Haonan 已提交
2254
       y(j,i,:) = x(M-i-1,j,:)
2255

H
Haonan 已提交
2256
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2257 2258 2259 2260 2261 2262

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2263 2264
                          height=100,
                          width=100)
2265

R
ranqiu 已提交
2266
    :param input: The input of this layer.
2267
    :type input: LayerOutput
R
ranqiu 已提交
2268
    :param height: The height of the sample matrix.
2269
    :type height: int
R
ranqiu 已提交
2270 2271
    :param width: The width of the sample matrix.
    :type width: int
2272
    :param name: The name of this layer. It is optional.
2273
    :type name: basestring
R
ranqiu 已提交
2274 2275
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2276 2277 2278 2279 2280
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2281 2282 2283
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2284
        width=width,
H
Haonan 已提交
2285 2286 2287 2288 2289 2290 2291 2292
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2293 2294


Z
zhangjinchao01 已提交
2295 2296
@wrap_name_default()
@layer_support()
2297
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2298 2299 2300 2301
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2302
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2303 2304 2305 2306 2307
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2308

2309 2310
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2311

L
Luo Tao 已提交
2312 2313 2314 2315 2316 2317
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2318
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2319
    :type name: basestring
R
ranqiu 已提交
2320
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2321
    :type a: LayerOutput
R
ranqiu 已提交
2322
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2323
    :type b: LayerOutput
R
ranqiu 已提交
2324
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2325
    :type scale: float
R
ranqiu 已提交
2326
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2327
    :type size: int
R
ranqiu 已提交
2328
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2329
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2330
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2331 2332
    :rtype: LayerOutput
    """
2333
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2334 2335 2336 2337 2338 2339
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2340
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2341
    else:
2342 2343
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2344 2345 2346 2347 2348 2349
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2350
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2351
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2352

2353

C
caoying03 已提交
2354 2355 2356 2357
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2358
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2359
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2390
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2391 2392 2393
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2394
        inputs=[x.name, y.name],
C
caoying03 已提交
2395 2396 2397 2398
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2399 2400
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2401
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2402
@layer_support()
Q
qijun 已提交
2403 2404
def hsigmoid(input,
             label,
2405
             num_classes=None,
Q
qijun 已提交
2406 2407 2408 2409
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2410 2411 2412
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2413 2414 2415 2416

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2417 2418 2419 2420 2421 2422

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2423
                        label=data_layer)
Z
zhangjinchao01 已提交
2424

R
ranqiu 已提交
2425 2426
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2427
    :param label: The input label.
Z
zhangjinchao01 已提交
2428
    :type label: LayerOutput
R
ranqiu 已提交
2429 2430 2431 2432
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2433
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2434
    :type name: basestring
R
ranqiu 已提交
2435 2436 2437
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2438
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2439 2440 2441
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2442
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2443
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2444 2445 2446 2447
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2448 2449 2450 2451 2452 2453 2454 2455 2456
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2457 2458 2459
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2460 2461 2462 2463 2464
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2465 2466
    ipts_for_layer = []
    parents = []
2467
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2468
        assert isinstance(each_input, LayerOutput)
2469
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2470 2471 2472 2473
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2474
    l = Layer(
Z
zhangjinchao01 已提交
2475 2476 2477 2478 2479
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2480 2481 2482
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2483

2484

Z
zhangjinchao01 已提交
2485 2486 2487 2488 2489
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2499
                   dilation=1,
Q
qijun 已提交
2500 2501 2502 2503 2504 2505 2506
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2507
                   dilation_y=None,
2508 2509
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2510
    """
2511
    Convolution layer for image. Paddle can support both square and non-square
2512
    input currently.
Z
zhangjinchao01 已提交
2513 2514 2515 2516

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2517

2518
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2519
    and non-square input currently.
2520

X
xuwei06 已提交
2521
    The details of convolution transpose layer,
2522 2523 2524
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2525 2526 2527 2528
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2529 2530
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2531
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2532 2533 2534
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2535

L
Luo Tao 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2546
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2547
    :type name: basestring
R
ranqiu 已提交
2548
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2549
    :type input: LayerOutput
R
ranqiu 已提交
2550 2551 2552 2553 2554 2555
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2556
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2557 2558 2559
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2560
    :param num_filters: Each filter group's number of filter
2561
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2562
    :type act: BaseActivation
R
ranqiu 已提交
2563
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2564
    :type groups: int
R
ranqiu 已提交
2565 2566 2567 2568 2569
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2570
    :type stride: int | tuple | list
R
ranqiu 已提交
2571
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2572
    :type stride_y: int
R
ranqiu 已提交
2573 2574 2575 2576 2577
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2578
    :type padding: int | tuple | list
R
ranqiu 已提交
2579
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2580
    :type padding_y: int
R
ranqiu 已提交
2581 2582 2583 2584 2585
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2586
    :type dilation: int | tuple | list
R
ranqiu 已提交
2587
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2588
    :type dilation_y: int
R
ranqiu 已提交
2589 2590 2591
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2592
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2593 2594 2595
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2596
    :type num_channels: int
R
ranqiu 已提交
2597 2598
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2599
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2600
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2601
    :type shared_biases: bool
R
ranqiu 已提交
2602 2603
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2604
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2605
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2606
    :type trans: bool
R
ranqiu 已提交
2607 2608 2609 2610 2611
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2612
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2613 2614 2615 2616 2617
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2618

Z
zhangjinchao01 已提交
2619
    if filter_size_y is None:
2620 2621 2622 2623 2624 2625
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2626
    if stride_y is None:
2627 2628 2629 2630 2631 2632
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2633
    if padding_y is None:
2634 2635 2636 2637 2638 2639
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2640 2641 2642 2643 2644 2645 2646
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2647 2648
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2649
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2650 2651 2652 2653
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2654

2655
    if layer_type:
W
wanghaoshuang 已提交
2656
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2657 2658 2659
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2660
        if trans:
2661
            assert layer_type in ["exconvt", "cudnn_convt"]
2662 2663 2664 2665 2666
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2667

X
xuwei06 已提交
2668
    l = Layer(
Z
zhangjinchao01 已提交
2669
        name=name,
Q
qijun 已提交
2670 2671 2672 2673 2674
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2675
                dilation=dilation,
Q
qijun 已提交
2676 2677 2678 2679 2680
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2681
                dilation_y=dilation_y,
Q
qijun 已提交
2682 2683
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2684 2685 2686 2687
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2688
        type=lt,
Q
qijun 已提交
2689 2690 2691 2692 2693 2694 2695 2696
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2697 2698 2699 2700


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2711
                   padding_y=None,
2712
                   ceil_mode=True,
2713
                   exclude_mode=None):
Z
zhangjinchao01 已提交
2714 2715 2716
    """
    Image pooling Layer.

R
ranqiu 已提交
2717
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2718 2719 2720

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2749
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2750
    :type padding: int
R
ranqiu 已提交
2751 2752 2753 2754
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2755
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2756
    :type input: LayerOutput
R
ranqiu 已提交
2757
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2758
    :type pool_size: int
R
ranqiu 已提交
2759 2760 2761 2762 2763 2764 2765
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2766
    :type num_channels: int
R
ranqiu 已提交
2767
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2768
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2769
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2770
    :type stride: int
R
ranqiu 已提交
2771 2772 2773 2774 2775
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2776
    :type layer_attr: ExtraLayerAttribute
2777
    :param ceil_mode: Whether to use the ceil function to calculate output height and width.
R
ranqiu 已提交
2778 2779
                      True is the default. If it is set to False, the floor function will
                      be used.
2780
    :type ceil_mode: bool
2781
    :param exclude_mode: Whether to exclude the padding cells when calculating, but only 
2782 2783 2784
                         work when pool_type is AvgPooling. If None, also exclude the padding 
                         cells. If use cudnn, use CudnnAvgPooling or CudnnAvgInclPadPooling 
                         as pool_type to identify the mode.
2785
    :type exclude_mode: bool
D
dangqingqing 已提交
2786 2787
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2798
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
2799
                               CudnnMaxPooling, CudnnAvgInclPadPooling], \
X
xzl 已提交
2800
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2801

2802
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2803
        if (
Y
Yu Yang 已提交
2804
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2805
        else pool_type.name
2806 2807 2808 2809
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2810
    l = Layer(
Z
zhangjinchao01 已提交
2811 2812
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2825
                    padding_y=padding_y))
Q
qijun 已提交
2826
        ],
2827
        ceil_mode=ceil_mode,
2828
        exclude_mode=exclude_mode,
Q
qijun 已提交
2829 2830 2831 2832 2833 2834 2835
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2836 2837


C
chengduoZH 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2890
    :type padding: int | tuple | list
R
ranqiu 已提交
2891
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2892
    :type name: basestring.
R
ranqiu 已提交
2893
    :param input: The input of this layer.
C
chengduoZH 已提交
2894
    :type input: LayerOutput
R
ranqiu 已提交
2895 2896
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2897
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2898 2899 2900
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2901
    :type num_channels: int
R
ranqiu 已提交
2902
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2903
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2904 2905 2906
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2907
    :type stride: int | tuple | list
R
ranqiu 已提交
2908 2909 2910 2911 2912
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2913
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2914 2915 2916
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2986 2987
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2988 2989 2990 2991 2992 2993
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2994
    """
R
ranqiu 已提交
2995 2996 2997
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
2998 2999
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
        https://arxiv.org/abs/1406.4729`_
Q
qijun 已提交
3000

L
Luo Tao 已提交
3001 3002 3003 3004
    The example usage is:

    ..  code-block:: python

3005 3006 3007
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3008 3009
                        pool_type=MaxPooling())

3010
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3011
    :type name: basestring
R
ranqiu 已提交
3012
    :param input: The input of this layer.
Q
qijun 已提交
3013
    :type input: LayerOutput
R
ranqiu 已提交
3014 3015 3016
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3017
    :type num_channels: int
R
ranqiu 已提交
3018
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3019
    :type scale: BasePoolingType
R
ranqiu 已提交
3020
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3021
    :type pyramid_height: int
R
ranqiu 已提交
3022 3023
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3041
    l = Layer(
Q
qijun 已提交
3042 3043
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3044 3045 3046 3047 3048
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3049
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3061 3062 3063 3064
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3065
    l = Layer(
Q
qijun 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3085 3086 3087 3088


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3089 3090 3091 3092 3093 3094
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3095
                      layer_attr=None):
Z
zhangjinchao01 已提交
3096
    """
3097
    Response normalization across feature maps.
R
ranqiu 已提交
3098 3099

    Reference:
R
ranqiu 已提交
3100 3101
        `ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
Z
zhangjinchao01 已提交
3102

L
Luo Tao 已提交
3103 3104 3105
    The example usage is:

    ..  code-block:: python
3106

L
Luo Tao 已提交
3107 3108
        norm = img_cmrnorm_layer(input=net, size=5)

3109
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3110
    :type name: basestring
R
ranqiu 已提交
3111
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3112
    :type input: LayerOutput
3113
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3114
    :type size: int
D
dangqingqing 已提交
3115
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3116
    :type scale: float
D
dangqingqing 已提交
3117
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3118
    :type power: float
R
ranqiu 已提交
3119 3120 3121 3122 3123
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3124
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3125
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3126 3127 3128
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3129
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3130 3131 3132


@wrap_bias_attr_default()
3133 3134
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3135 3136
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3137
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3138 3139 3140
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3141
                     img3D=False,
Q
qijun 已提交
3142 3143 3144 3145
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3146
                     batch_norm_type=None,
P
peterzhang2029 已提交
3147
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3148
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3149 3150
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3151
    """
R
ranqiu 已提交
3152
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3166
    Reference:
R
ranqiu 已提交
3167
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3168
        Internal Covariate Shift
R
ranqiu 已提交
3169
        http://arxiv.org/abs/1502.03167`_
Z
zhangjinchao01 已提交
3170

L
Luo Tao 已提交
3171 3172 3173
    The example usage is:

    ..  code-block:: python
3174

L
Luo Tao 已提交
3175 3176
        norm = batch_norm_layer(input=net, act=ReluActivation())

3177
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3178
    :type name: basestring
R
ranqiu 已提交
3179
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3180
    :type input: LayerOutput
3181 3182 3183 3184 3185
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3186 3187
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3188
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3189 3190 3191
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3192
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3193
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3194
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3195
    :type act: BaseActivation
R
ranqiu 已提交
3196 3197 3198
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3199
    :type num_channels: int
R
ranqiu 已提交
3200 3201 3202 3203
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3204
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3205 3206
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3207
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3208 3209
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3210
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3211 3212 3213 3214 3215 3216
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3217
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3218
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3219
    :type epsilon: float.
R
ranqiu 已提交
3220 3221
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3222
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3223 3224
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3225
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3235
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3236
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3237

X
xuwei06 已提交
3238
    l = Layer(
Z
zhangjinchao01 已提交
3239
        name=name,
C
chengduoZH 已提交
3240
        img3D=img3D,
Q
qijun 已提交
3241 3242
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3243 3244 3245 3246
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3247
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3248 3249
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3250
        mean_var_names=mean_var_names,
Q
qijun 已提交
3251
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3252

Q
qijun 已提交
3253 3254 3255 3256 3257 3258 3259
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3281
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3282
    :type input: LayerOutput
3283
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3284
    :type name: basestring
R
ranqiu 已提交
3285 3286 3287
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3288
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3289 3290 3291 3292 3293 3294
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3295 3296 3297
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3298 3299


G
guosheng 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3318
    :param input: The input of this layer.
G
guosheng 已提交
3319
    :type input: LayerOutput
3320
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3321
    :type name: basestring
R
ranqiu 已提交
3322 3323
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3337 3338 3339
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3340
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3341
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3360 3361 3362
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3363

C
caoying03 已提交
3364 3365 3366
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3367

3368
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3369
    :type name: basestring
R
ranqiu 已提交
3370
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3371
                 LayerOutput.
R
ranqiu 已提交
3372
    :type input: LayerOutput | list | tuple
3373
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3374
    :type act: BaseActivation
R
ranqiu 已提交
3375 3376 3377
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3378
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3379 3380
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3381
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3382
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3383 3384 3385 3386 3387 3388
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3389
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3390 3391 3392 3393 3394 3395 3396
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3397
    l = Layer(
Q
qijun 已提交
3398 3399 3400
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3401 3402
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3403
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3404

Q
qijun 已提交
3405 3406 3407 3408 3409 3410 3411
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3412 3413 3414 3415


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3416
@layer_support(DROPOUT, ERROR_CLIPPING)
3417
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3418
    """
R
ranqiu 已提交
3419 3420
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3421

3422 3423 3424 3425 3426 3427
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3428
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3429
    :type name: basestring
R
ranqiu 已提交
3430
    :param input: The input layers or projections
R
ranqiu 已提交
3431
    :type input: list | tuple | collections.Sequence
3432
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3433
    :type act: BaseActivation
R
ranqiu 已提交
3434 3435
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3436
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3437
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3438 3439 3440 3441 3442 3443 3444 3445
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3446
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3447 3448

    def __is_type__(o, tp):
3449
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3471 3472
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3473

Q
qijun 已提交
3474 3475
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3476

3477 3478
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3479

3480
    layer = Layer(
Q
qijun 已提交
3481 3482
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3483 3484
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3485
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3486
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3487

3488
    sz = layer.config.size
Z
zhangjinchao01 已提交
3489

Q
qijun 已提交
3490 3491 3492 3493 3494 3495 3496 3497
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3498 3499
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3500
@wrap_bias_attr_default(has_bias=False)
3501
@layer_support(DROPOUT, ERROR_CLIPPING)
3502 3503 3504
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3505
    Concatenate sequence a and sequence b.
3506

3507
    Inputs:
X
xuwei06 已提交
3508
      - a = [a1, a2, ..., am]
3509
      - b = [b1, b2, ..., bn]
3510

X
xuwei06 已提交
3511 3512 3513 3514
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3515 3516 3517 3518 3519 3520 3521

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3522
    :param name: The name of this layer. It is optional.
3523
    :type name: basestring
R
ranqiu 已提交
3524
    :param a: The first input sequence layer
3525
    :type a: LayerOutput
R
ranqiu 已提交
3526
    :param b: The second input sequence layer
3527
    :type b: LayerOutput
3528
    :param act: Activation type. IdentityActivation is the default activation.
3529
    :type act: BaseActivation
R
ranqiu 已提交
3530 3531
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3532
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3533 3534 3535
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3536
    :type bias_attr: ParameterAttribute | None | bool | Any
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3558
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3559 3560
def memory(name,
           size,
3561
           memory_name=None,
Q
qijun 已提交
3562 3563 3564 3565
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3566 3567
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3568
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3569

R
ranqiu 已提交
3570
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3571

R
ranqiu 已提交
3572 3573
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3574

R
ranqiu 已提交
3575 3576
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3577

R
ranqiu 已提交
3578
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3579

3580 3581 3582 3583 3584
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3585 3586
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3587 3588

    .. code-block:: python
L
Liu Yiqun 已提交
3589

3590 3591 3592 3593
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3594
    :param name: The name of the layer which this memory remembers.
3595 3596
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3597
    :type name: basestring
R
ranqiu 已提交
3598
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3599
    :type size: int
R
ranqiu 已提交
3600
    :param memory_name: The name of the memory. It is ignored when name is provided.
3601
    :type memory_name: basestring
3602
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3603
    :type is_seq: bool
R
ranqiu 已提交
3604 3605
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3606
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3607 3608 3609 3610
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3611
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3612 3613
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3614
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3615 3616
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3617
    :type boot_with_const_id: int
R
ranqiu 已提交
3618
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3629 3630
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3631

3632 3633 3634 3635 3636 3637 3638 3639
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3640 3641

    lout = LayerOutput(
3642
        name=memory_name,
Q
qijun 已提交
3643 3644 3645
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3646 3647 3648 3649
    return lout


@wrap_bias_attr_default()
3650 3651
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3652 3653 3654
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3655 3656
def lstm_step_layer(input,
                    state,
3657
                    size=None,
Q
qijun 已提交
3658 3659 3660 3661 3662 3663
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3664
    """
3665 3666
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3667 3668 3669

    ..  math::

3670
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3671

3672
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3673

3674
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3675

3676
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3677

L
luotao02 已提交
3678
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3679 3680


L
luotao02 已提交
3681
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3682
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3683
    input vectors.
Z
zhangjinchao01 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3694
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3695
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3696 3697
    :code:`get_output_layer` to extract this output.

3698
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3699
    :type name: basestring
R
ranqiu 已提交
3700 3701
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3702
    :type size: int
R
ranqiu 已提交
3703
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3704
    :type input: LayerOutput
3705
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3706
    :type state: LayerOutput
3707
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3708
    :type act: BaseActivation
3709 3710
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3711
    :type gate_act: BaseActivation
3712 3713
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3714
    :type state_act: BaseActivation
R
ranqiu 已提交
3715 3716 3717
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3718
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3719
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3720
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3721
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3722 3723
    :rtype: LayerOutput
    """
3724 3725 3726

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3727 3728 3729 3730 3731 3732 3733
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3734
        size=state.size,
Q
qijun 已提交
3735 3736
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3737

Q
qijun 已提交
3738 3739 3740 3741 3742 3743 3744
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3745 3746 3747


@wrap_bias_attr_default()
W
wangyang59 已提交
3748
@wrap_param_attr_default()
Q
qijun 已提交
3749
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3750 3751 3752
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3753 3754 3755 3756 3757 3758 3759
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3760
                   param_attr=None,
Q
qijun 已提交
3761
                   layer_attr=None):
Z
zhangjinchao01 已提交
3762 3763
    """

R
ranqiu 已提交
3764
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3765
    :type input: LayerOutput
R
ranqiu 已提交
3766 3767 3768 3769 3770 3771
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3772 3773
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3774
    :type act: BaseActivation
3775
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3776
    :type name: basestring
3777 3778
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3779
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3780 3781 3782 3783
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3784
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3785 3786 3787 3788
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3789
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3790 3791 3792 3793 3794 3795 3796 3797
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3798 3799 3800 3801
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3802
        # backward model compatibility.
3803
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3804 3805 3806 3807
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3808
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3809
    return LayerOutput(
Q
qijun 已提交
3810 3811
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3812
        parents=[input, output_mem],
Q
qijun 已提交
3813 3814
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3815 3816


Y
Yu Yang 已提交
3817 3818 3819 3820
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3821
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3833
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3834 3835
    and DROPOUT.

3836
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3837 3838 3839 3840 3841 3842
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3843
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3844
    :type name: basestring
3845 3846
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3847
    :type act: BaseActivation
3848 3849
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3850
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3851 3852 3853 3854
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3855
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3856 3857 3858 3859 3860
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3861
    :rtype: LayerOutput
Y
Yu Yang 已提交
3862 3863 3864 3865 3866 3867
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3868
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3869 3870 3871 3872
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3873

Y
Yu Yang 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3911 3912 3913 3914
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3915 3916 3917 3918
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3919

3920
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3921
    :type name: basestring
R
ranqiu 已提交
3922
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3923 3924
                   multiple outputs.
    :type input: LayerOutput
3925
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3926
    :type arg_name: basestring
R
ranqiu 已提交
3927 3928
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3929
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3930 3931 3932 3933 3934 3935 3936
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3937 3938 3939 3940 3941 3942 3943
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3944

Q
qijun 已提交
3945 3946 3947 3948 3949
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3950 3951 3952 3953 3954 3955 3956


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3957 3958 3959 3960 3961 3962 3963
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3964
    """
3965 3966
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3983
    :param input: The input of this layer.
3984
    :type input: LayerOutput
3985
    :param act: Activation type. TanhActivation is the default activation.
3986
    :type act: BaseActivation
C
caoying03 已提交
3987
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3988 3989 3990
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3991
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3992 3993
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3994
    :type param_attr: ParameterAttribute
3995
    :param name: The name of this layer. It is optional.
3996
    :type name: basestring
R
ranqiu 已提交
3997 3998
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3999
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4000
    :return: LayerOutput object.
4001
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4002
    """
Q
qijun 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4018 4019 4020 4021 4022


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4023
    and can be a sequence or non-sequence.
4024 4025
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4026
    """
4027

Z
zhangjinchao01 已提交
4028 4029 4030
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4031
        assert input.size is not None
Z
zhangjinchao01 已提交
4032
        if size is not None:
4033
            assert input.size == size
Z
zhangjinchao01 已提交
4034 4035


4036
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4037
    """
4038
    DEPRECATED.
Z
zhangjinchao01 已提交
4039 4040 4041 4042 4043 4044 4045 4046
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4047
    return input
Z
zhangjinchao01 已提交
4048 4049 4050


@wrap_name_default("recurrent_group")
4051
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4052
    """
C
caoying03 已提交
4053 4054 4055
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4056 4057
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4079 4080
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4081

R
ranqiu 已提交
4082 4083 4084
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4085 4086 4087 4088
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4089
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4090 4091 4092 4093 4094 4095 4096
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4097
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4098

R
ranqiu 已提交
4099
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4100

R
ranqiu 已提交
4101
    :param reverse: If reverse is set to True, the recurrent unit will process the
4102
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4103
    :type reverse: bool
4104

4105 4106
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4107 4108 4109 4110 4111 4112 4113

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4114
    :type targetInlink: LayerOutput | SubsequenceInput
4115

D
dangqingqing 已提交
4116
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4117 4118 4119 4120
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4121
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4122
        input = [input]
4123
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4124 4125

    def is_in_links(x):
4126
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4127 4128 4129 4130

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4131
        name=name,
4132 4133
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4134 4135
    in_args = []
    for each_input in input:
4136
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4137
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4138
            mem = memory(
4139
                name=None,
Q
qijun 已提交
4140 4141
                size=each_input.input.size,
                boot_layer=each_input.input)
4142
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4143
            in_args.append(mem)
4144 4145
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4146

Z
zhangjinchao01 已提交
4147 4148 4149 4150 4151
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4152 4153 4154 4155 4156 4157
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4158 4159 4160

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4161
    for layer_out in layer_outs:
4162 4163
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4164 4165
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4166 4167 4168 4169 4170
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4171

Z
zhangjinchao01 已提交
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4200 4201

    def before_real_step(self):
Q
qijun 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4211 4212 4213
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4214
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4232
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4233
    :type input: LayerOutput
4234
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4235
    :type name: basestring
R
ranqiu 已提交
4236 4237
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4238
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4239
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4240 4241 4242 4243
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4254

4255

R
ranqiu 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4270
    :type input1: LayerOutput
R
ranqiu 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4307
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4308
    :type name: basestring
R
ranqiu 已提交
4309
    :param input1: The first input layer.
H
Haonan 已提交
4310
    :type input: LayerOutput
R
ranqiu 已提交
4311
    :param input2: The second input layer.
H
Haonan 已提交
4312
    :type input2: LayerOutput
R
ranqiu 已提交
4313 4314
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4315 4316 4317 4318 4319 4320 4321
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4332

Z
zhangjinchao01 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4349
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4350
    :type name: basestring
R
ranqiu 已提交
4351
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4352
    :type input: LayerOutput
R
ranqiu 已提交
4353
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4354
    :type eos_id: int
R
ranqiu 已提交
4355 4356
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4357
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4358
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4359 4360
    :rtype: LayerOutput
    """
Q
qijun 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4372 4373 4374


@wrap_name_default()
Q
qijun 已提交
4375 4376 4377 4378 4379 4380 4381
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4382
                num_results_per_sample=None):
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4394
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4395 4396 4397 4398
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4399 4400 4401 4402 4403
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4404 4405
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4406 4407
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4408 4409
                               bos_id=0,
                               eos_id=1,
4410
                               beam_size=5)
4411 4412 4413 4414 4415 4416

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4417 4418
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4419
    :type name: basestring
4420
    :param step: A callable function that defines the calculation in a time
4421
                 step, and it is applied to sequences with arbitrary length by
4422 4423 4424 4425 4426
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4427 4428
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4429
                  In beam_search, none of the input's type should be LayerOutput.
4430
    :type input: list
4431 4432 4433
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4434
                   symbol is essential, since it is used to initialize the RNN
4435 4436 4437 4438 4439 4440 4441 4442
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4443 4444
    :param max_length: Max generated sequence length.
    :type max_length: int
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4455 4456
    :return: The generated word index.
    :rtype: LayerOutput
4457 4458
    """

Z
zhangjinchao01 已提交
4459 4460 4461 4462 4463
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4464
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4465 4466 4467 4468 4469 4470
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4471 4472 4473
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4474
        if isinstance(each_input, BaseGeneratedInput):
4475 4476
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4477
            generated_input_index = i
4478

Z
zhangjinchao01 已提交
4479 4480 4481
        else:
            real_input.append(each_input)

4482
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4483 4484 4485 4486 4487 4488 4489 4490

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4491 4492 4493 4494 4495 4496
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4497 4498 4499 4500 4501 4502

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4503
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4504 4505
        return predict

4506 4507
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4508

Q
qijun 已提交
4509

4510 4511
def __cost_input__(input, label, weight=None):
    """
4512
    inputs and parents for cost layers.
4513
    """
C
caoying03 已提交
4514 4515 4516 4517 4518 4519
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4520
    if weight is not None:
4521
        assert weight.size == 1
4522 4523 4524
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4525

Z
zhangjinchao01 已提交
4526 4527

@wrap_name_default()
L
luotao1 已提交
4528
@layer_support()
4529 4530 4531 4532 4533 4534
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4535
    """
4536
    sum of square error cost:
L
Luo Tao 已提交
4537 4538 4539

    ..  math::

4540
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4541

4542
    :param name: The name of this layer. It is optional.
4543
    :type name: basestring
R
ranqiu 已提交
4544
    :param input: The first input layer.
4545
    :type input: LayerOutput
R
ranqiu 已提交
4546
    :param label: The input label.
4547
    :type label: LayerOutput
R
ranqiu 已提交
4548 4549
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4550
    :type weight: LayerOutput
R
ranqiu 已提交
4551
    :param coeff: The weight of the gradient in the back propagation.
4552
                  1.0 is the default value.
4553
    :type coeff: float
R
ranqiu 已提交
4554 4555
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4556
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4557
    :return: LayerOutput object.
4558
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4559
    """
4560 4561
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4562 4563 4564 4565
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4566
        coeff=coeff,
Q
qijun 已提交
4567
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4568
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4569 4570


4571
regression_cost = square_error_cost
L
Luo Tao 已提交
4572 4573


Z
zhangjinchao01 已提交
4574
@wrap_name_default("cost")
4575
@layer_support()
Q
qijun 已提交
4576 4577 4578 4579
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4580
                        evaluator=classification_error_evaluator,
4581 4582
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4583 4584 4585
    """
    classification cost Layer.

4586
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4587
    :type name: basestring
R
ranqiu 已提交
4588
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4589
    :type input: LayerOutput
R
ranqiu 已提交
4590
    :param label: The input label.
Z
zhangjinchao01 已提交
4591
    :type label: LayerOutput
R
ranqiu 已提交
4592 4593
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4594
    :type weight: LayerOutput
R
ranqiu 已提交
4595 4596 4597 4598
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4599
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4600
    :param coeff: The weight of the gradient in the back propagation.
4601
                  1.0 is the default value.
4602
    :type coeff: float
D
dangqingqing 已提交
4603
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4604 4605 4606 4607 4608
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4609 4610 4611

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4612 4613 4614 4615
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4616
        coeff=coeff,
Q
qijun 已提交
4617
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4628
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4629

4630
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4631 4632 4633 4634 4635
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4636
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4637

4638

Q
qijun 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4648 4649
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4650 4651 4652 4653
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4654
    supports GPU mode.
Z
zhangjinchao01 已提交
4655 4656 4657 4658 4659

    The example usage is:

    .. code-block:: python

4660 4661
       op = conv_operator(img=input1,
                          filter=input2,
4662
                          filter_size=3,
Z
zhangjinchao01 已提交
4663 4664 4665
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4666
    :param img: The input image.
4667
    :type img: LayerOutput
R
ranqiu 已提交
4668
    :param filter: The input filter.
4669
    :type filter: LayerOutput
R
ranqiu 已提交
4670
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4671
    :type filter_size: int
R
ranqiu 已提交
4672 4673 4674
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4675
    :type filter_size_y: int
R
ranqiu 已提交
4676
    :param num_filters: The number of the output channels.
4677
    :type num_filters: int
R
ranqiu 已提交
4678 4679 4680
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4681
    :type num_channels: int
R
ranqiu 已提交
4682
    :param stride: The stride on the x axis.
L
luotao02 已提交
4683
    :type stride: int
R
ranqiu 已提交
4684 4685
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4686
    :type stride_y: int
R
ranqiu 已提交
4687
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4688
    :type padding: int
R
ranqiu 已提交
4689 4690
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4701

4702 4703
    if num_channels is None:
        num_channels = img.num_filters
4704 4705

    assert isinstance(filter, LayerOutput)
4706
    assert filter.size is not None
4707

4708 4709 4710
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4722

4723
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4724 4725
    return op

Q
qijun 已提交
4726

4727
@wrap_param_attr_default()
Q
qijun 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4738 4739
                    param_attr=None,
                    trans=False):
4740
    """
R
ranqiu 已提交
4741 4742 4743
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4744 4745 4746 4747 4748

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4749
       proj = conv_projection(input=input1,
4750 4751 4752 4753
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4754
    :param input: The input of this layer.
4755
    :type input: LayerOutput
R
ranqiu 已提交
4756 4757 4758 4759 4760
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4761
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4762 4763 4764
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4765
    :type filter_size_y: int
R
ranqiu 已提交
4766
    :param num_filters: The number of filters.
4767
    :type num_filters: int
R
ranqiu 已提交
4768
    :param num_channels: The number of the input channels.
4769
    :type num_channels: int
R
ranqiu 已提交
4770 4771 4772 4773 4774 4775 4776
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4777
    :type stride_y: int
R
ranqiu 已提交
4778 4779 4780 4781 4782 4783 4784
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4785 4786 4787
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4788 4789
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4790
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4791
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4792
    :type trans: bool
R
ranqiu 已提交
4793 4794
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4823
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4824 4825 4826 4827 4828
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4829 4830 4831
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4844 4845 4846 4847

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4848

D
dangqingqing 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4859 4860
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4861

R
ranqiu 已提交
4862 4863 4864 4865
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4866

D
dangqingqing 已提交
4867
    For example,
4868

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4890 4891

    The simply usage is:
D
dangqingqing 已提交
4892 4893 4894 4895 4896 4897 4898 4899

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4900
    :param input: The input of this layer.
D
dangqingqing 已提交
4901
    :type input: LayerOutput
R
ranqiu 已提交
4902
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4903
    :type pad_c: list | None
R
ranqiu 已提交
4904
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4905
    :type pad_h: list | None
R
ranqiu 已提交
4906
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4907
    :type pad_w: list | None
R
ranqiu 已提交
4908 4909
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4910
    :type layer_attr: ExtraLayerAttribute
4911
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4954
@wrap_name_default()
L
luotao1 已提交
4955 4956
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4957
    """
R
ranqiu 已提交
4958
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4959 4960 4961 4962 4963 4964 4965 4966
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4967
    In this formula:
4968 4969 4970 4971
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4972 4973 4974 4975 4976

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4977
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4978

4979
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4980
    :type name: basestring
R
ranqiu 已提交
4981
    :param a: The first input of this layer.
4982
    :type a: LayerOutput
R
ranqiu 已提交
4983
    :param b: The second input of this layer.
4984
    :type b: LayerOutput
R
ranqiu 已提交
4985 4986
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4987
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4988
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4989 4990
    :rtype: LayerOutput
    """
4991 4992
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4993 4994 4995
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4996
        inputs=[a.name, b.name],
Q
qijun 已提交
4997
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4998

Q
qijun 已提交
4999 5000
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
5001 5002 5003 5004 5005


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
5006
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5007
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5008 5009 5010 5011 5012 5013 5014 5015
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5016
    """
R
ranqiu 已提交
5017 5018
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5019 5020

    .. math::
5021
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5022 5023

    In this formular:
5024 5025
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5026 5027
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5028
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5029 5030 5031 5032 5033

    The simple usage is:

    .. code-block:: python

5034
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5035

5036
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5037
    :type name: basestring
R
ranqiu 已提交
5038
    :param a: The first input of this layer.
5039
    :type a: LayerOutput
R
ranqiu 已提交
5040
    :param b: The second input of this layer.
5041
    :type b: LayerOutput
R
ranqiu 已提交
5042 5043
    :param size: The dimension of this layer.
    :type size: int
5044
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5045
    :type act: BaseActivation
R
ranqiu 已提交
5046 5047
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5048
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5049 5050 5051 5052
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5053
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5054 5055
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5056
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5057
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5058 5059
    :rtype: LayerOutput
    """
5060
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5061 5062 5063 5064 5065 5066
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5067 5068 5069 5070
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5071 5072 5073 5074 5075 5076


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5077
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5078 5079
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5080
                       select=None,
Q
qijun 已提交
5081 5082
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5083 5084 5085
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5086 5087 5088
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5089 5090
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5091
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5092 5093 5094 5095 5096 5097 5098
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5099
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5100

5101
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5102
    :type name: basestring
R
ranqiu 已提交
5103 5104
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5105 5106 5107 5108
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5109
    :type select: LayerOutput
R
ranqiu 已提交
5110 5111
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5112
    :type size: int
5113
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5114
    :type act: BaseActivation
R
ranqiu 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5125
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5126 5127 5128 5129
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5130
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5131 5132
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5133
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5134
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5135 5136 5137 5138
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5139
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5140 5141
        param_attr = [param_attr]
    else:
5142
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5143 5144
            assert len(input) == len(param_attr)
        else:
5145
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5146
                logger.fatal(
W
wangmeng28 已提交
5147 5148 5149 5150 5151
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5152 5153
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5154 5155 5156 5157
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5158
    Layer(
Q
qijun 已提交
5159 5160 5161
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5162 5163 5164
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5165
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5166 5167 5168 5169
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5170 5171 5172 5173 5174 5175 5176
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5177 5178 5179


@wrap_name_default()
L
luotao1 已提交
5180 5181
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5182
    """
R
ranqiu 已提交
5183
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5184 5185 5186 5187 5188 5189 5190 5191
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5192
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5193
    :type input: LayerOutput
5194
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5195
    :type name: basestring
R
ranqiu 已提交
5196 5197 5198
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5199
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5200 5201
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5202
    l = Layer(
Z
zhangjinchao01 已提交
5203 5204 5205
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5206 5207 5208
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5209 5210 5211


@wrap_name_default()
L
luotao1 已提交
5212
@layer_support()
Q
qijun 已提交
5213 5214 5215 5216
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5217
                          layer_attr=None):
Z
zhangjinchao01 已提交
5218
    """
R
ranqiu 已提交
5219
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5230
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5231
    :type input: LayerOutput
5232
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5233
    :type name: basestring
R
ranqiu 已提交
5234 5235 5236 5237 5238 5239 5240
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5241
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5242 5243 5244 5245 5246 5247 5248 5249
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5250 5251 5252
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5253 5254 5255


@wrap_name_default()
L
luotao1 已提交
5256
@layer_support()
Q
qijun 已提交
5257
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5258
    """
5259 5260 5261 5262
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5263 5264 5265

    .. math::

5266
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5267

5268 5269 5270 5271 5272
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5273

5274
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5275 5276

    In this formular:
5277 5278 5279 5280 5281 5282
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5283 5284 5285 5286 5287

    The simple usage is:

    .. code-block:: python

5288
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5289 5290
                                       size=elem_dim)

5291 5292 5293 5294
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5295
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5296
    :type size: int
5297
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5298
    :type name: basestring
R
ranqiu 已提交
5299 5300 5301
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5302
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5303 5304
    :rtype: LayerOutput
    """
5305 5306 5307 5308
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5309
            size = vectors.size / weights.size
5310 5311
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5312 5313
    Layer(
        name=name,
5314
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5315
        size=size,
5316
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5317 5318 5319
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5320

5321

5322
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5323

5324

Z
zhangjinchao01 已提交
5325
@wrap_name_default()
L
luotao1 已提交
5326
@layer_support()
Z
zhangjinchao01 已提交
5327 5328 5329 5330 5331 5332 5333
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5334
                       num_channels=None,
L
luotao1 已提交
5335 5336
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5337 5338
    """
    Expand feature map to minibatch matrix.
5339
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5340
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5341 5342 5343 5344 5345 5346 5347

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5348
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5349
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5350
    The number of time steps is outputH * outputW and the dimension of each
5351
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5352
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5353

5354 5355 5356 5357
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5358
       block_expand = block_expand_layer(input=layer,
5359
                                         num_channels=128,
5360 5361 5362 5363 5364
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5365
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5366
    :type input: LayerOutput
R
ranqiu 已提交
5367 5368 5369 5370
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5383
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5384 5385 5386 5387
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5388
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5389 5390
    :rtype: LayerOutput
    """
5391 5392 5393
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5411 5412


5413 5414
@wrap_name_default()
@layer_support()
5415
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5416
    """
R
ranqiu 已提交
5417 5418 5419 5420
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5421

5422
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5423 5424 5425
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5426 5427 5428 5429
        `Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf`_
5430

X
xuwei06 已提交
5431 5432 5433 5434 5435 5436 5437 5438
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5439 5440 5441 5442 5443 5444 5445 5446
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5447
    :param input: The input of this layer.
5448
    :type input: LayerOutput
R
ranqiu 已提交
5449 5450 5451 5452
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5453 5454
    :param groups: The group number of input layer.
    :type groups: int
5455
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5456 5457 5458
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5478 5479


Z
zhangjinchao01 已提交
5480
@wrap_name_default()
L
luotao1 已提交
5481
@layer_support()
Q
qijun 已提交
5482 5483 5484 5485 5486
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5487
              layer_attr=None):
Z
zhangjinchao01 已提交
5488 5489
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5490
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5491 5492
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5493
    Reference:
R
ranqiu 已提交
5494
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5495
        with Recurrent Neural Networks
R
ranqiu 已提交
5496
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5497 5498

    Note:
R
ranqiu 已提交
5499 5500 5501 5502 5503
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5504

C
caoying03 已提交
5505
    The example usage is:
Z
zhangjinchao01 已提交
5506 5507 5508 5509 5510 5511 5512 5513

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5514
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5515
    :type input: LayerOutput
R
ranqiu 已提交
5516
    :param label: The input label.
Z
zhangjinchao01 已提交
5517
    :type label: LayerOutput
R
ranqiu 已提交
5518
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5519
    :type size: int
5520
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5521 5522
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5523
    :type norm_by_times: bool
R
ranqiu 已提交
5524 5525 5526
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5527
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5528 5529 5530 5531
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5532 5533 5534 5535 5536
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5537
    Layer(
5538 5539 5540 5541
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5542
        inputs=[input.name, label.name],
Q
qijun 已提交
5543
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5544 5545
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5546

5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5558
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5559
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5560 5561 5562 5563 5564 5565 5566
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5567
    Reference:
R
ranqiu 已提交
5568
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5569
        with Recurrent Neural Networks
R
ranqiu 已提交
5570
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5571 5572

    Note:
R
ranqiu 已提交
5573 5574 5575
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5576
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5577
          should be consistent with those used in your labels.
5578
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5579
          'linear' activation is expected to be used instead in the 'input' layer.
5580

C
caoying03 已提交
5581
    The example usage is:
5582 5583 5584 5585 5586 5587 5588 5589 5590

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5591
    :param input: The input of this layer.
5592
    :type input: LayerOutput
R
ranqiu 已提交
5593
    :param label: The input label.
5594
    :type label: LayerOutput
R
ranqiu 已提交
5595
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5596
    :type size: int
5597
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5598 5599
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5600
    :type blank: int
R
ranqiu 已提交
5601
    :param norm_by_times: Whether to do normalization by times. False is the default.
5602
    :type norm_by_times: bool
R
ranqiu 已提交
5603 5604 5605
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5628
@wrap_name_default()
5629
@wrap_param_attr_default()
L
luotao1 已提交
5630
@layer_support()
Q
qijun 已提交
5631 5632 5633 5634 5635 5636
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5637
              coeff=1.0,
L
luotao1 已提交
5638
              layer_attr=None):
Z
zhangjinchao01 已提交
5639 5640 5641 5642
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5643
    The example usage is:
Z
zhangjinchao01 已提交
5644 5645 5646 5647 5648 5649 5650

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5651
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5652
    :type input: LayerOutput
R
ranqiu 已提交
5653
    :param label: The input label.
5654
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5655 5656
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5657 5658
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5659
    :type weight: LayerOutput
R
ranqiu 已提交
5660 5661
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5662
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5663
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5664 5665
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5666
                  1.0 is the default value.
5667
    :type coeff: float
R
ranqiu 已提交
5668 5669 5670
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5671
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5672 5673 5674 5675 5676
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5677 5678 5679 5680 5681 5682
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5683

Q
qijun 已提交
5684
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5685 5686 5687 5688
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5689 5690 5691 5692
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5693
        coeff=coeff,
Q
qijun 已提交
5694
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5695 5696 5697
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5698 5699 5700 5701
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5702

5703

Z
zhangjinchao01 已提交
5704
@wrap_name_default()
5705
@wrap_param_attr_default()
L
luotao1 已提交
5706
@layer_support()
Q
qijun 已提交
5707 5708 5709 5710 5711
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5712
                       layer_attr=None):
Z
zhangjinchao01 已提交
5713 5714 5715
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5716 5717 5718
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5719

C
caoying03 已提交
5720
    The example usage is:
L
Luo Tao 已提交
5721 5722 5723 5724 5725 5726

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5727 5728
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5729
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5730
    :type size: int
R
ranqiu 已提交
5731 5732 5733 5734
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5735
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5736
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5737 5738 5739 5740
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5741
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5742 5743 5744 5745 5746 5747
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5748
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5749 5750 5751 5752
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5753 5754 5755 5756
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5757
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5758 5759 5760
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5761 5762 5763 5764
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5765

Q
qijun 已提交
5766

C
caoying03 已提交
5767 5768 5769 5770 5771
"""
Following are cost Layers.
"""


5772
@wrap_bias_attr_default(has_bias=True)
5773
@wrap_param_attr_default()
5774 5775
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5776 5777
def nce_layer(input,
              label,
C
caoying03 已提交
5778
              num_classes=None,
5779
              param_attr=None,
Q
qijun 已提交
5780 5781 5782 5783 5784 5785
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5786 5787
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5788 5789

    Reference:
R
ranqiu 已提交
5790 5791
        `A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
5792 5793 5794 5795 5796

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5797 5798
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5799 5800
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5801
    :param name: The name of this layer. It is optional.
5802
    :type name: basestring
R
ranqiu 已提交
5803
    :param input: The first input of this layer.
R
ranqiu 已提交
5804
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5805
    :param label: The input label.
5806
    :type label: LayerOutput
C
caoying03 已提交
5807
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5808
                   mini-batch. It is optional.
5809
    :type weight: LayerOutput
R
ranqiu 已提交
5810
    :param num_classes: The number of classes.
5811
    :type num_classes: int
5812
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5813
    :type act: BaseActivation
R
ranqiu 已提交
5814 5815
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5816
    :type param_attr: ParameterAttribute
5817 5818
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5819
    :type num_neg_samples: int
C
caoying03 已提交
5820 5821 5822
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5823
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5824 5825 5826
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5827
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5828 5829 5830 5831
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5832
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5833 5834
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5835
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5836
    :return: LayerOutput object.
5837 5838 5839 5840
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5841 5842 5843 5844 5845 5846 5847 5848
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5849
    assert isinstance(input, collections.Sequence)
5850

5851 5852
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5853 5854
    if num_classes is None:
        num_classes = label.size
5855 5856 5857
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5858
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5859

5860 5861
    ipts_for_layer = []
    parents = []
5862
    for each_input, attr in zip(input, param_attr):
5863
        assert isinstance(each_input, LayerOutput)
5864
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5875
    l = Layer(
5876 5877 5878 5879
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5880
        active_type=SigmoidActivation().name,
5881 5882 5883
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5884 5885
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5886 5887 5888 5889
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5890
        activation=SigmoidActivation())
5891 5892


Z
zhangjinchao01 已提交
5893
@wrap_name_default()
L
luotao1 已提交
5894
@layer_support()
Q
qijun 已提交
5895 5896 5897 5898 5899 5900 5901
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5902
    """
R
ranqiu 已提交
5903 5904 5905
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5906 5907
        `Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
Z
zhangjinchao01 已提交
5908 5909 5910

    .. math::

L
luotao02 已提交
5911
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5912

L
luotao02 已提交
5913
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5914

L
luotao02 已提交
5915
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5916 5917 5918 5919 5920 5921 5922 5923

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5924
    The example usage is:
Z
zhangjinchao01 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5938 5939
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5940
    :type weight: LayerOutput
R
ranqiu 已提交
5941
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5942 5943
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5944
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5945
    :type coeff: float
R
ranqiu 已提交
5946 5947
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5948
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5962 5963 5964 5965 5966 5967
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5968

X
xuwei06 已提交
5969
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5970

5971

Z
zhangjinchao01 已提交
5972
@wrap_name_default()
L
luotao1 已提交
5973
@layer_support()
Q
qijun 已提交
5974 5975 5976 5977 5978 5979
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5980 5981 5982
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5983
    The example usage is:
Z
zhangjinchao01 已提交
5984 5985 5986 5987 5988 5989 5990 5991

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5992 5993
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5994
    :type input: LayerOutput
R
ranqiu 已提交
5995
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5996 5997
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5998
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5999
                     minimum size of the list.
Z
zhangjinchao01 已提交
6000
    :type NDCG_num: int
R
ranqiu 已提交
6001 6002 6003 6004 6005
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
6006
    :type max_sort_size: int
R
ranqiu 已提交
6007
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6008 6009 6010
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6011
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6012
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6013 6014
    :rtype: LayerOutput
    """
6015 6016 6017
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6018 6019 6020 6021 6022 6023 6024
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6025

Q
qijun 已提交
6026 6027
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6028

6029

Z
zhangjinchao01 已提交
6030
@wrap_name_default()
L
luotao1 已提交
6031
@layer_support()
6032 6033 6034 6035 6036 6037
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6038 6039 6040
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6041 6042
    The example usage is:

Z
zhangjinchao01 已提交
6043 6044
    .. code-block:: python

X
xuwei06 已提交
6045
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6046
                            label=label_layer)
Z
zhangjinchao01 已提交
6047 6048 6049 6050

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6051
    :type input: LayerOutput
R
ranqiu 已提交
6052
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6053 6054
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6055
                  1.0 is the default value.
R
ranqiu 已提交
6056
    :type coeff: float
R
ranqiu 已提交
6057 6058
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6059
    :type weight: LayerOutout
R
ranqiu 已提交
6060 6061
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6062
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6063
    :return: LayerOutput object.
R
ranqiu 已提交
6064
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6065 6066
    """

6067
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6068 6069 6070
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6071
        inputs=ipts,
Q
qijun 已提交
6072 6073
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6074
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6075

6076

Z
zhangjinchao01 已提交
6077
@wrap_name_default()
L
luotao1 已提交
6078
@layer_support()
Q
qijun 已提交
6079 6080 6081 6082
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6083 6084
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6085 6086
    """
    A loss layer for multi class entropy with selfnorm.
6087
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6088

C
caoying03 已提交
6089 6090
    The example usage is:

Z
zhangjinchao01 已提交
6091 6092
    .. code-block:: python

X
xuwei06 已提交
6093
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6094
                                          label=label_layer)
Z
zhangjinchao01 已提交
6095 6096

    :param input: The first input layer.
R
ranqiu 已提交
6097
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6098
    :param label: The input label.
R
ranqiu 已提交
6099
    :type input: LayerOutput
R
ranqiu 已提交
6100
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6101 6102
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6103
                  1.0 is the default value.
R
ranqiu 已提交
6104
    :type coeff: float
Z
zhangjinchao01 已提交
6105
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6106 6107 6108
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6109
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6110
    :return: LayerOutput object.
R
ranqiu 已提交
6111
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6112
    """
Q
qijun 已提交
6113 6114 6115 6116 6117 6118 6119
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6120

Q
qijun 已提交
6121 6122 6123 6124 6125
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6126

6127

X
xuwei06 已提交
6128 6129 6130 6131
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6132
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6133

C
caoying03 已提交
6134 6135
    The example usage is:

X
xuwei06 已提交
6136 6137
    .. code-block:: python

L
Luo Tao 已提交
6138
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6139

R
ranqiu 已提交
6140
    :param input: The input of this layer.
R
ranqiu 已提交
6141
    :type input: LayerOutput
R
ranqiu 已提交
6142
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6143 6144 6145
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6146 6147 6148 6149
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6150
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6151 6152 6153 6154 6155
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6156

Q
qijun 已提交
6157
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6158 6159


Z
zhangjinchao01 已提交
6160
@wrap_name_default()
L
luotao1 已提交
6161
@layer_support()
L
Luo Tao 已提交
6162 6163 6164 6165 6166 6167
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6168
    """
6169 6170 6171
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6172 6173 6174 6175 6176
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6177

C
caoying03 已提交
6178 6179
    The example usage is:

Z
zhangjinchao01 已提交
6180 6181
    .. code-block:: python

L
Luo Tao 已提交
6182
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6183 6184

    :param input: The first input layer.
R
ranqiu 已提交
6185
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6186
    :param label: The input label.
R
ranqiu 已提交
6187
    :type input: LayerOutput
R
ranqiu 已提交
6188
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6189
    :type name: basestring
L
Luo Tao 已提交
6190
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6191 6192
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6193
                  1.0 is the default value.
R
ranqiu 已提交
6194 6195 6196
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6197
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6198
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6199 6200
    :rtype: LayerOutput.
    """
6201
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6213
@wrap_name_default()
L
luotao1 已提交
6214
@layer_support()
6215 6216 6217 6218 6219
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6220
    """
6221 6222 6223
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6224 6225 6226
    loss is defined as:

    .. math:
6227
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6228
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6229

C
caoying03 已提交
6230 6231
    The example usage is:

Z
zhangjinchao01 已提交
6232 6233
    .. code-block:: python

6234
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6235 6236

    :param input: The first input layer.
R
ranqiu 已提交
6237
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6238
    :param label: The input label.
R
ranqiu 已提交
6239
    :type input: LayerOutput
R
ranqiu 已提交
6240
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6241 6242
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6243
                  1.0 is the default value.
R
ranqiu 已提交
6244 6245 6246
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6247
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6248
    :return: LayerOutput object.
R
ranqiu 已提交
6249
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6250
    """
6251 6252 6253
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6254 6255
    Layer(
        name=name,
6256
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6257 6258 6259
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6260 6261
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6262

6263

Z
zhangjinchao01 已提交
6264
@wrap_name_default()
L
luotao1 已提交
6265
@layer_support()
Q
qijun 已提交
6266 6267 6268 6269
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6270
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6271 6272 6273
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6274 6275
    The example usage is:

Z
zhangjinchao01 已提交
6276 6277
    .. code-block:: python

X
xuwei06 已提交
6278
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6279
                                               label=label_layer)
Z
zhangjinchao01 已提交
6280 6281 6282 6283 6284

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6285
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6286 6287
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6288
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6289
    :type coeff: float
R
ranqiu 已提交
6290 6291
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6292
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6293
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6294 6295 6296
    :rtype: LayerOutput
    """

6297 6298
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6299 6300 6301 6302
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6315 6316


C
caoying03 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6339 6340
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6341
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6342
    """
C
caoying03 已提交
6343 6344 6345
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6346

C
caoying03 已提交
6347 6348 6349 6350 6351
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6352

C
caoying03 已提交
6353 6354 6355 6356 6357
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6358

C
caoying03 已提交
6359 6360 6361
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6362

C
caoying03 已提交
6363 6364 6365 6366
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6367

C
caoying03 已提交
6368 6369 6370
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6371
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6372 6373
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6374

D
dangqingqing 已提交
6375

C
caoying03 已提交
6376 6377
    The example usage is:

D
dangqingqing 已提交
6378 6379
    .. code-block:: python

C
caoying03 已提交
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6392
    :param input: Input beams for this layer.
C
caoying03 已提交
6393
    :type input: BeamInput
R
ranqiu 已提交
6394
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6421 6422 6423
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6424 6425
@wrap_name_default()
@layer_support()
6426
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6427 6428
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6429
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6439
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6440

R
ranqiu 已提交
6441
    Reference:
R
ranqiu 已提交
6442 6443
        `Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf`_
D
dangqingqing 已提交
6444

C
caoying03 已提交
6445 6446
    The example usage is:

D
dangqingqing 已提交
6447 6448
    .. code-block:: python

6449 6450
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6451 6452 6453 6454 6455

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6456
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6457
    :type name: basestring
R
ranqiu 已提交
6458
    :param coeff: The weight of the gradient in the back propagation.
6459
                  1.0 is the default value.
6460
    :type coeff: float
R
ranqiu 已提交
6461 6462
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6475
        coeff=coeff,
D
dangqingqing 已提交
6476 6477 6478
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6479 6480 6481 6482 6483


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6484 6485 6486
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6487
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6488 6489
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6490 6491 6492 6493 6494 6495 6496 6497

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6498 6499
    The example usage is:

W
wwhu 已提交
6500 6501 6502 6503 6504 6505
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6506
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6507
    :type name: basestring
R
ranqiu 已提交
6508 6509
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6533 6534


6535 6536 6537 6538
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6539 6540 6541 6542 6543 6544
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6545
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6546
    :type name: basestring
R
ranqiu 已提交
6547
    :param input: The input of this layer.
R
ranqiu 已提交
6548 6549 6550 6551 6552
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6553 6554 6555 6556 6557 6558 6559
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6560 6561


D
dangqingqing 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6575
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6576 6577 6578 6579 6580 6581 6582
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6583
    efficient manner to improve unidirectional RNNs.
6584

R
ranqiu 已提交
6585
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6586 6587 6588 6589
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6590

D
dangqingqing 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6606
    :param input: The input of this layer.
D
dangqingqing 已提交
6607 6608 6609 6610
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6611
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6612
    :type act: BaseActivation
R
ranqiu 已提交
6613 6614
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6615
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6616 6617
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6618
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6634 6635


6636 6637 6638 6639 6640
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6641 6642
                channel_shared=None,
                num_channels=None,
6643 6644 6645
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6646
    The Parametric Relu activation that actives outputs with a learnable weight.
6647 6648

    Reference:
R
ranqiu 已提交
6649 6650
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
6651 6652 6653 6654 6655

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6656 6657 6658 6659 6660 6661
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6662
    :param name: The name of this layer. It is optional.
6663
    :type name: basestring
R
ranqiu 已提交
6664
    :param input: The input of this layer.
6665
    :type input: LayerOutput
R
ranqiu 已提交
6666
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6667 6668

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6669 6670
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6671 6672

    :type partial_sum: int
6673
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6674

6675 6676
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6677

6678
    :type channel_shared: bool
6679 6680
    :param num_channels: number of input channel.
    :type num_channels: int
6681
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6682 6683 6684
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6685
    :type layer_attr: ExtraLayerAttribute | None
6686 6687 6688 6689
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6690
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6691

6692
    if not param_attr:
X
xzl 已提交
6693
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6694 6695 6696 6697
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6698 6699
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6700 6701 6702 6703
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6704 6705
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6706 6707 6708 6709
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6710 6711 6712

    l = Layer(
        name=name,
C
caoying03 已提交
6713
        type=LayerType.PRELU,
C
caoying03 已提交
6714
        inputs=Input(input.name, **param_attr.attr),
6715 6716 6717 6718 6719 6720
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6721
        num_filters=num_channels,
6722
        size=l.config.size)
6723 6724


6725
@wrap_name_default()
C
caoying03 已提交
6726
@layer_support(ERROR_CLIPPING, DROPOUT)
6727 6728 6729 6730 6731 6732 6733
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6734 6735
                     gate_bias_attr=True,
                     inproj_attr=None,
6736 6737 6738 6739 6740 6741 6742
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6743
    product between :match:`X'` and :math:`\sigma` is finally returned.
6744 6745

    Reference:
R
ranqiu 已提交
6746 6747
        `Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083`_
6748 6749 6750 6751 6752 6753 6754 6755 6756

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6757
    :param input: The input of this layer.
6758
    :type input: LayerOutput
R
ranqiu 已提交
6759
    :param size: The dimension of this layer's output.
6760
    :type size: int
6761 6762
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6763
    :type act: BaseActivation
6764
    :param name: The name of this layer. It is optional.
6765
    :type name: basestring
R
ranqiu 已提交
6766 6767
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6768
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6769 6770 6771
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6772
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6773
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6774
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6775 6776 6777
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6778
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6779 6780 6781
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6782
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6783
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6784
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6785 6786 6787
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6788
    :type layer_attr: ExtraLayerAttribute | None
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6801
        layer_attr=inproj_attr,
6802 6803 6804 6805 6806 6807 6808 6809 6810
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6811
        param_attr=gate_param_attr,
6812 6813 6814 6815 6816
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6817 6818


6819
@layer_support()
6820
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6821 6822
def switch_order_layer(input,
                       name=None,
6823
                       reshape_axis=None,
W
wanghaoshuang 已提交
6824 6825
                       act=None,
                       layer_attr=None):
6826
    """
6827
    This layer switch dimension order of image input.
6828 6829
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6830 6831 6832 6833

    The example usage is:

    .. code-block:: python
6834 6835
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6836
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6837

R
ranqiu 已提交
6838
    :param input: The input of this layer.
6839
    :type input: LayerOutput
6840
    :param name: The name of this layer. It is optional.
6841
    :type name: basestring
R
ranqiu 已提交
6842 6843
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6844 6845 6846
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6847
    assert isinstance(input, LayerOutput)
6848 6849 6850 6851 6852
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6853 6854
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6855
        inputs=input.name,
6856 6857
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6858
        active_type=act.name,
6859 6860 6861
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6862
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6863
        activation=act,
6864 6865
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6866 6867


6868 6869
@wrap_name_default()
@layer_support()
6870
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6871
    """
R
ranqiu 已提交
6872 6873 6874
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6875

6876 6877 6878
    The example usage is:

    .. code-block:: python
W
whs 已提交
6879
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6880

R
ranqiu 已提交
6881 6882
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
W
wanghaoshuang 已提交
6883
                  And the input must be 4-dims and in NCHW order.
R
ranqiu 已提交
6884 6885
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6886
    :type offset: Sequence
R
ranqiu 已提交
6887
    :param axis: The start axis to be cropped. For image input layer:
6888 6889 6890 6891
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6892 6893
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6894
    :type shape: Sequence | None
6895
    :param name: The name of this layer. It is optional.
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6917 6918


C
caoying03 已提交
6919 6920
@wrap_name_default()
@layer_support()
6921
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6922
    """
6923
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6924
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6925

C
caoying03 已提交
6926 6927 6928
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6929 6930 6931 6932

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6933

R
ranqiu 已提交
6934
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6935

C
caoying03 已提交
6936

R
ranqiu 已提交
6937
    :param input: The input of this layer. It is a nested sequence.
6938
    :type input: LayerOutput
R
ranqiu 已提交
6939
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6940
    :type input: LayerOutput
6941
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6942 6943 6944 6945
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6946

6947 6948 6949 6950 6951 6952 6953
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6954
    l = Layer(
6955 6956
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6957 6958 6959 6960 6961 6962 6963
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6964 6965


G
guosheng 已提交
6966
@wrap_name_default("clip")
6967
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6977
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6978

6979
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6980
    :type name: basestring
R
ranqiu 已提交
6981
    :param input: The input of this layer.
G
guosheng 已提交
6982
    :type input: LayerOutput.
6983
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6984
    :type min: float
6985
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6986
    :type max: float
6987 6988
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6989 6990 6991 6992 6993
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6994 6995
        min=min,
        max=max)
G
guosheng 已提交
6996 6997
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6998 6999


7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7024
    :param name: The name of this layer. It is optional.
7025
    :type name: basestring
R
ranqiu 已提交
7026
    :param input: The input of this layer, which should be a sequence.
7027
    :type input: LayerOutput
R
ranqiu 已提交
7028
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7029
    :type starts: LayerOutput | None
R
ranqiu 已提交
7030
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7031
    :type ends: LayerOutput | None
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7063 7064


7065 7066
@wrap_name_default()
@layer_support()
7067
def kmax_seq_score_layer(input, name=None, beam_size=1):
7068
    """
R
ranqiu 已提交
7069
    This layer accepts one input which is scores over a sequence or a nested
7070 7071 7072 7073
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7074
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7075 7076


7077
    :param name: The name of this layer. It is optional.
7078
    :type name: basestring
R
ranqiu 已提交
7079 7080
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7081
    :type input: LayerOutput
R
ranqiu 已提交
7082 7083
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7084 7085 7086
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7087
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7088
                                            "accepts only one input.")
7089
    assert input.size == 1, (
7090
        "input of kmax_seq_score_layer is a score "
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7101 7102


7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7129
        conv = img_conv3d_layer(input=data, filter_size=1,
7130 7131 7132 7133 7134
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7135
    :param name: The name of this layer. It is optional.
7136
    :type name: basestring
R
ranqiu 已提交
7137
    :param input: The input of this layer.
7138
    :type input: LayerOutput
R
ranqiu 已提交
7139 7140
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7141
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7142 7143
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7144
    :param act: Activation type. ReluActivation is the default activation.
7145
    :type act: BaseActivation
R
ranqiu 已提交
7146
    :param groups: The number of the filter groups.
7147
    :type groups: int
R
ranqiu 已提交
7148 7149
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7150
    :type stride: int | tuple | list
R
ranqiu 已提交
7151 7152
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7153
    :type padding: int | tuple | list
R
ranqiu 已提交
7154 7155 7156
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7157
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7158
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7159 7160
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7161
    :type num_channels: int
R
ranqiu 已提交
7162 7163
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7164
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7165
    :param shared_biases: Whether biases will be shared between filters or not.
7166
    :type shared_biases: bool
R
ranqiu 已提交
7167 7168
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7169
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7170
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7171
    :type trans: bool
R
ranqiu 已提交
7172
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7173 7174 7175
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7176 7177 7178 7179 7180 7181 7182
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7183 7184 7185 7186 7187 7188
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7189

C
chengduoZH 已提交
7190 7191 7192 7193 7194 7195
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7196

C
chengduoZH 已提交
7197 7198 7199 7200 7201 7202
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7249 7250


G
guosheng 已提交
7251 7252 7253 7254 7255
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7256
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7257
    the input matrix. For each element, the layer first re-scales it and then
7258 7259
    adds a bias to it.

X
xuwei06 已提交
7260
    This layer is very like the SlopeInterceptLayer, except the scale and
7261 7262
    bias are trainable.

G
guosheng 已提交
7263 7264 7265 7266 7267 7268 7269 7270
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7271
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7272
    :type name: basestring
R
ranqiu 已提交
7273 7274
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7275 7276
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7277
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7278 7279 7280
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7281
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7292 7293 7294 7295 7296 7297 7298 7299 7300


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7301
    :param input: The input of this layer.
7302 7303 7304
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7305
    :param size: The resized output dimension of this layer.
7306 7307 7308 7309 7310 7311
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7331 7332
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7333
    :type offsets: LayerOutput
R
ranqiu 已提交
7334
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7335
    :type sizes: LayerOutput
7336
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7337
    :type act: BaseActivation.
R
ranqiu 已提交
7338 7339 7340
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7366 7367


Y
yangyaming 已提交
7368 7369
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7370
    """
Y
yangyaming 已提交
7371 7372 7373 7374 7375 7376
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7377 7378 7379

    .. code-block:: python

Y
yangyaming 已提交
7380 7381 7382
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7398 7399
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7400 7401 7402 7403 7404 7405 7406
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7407
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7408 7409 7410 7411 7412
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7413
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7414
        parents=[input, indices],
Y
yangyaming 已提交
7415
        num_filters=input.num_filters,
Y
yangyaming 已提交
7416
        size=input.size)
7417 7418


7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7433 7434 7435 7436 7437
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7438 7439
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7440

7441 7442 7443 7444
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7445 7446

    For details of Factorization Machine, please refer to the paper:
7447
    Factorization machines.
7448

7449
    .. code-block:: python
W
wangmeng28 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7461 7462
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7463
                        the latent vector size.
7464 7465 7466
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7467 7468
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)