layers.py 226.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
Q
qijun 已提交
145
]
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152


class LayerType(object):
    """
    Layer type enumerations.
    """

153 154 155 156 157 158 159 160
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
161
    POOLING_AVG = 'average'
162
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
163
    COST = 'cost'
164 165
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
166
    HSIGMOID = 'hsigmoid'
167 168 169 170 171
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
172
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
173
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
174
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
175 176 177
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
178
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
179 180 181 182
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
183
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
184 185 186 187 188 189 190

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
191
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
192 193 194
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
195
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
196
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
197
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
198 199 200 201 202 203 204 205 206 207 208

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
209
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
210
    BLOCK_EXPAND = "blockexpand"
211
    MAXOUT = "maxout"
Q
qijun 已提交
212
    SPP_LAYER = "spp"
D
dangqingqing 已提交
213
    PAD_LAYER = "pad"
W
wwhu 已提交
214
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
215
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
216 217 218

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
219 220
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
221 222 223 224 225

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
226
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
227

228 229 230
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

231 232
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
233
    HUBER_REGRESSION = 'huber_regression'
234
    HUBER_CLASSIFICATION = 'huber_classification'
235 236
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
237
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
238 239 240 241 242 243
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
244
    SWITCH_ORDER_LAYER = 'switch_order'
245
    CROP_LAYER = 'crop'
C
caoying03 已提交
246
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
247
    CLIP_LAYER = 'clip'
248
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
249

250
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
251
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
273
    """
L
Luo Tao 已提交
274
    PaddlePaddle supports three sequence types:
275 276 277

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
278 279
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
280

L
Luo Tao 已提交
281
    Accordingly, AggregateLevel supports two modes:
282

L
Luo Tao 已提交
283
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
284
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
285 286
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
287
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
288 289 290
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
291 292
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
293 294 295
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
318
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
319 320
    """

Q
qijun 已提交
321 322 323 324 325 326 327 328 329
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
330
                 reverse=None):
Z
zhangjinchao01 已提交
331 332
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
333
        assert size is not None
Z
zhangjinchao01 已提交
334 335
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
336
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
337
        self.layer_type = layer_type
338 339
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
340 341 342 343 344 345 346 347
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
348
        self.reverse = reverse
Z
zhangjinchao01 已提交
349

350 351 352 353 354 355 356 357
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

358 359 360 361
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

362 363 364 365 366 367 368 369
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
370 371 372

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
373
DEVICE = 'device'
Z
zhangjinchao01 已提交
374 375 376


def layer_support(*attrs):
377
    attrs_list = list(attrs)
378
    attrs_list.append(DEVICE)
Q
qijun 已提交
379

Z
zhangjinchao01 已提交
380 381 382
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
383
            for attr in attrs_list:
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
400 401 402 403 404
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
444 445
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
446 447 448 449
    proj.origin = input
    return proj


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
480 481
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
482 483 484 485
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
525 526
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
527 528 529 530
    proj.origin = input
    return proj


531
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
562
    :type input: LayerOutput
Z
zhangjinchao01 已提交
563 564
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
565
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
566 567 568 569 570 571
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
572 573
        if size is None:
            size = input.size - offset
Q
qijun 已提交
574
        proj = IdentityOffsetProjection(
575
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
576 577 578 579
        proj.origin = input
    return proj


580 581
def slice_projection(input, slices):
    """
582 583
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
584 585

    .. math::
586
       output = [input.slices()]
587 588 589 590 591 592 593 594 595 596 597 598 599 600

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
601
    :type slices: pair of int
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
641
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
642 643 644 645
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
646
@wrap_param_attr_default()
647
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
648
    """
649
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

663 664 665 666 667 668 669
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
670 671
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
672
    proj.origin = input
673
    return proj
Z
zhangjinchao01 已提交
674

675 676

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
677 678
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
679

Z
zhangjinchao01 已提交
680
    .. math::
L
Luo Tao 已提交
681
       out.row[i] += scale * (a.row[i] .* b.row[i])
682

Z
zhangjinchao01 已提交
683 684
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
685

Z
zhangjinchao01 已提交
686
    The example usage is:
687

Z
zhangjinchao01 已提交
688
    .. code-block:: python
689

L
Luo Tao 已提交
690
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
691

692 693 694 695
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
696 697
    :param scale: config scalar, default value is one.
    :type scale: float
698 699
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
700
    """
701 702 703
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
704
    a = kwargs.get('x', a)  # For Backward capacity.
705 706 707 708 709 710
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
711
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
712
    op.origin = [a, b]
713
    return op
Z
zhangjinchao01 已提交
714

715

Z
zhangjinchao01 已提交
716
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
717 718 719
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
756 757 758 759 760 761
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
775
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
784 785 786 787 788
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
        :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
789 790 791
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
792 793 794 795 796 797 798
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
799 800 801 802 803
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

804
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
805 806 807 808 809 810 811 812
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
813
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
814
            self.inputs.append(other)
815 816 817 818
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
819 820 821 822 823 824 825 826
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

827
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
828 829
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
830
        assert len(self.inputs) != 0
831
        ml = MixedLayer(
Z
zhangjinchao01 已提交
832 833 834 835 836
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
837
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
838 839 840
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
841
        self.finalized = True
Z
zhangjinchao01 已提交
842 843 844 845 846 847


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
848 849 850 851 852
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
884 885 886 887 888
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
889 890 891 892 893 894 895 896 897
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
898 899 900 901 902 903
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
904
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
905 906 907 908 909 910 911 912
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
913 914
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
915 916 917 918 919 920 921
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
922
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
923

R
ranqiu 已提交
924
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
925 926 927
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
928
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
929
    :type height: int|None
L
Luo Tao 已提交
930
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
931
    :type width: int|None
Z
zhangjinchao01 已提交
932 933
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
934
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
935 936
    :rtype: LayerOutput
    """
Q
qijun 已提交
937 938 939 940
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
941
        depth=depth,
L
Luo Tao 已提交
942 943
        height=height,
        width=width,
Q
qijun 已提交
944
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
945

C
chengduoZH 已提交
946 947
    if depth is None:
        depth = 1
948 949
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
950 951
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
952
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
953 954

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
955 956 957 958


@wrap_name_default("embedding")
@wrap_param_attr_default()
959
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
960 961 962 963
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

964
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
965 966 967 968 969 970 971 972 973 974
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
975
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
976 977
    :rtype: LayerOutput
    """
Q
qijun 已提交
978 979 980 981 982 983
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
984 985 986 987 988 989 990 991 992
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
993 994 995 996 997 998 999
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1012
    which is equal to:
Z
zhangjinchao01 已提交
1013 1014 1015 1016 1017 1018

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1019
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1029 1030 1031 1032 1033
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1034 1035
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1036
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1037 1038 1039 1040
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1041
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1042 1043
        param_attr = [param_attr]
    else:
1044
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1045 1046
            assert len(input) == len(param_attr)
        else:
1047
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1048 1049 1050
                logger.fatal(
                    "You should set the parameter name for each of the input item."
                )
Z
zhangjinchao01 已提交
1051 1052
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1053
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1054 1055

    Layer(
Q
qijun 已提交
1056 1057 1058
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1059 1060 1061 1062 1063
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1064 1065 1066
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1067

1068

1069
@wrap_name_default("print")
1070
def printer_layer(input, format=None, name=None):
1071 1072
    """
    Print the output value of input layers. This layer is useful for debugging.
1073

1074
    :param name: The name of this layer. It is optional.
1075 1076 1077
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1078
    :return: LayerOutput
1079
    """
1080 1081 1082 1083 1084
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1085 1086 1087

    Layer(
        name=name,
1088
        format=format,
1089
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1090
        inputs=[l.name for l in input], )
1091
    # this layer don't return anything, can not be input of other layer.
1092

X
xuwei06 已提交
1093 1094 1095 1096 1097 1098 1099
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1100

Y
yuan 已提交
1101
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1102
def priorbox_layer(input,
G
gaoyuan 已提交
1103
                   image,
G
gaoyuan 已提交
1104 1105 1106 1107 1108
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1109 1110 1111
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1112
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1113 1114 1115
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1116 1117
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1129
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1130 1131 1132
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1133
        inputs=[input.name, image.name],
Y
yuan 已提交
1134 1135 1136 1137 1138 1139
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1140 1141
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1142
        parents=[input, image],
G
gaoyuan 已提交
1143 1144 1145
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1161
    :param name: The name of this layer. It is optional.
1162
    :type name: basestring
Y
yangyaming 已提交
1163 1164
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1165
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1166
    :type input_conf: LayerOutput | List of LayerOutput
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1188
    input_loc_num = len(input_loc)
1189 1190 1191 1192 1193 1194

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1195
    input_conf_num = len(input_conf)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1233 1234
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1235

1236
    :param name: The name of this layer. It is optional.
1237
    :type name: basestring
Y
yangyaming 已提交
1238 1239
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1240
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1241
    :type input_conf: LayerOutput | List of LayerOutput.
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1263
    input_loc_num = len(input_loc)
1264 1265 1266 1267 1268 1269

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1270 1271
    input_conf_num = len(input_conf)

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1300 1301
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1302 1303 1304 1305 1306
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1307

1308
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1309 1310 1311 1312 1313 1314 1315
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1316
    assert input.num_filters is not None
G
gaoyuan 已提交
1317 1318
    Layer(
        name=name,
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1332 1333
    return LayerOutput(
        name,
1334
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1335 1336 1337 1338 1339
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1340 1341 1342 1343
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1344 1345 1346 1347
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1348
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1349
                  stride=-1,
Z
zhangjinchao01 已提交
1350 1351 1352 1353
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1354 1355
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1356 1357 1358
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1359
    operation. Note that for sequence with sub-sequence, the default value
1360 1361
    of stride is -1.

Z
zhangjinchao01 已提交
1362 1363 1364 1365 1366 1367
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1368
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1369

L
Luo Tao 已提交
1370 1371
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1372
    :type agg_level: AggregateLevel
1373
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1374 1375 1376 1377 1378 1379
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1380
    :param stride: The step size between successive pooling regions.
1381
    :type stride: Int
1382 1383 1384 1385 1386
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1387 1388
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1389
    :return: LayerOutput object.
Y
Yu Yang 已提交
1390
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1391 1392
    """
    extra_dict = dict()
1393
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1394 1395
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1396 1397 1398 1399
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1400 1401
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1402 1403 1404
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1405 1406 1407 1408 1409 1410
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1411
        stride=stride,
Q
qijun 已提交
1412
        **extra_dict)
Z
zhangjinchao01 已提交
1413

Q
qijun 已提交
1414 1415
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1416

Q
qijun 已提交
1417

Z
zhangjinchao01 已提交
1418 1419
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1420
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1421 1422
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1423
@layer_support()
Q
qijun 已提交
1424 1425
def lstmemory(input,
              name=None,
1426
              size=None,
Q
qijun 已提交
1427 1428 1429 1430 1431 1432
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1433 1434 1435 1436 1437 1438 1439 1440
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1441
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1442

L
luotao02 已提交
1443
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1444

L
luotao02 已提交
1445
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1446

L
luotao02 已提交
1447
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1448

L
luotao02 已提交
1449
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1450 1451


C
caoying03 已提交
1452
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1453
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1454 1455 1456 1457
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1458

C
caoying03 已提交
1459
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1460 1461
    to config a simple plain lstm layer.

C
caoying03 已提交
1462 1463 1464 1465
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1466 1467 1468 1469 1470

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1471 1472
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1483 1484 1485 1486 1487
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1488 1489 1490 1491
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1492
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1499
    assert input.size is not None and input.size % 4 == 0
1500

1501 1502 1503 1504 1505
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1506 1507 1508
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1509

Q
qijun 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1520

Q
qijun 已提交
1521 1522 1523 1524 1525
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1526

Z
zhangjinchao01 已提交
1527 1528 1529

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1530
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1531 1532
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1533
@layer_support()
Q
qijun 已提交
1534
def grumemory(input,
1535
              size=None,
Q
qijun 已提交
1536 1537 1538 1539 1540 1541
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1563 1564
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1565 1566 1567 1568 1569

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1570 1571 1572
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1573 1574 1575 1576 1577

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1578
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1579
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1580 1581 1582
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1583

C
caoying03 已提交
1584 1585 1586
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1598 1599
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1600
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1601 1602 1603 1604 1605 1606 1607 1608
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1609 1610 1611 1612 1613
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1614 1615 1616 1617
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1618
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1619 1620 1621 1622
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1623 1624 1625 1626 1627 1628
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1629 1630 1631
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1632

Q
qijun 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1642

Q
qijun 已提交
1643 1644 1645 1646 1647
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1648

Z
zhangjinchao01 已提交
1649 1650 1651

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1652 1653
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1654
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1655
             stride=-1,
Z
zhangjinchao01 已提交
1656 1657 1658 1659
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1660 1661 1662
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1663
    of stride is -1.
1664

L
Luo Tao 已提交
1665 1666 1667 1668 1669 1670
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1671
    :param agg_level: Aggregated level
1672
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1673 1674 1675
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1676
    :param stride: The step size between successive pooling regions.
1677
    :type stride: Int
Z
zhangjinchao01 已提交
1678 1679
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1680
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1681 1682
    :rtype: LayerOutput
    """
1683 1684 1685 1686 1687 1688
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1689
    if agg_level == AggregateLevel.TO_SEQUENCE:
1690 1691
        assert stride == -1

Z
zhangjinchao01 已提交
1692 1693 1694 1695 1696
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1697
        stride=stride,
Q
qijun 已提交
1698 1699 1700 1701 1702 1703
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1704 1705 1706 1707


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1708 1709
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1710
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1711
              stride=-1,
Z
zhangjinchao01 已提交
1712 1713 1714 1715
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1716 1717 1718
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1719
    of stride is -1.
1720

L
Luo Tao 已提交
1721 1722 1723 1724 1725 1726
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1727
    :param agg_level: aggregation level
1728
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1729 1730 1731
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1732
    :param stride: The step size between successive pooling regions.
1733
    :type stride: Int
Z
zhangjinchao01 已提交
1734 1735
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1736
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1737 1738
    :rtype: LayerOutput
    """
1739 1740 1741 1742 1743 1744 1745

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1746
    if agg_level == AggregateLevel.TO_SEQUENCE:
1747 1748
        assert stride == -1

Z
zhangjinchao01 已提交
1749 1750 1751 1752 1753
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1754
        stride=stride,
Q
qijun 已提交
1755 1756 1757 1758 1759 1760
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1761 1762 1763


class ExpandLevel(object):
1764 1765 1766 1767 1768
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1769 1770
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1771 1772
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1773 1774
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1775 1776
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1777 1778
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1779 1780
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1781

1782

Z
zhangjinchao01 已提交
1783 1784
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1785 1786
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1787 1788
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1789
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1801
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1802 1803 1804 1805 1806

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1807
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1808
    :type name: basestring
1809 1810 1811 1812 1813
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1814 1815 1816 1817
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1818
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1828 1829 1830 1831 1832 1833
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1834 1835


X
xuwei06 已提交
1836
@wrap_name_default()
X
xuwei06 已提交
1837
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1838
@layer_support()
X
xuwei06 已提交
1839 1840 1841
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1842
                 act=None,
X
xuwei06 已提交
1843 1844
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1845
    """
X
xuwei06 已提交
1846
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1847

X
xuwei06 已提交
1848
    If as_row_vector:
X
xuwei06 已提交
1849
    .. math::
X
xuwei06 已提交
1850 1851 1852 1853 1854
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1855 1856 1857 1858 1859

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1860
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1861 1862 1863 1864 1865

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1866
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1867 1868 1869 1870 1871 1872
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1873 1874
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1885
        active_type=act.name,
X
xuwei06 已提交
1886
        num_filters=num_repeats,
X
xuwei06 已提交
1887
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1888
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1889 1890 1891 1892 1893
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1894
        activation=act,
Q
qijun 已提交
1895 1896
        parents=[input])

X
xuwei06 已提交
1897

1898 1899 1900
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1901
@layer_support(ERROR_CLIPPING, DROPOUT)
1902 1903 1904 1905 1906 1907 1908 1909
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1910
    the dimension of each instance is M, and the input reshape_size is N, then the
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1925
    :param name: The name of this layer. It is optional.
1926 1927 1928 1929 1930
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1931 1932 1933 1934 1935
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
1978
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1979 1980 1981
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1982
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1983 1984
    :rtype: LayerOutput
    """
1985
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1986
    assert len(input) == 2
1987 1988 1989 1990 1991 1992 1993
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1994 1995 1996 1997
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1998 1999 2000 2001 2002 2003
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2004 2005


L
liaogang 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2022
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2023

L
liaogang 已提交
2024
    :param   input:        A input layer.
L
liaogang 已提交
2025
    :type    input:        LayerOutput.
L
liaogang 已提交
2026
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
2027
    :type    out_size_x:   int|None
L
liaogang 已提交
2028
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
2029
    :type    out_size_y:   int|None
L
liaogang 已提交
2030
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
2031
    :type    name:         None|basestring
L
liaogang 已提交
2032
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2033 2034 2035 2036 2037 2038 2039
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2040
    assert input.num_filters is not None
L
liaogang 已提交
2041
    num_channels = input.num_filters
Q
qijun 已提交
2042 2043 2044 2045 2046 2047 2048
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2049
                channels=num_channels)),
Q
qijun 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2059

Z
zhangjinchao01 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2083
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2084 2085 2086
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2087
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2088 2089
    :rtype: LayerOutput
    """
2090 2091 2092
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2093 2094 2095
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2096
        inputs=[weight.name, input.name],
Q
qijun 已提交
2097 2098 2099
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2100 2101 2102 2103 2104 2105


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2106
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2107 2108

    .. math::
2109
       y  = w x
Z
zhangjinchao01 已提交
2110

2111 2112 2113 2114 2115
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2127
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2128 2129 2130
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2132 2133
    :rtype: LayerOutput
    """
2134 2135 2136
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2137 2138 2139 2140
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2141 2142 2143
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2144 2145 2146 2147 2148 2149


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2150
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
2165
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2166 2167 2168
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2169
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2170 2171 2172 2173 2174 2175
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2176 2177 2178
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2179 2180


2181 2182
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2183
def rotate_layer(input, height, width, name=None, layer_attr=None):
2184
    """
H
Haonan 已提交
2185 2186
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2187 2188

    .. math::
H
Haonan 已提交
2189
       y(j,i,:) = x(M-i-1,j,:)
2190

H
Haonan 已提交
2191
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2192 2193 2194 2195 2196 2197

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2198 2199
                          height=100,
                          width=100)
2200 2201 2202 2203 2204

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2205
    :param name: The name of this layer. It is optional.
2206 2207 2208 2209 2210 2211 2212
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2213 2214 2215
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2216
        width=width,
H
Haonan 已提交
2217 2218 2219 2220 2221 2222 2223 2224
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2225 2226


Z
zhangjinchao01 已提交
2227 2228
@wrap_name_default()
@layer_support()
2229
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2230 2231 2232 2233
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2234
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2235 2236 2237 2238 2239
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2240

2241 2242
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2243

L
Luo Tao 已提交
2244 2245 2246 2247 2248 2249
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2250
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2262
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2263 2264
    :rtype: LayerOutput
    """
2265
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2266 2267 2268 2269 2270 2271
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2272
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2273
    else:
2274 2275
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2276 2277 2278 2279 2280 2281
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2282
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2283
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2284

2285

Z
zhangjinchao01 已提交
2286 2287
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2288
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2289
@layer_support()
Q
qijun 已提交
2290 2291
def hsigmoid(input,
             label,
2292
             num_classes=None,
Q
qijun 已提交
2293 2294 2295 2296
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2308
                        label=data_layer)
Z
zhangjinchao01 已提交
2309 2310 2311 2312 2313 2314 2315

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2316
    :type num_classes: int|None
2317
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2318
    :type name: basestring
2319 2320 2321 2322 2323
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
2324 2325
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2326 2327
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2328
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2329 2330 2331 2332
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2333 2334 2335 2336 2337 2338 2339 2340 2341
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2342 2343 2344
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2345 2346 2347 2348 2349
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2350 2351
    ipts_for_layer = []
    parents = []
2352
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2353
        assert isinstance(each_input, LayerOutput)
2354
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2355 2356 2357 2358
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2359
    l = Layer(
Z
zhangjinchao01 已提交
2360 2361 2362 2363 2364
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2365 2366 2367
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2368

2369

Z
zhangjinchao01 已提交
2370 2371 2372 2373 2374
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2384
                   dilation=1,
Q
qijun 已提交
2385 2386 2387 2388 2389 2390 2391
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2392
                   dilation_y=None,
2393 2394
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2395
    """
2396
    Convolution layer for image. Paddle can support both square and non-square
2397
    input currently.
Z
zhangjinchao01 已提交
2398 2399 2400 2401

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2402

2403
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2404
    and non-square input currently.
2405

X
xuwei06 已提交
2406
    The details of convolution transpose layer,
2407 2408 2409
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2410 2411 2412 2413
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2414 2415 2416
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2417
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2418 2419
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2420

L
Luo Tao 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2431
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2432 2433 2434
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2435 2436 2437
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2438 2439 2440
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2441
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2442 2443 2444 2445 2446
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2447 2448 2449
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2450 2451
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2452 2453 2454
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2455 2456
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2457 2458 2459
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
W
wanghaoshuang 已提交
2460 2461
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2462 2463 2464 2465 2466
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2476 2477
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2478
    :param layer_type: specify the layer_type, default is None. If trans=True,
2479 2480
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2481
                       "cudnn_conv"
2482
    :type layer_type: String
D
dangqingqing 已提交
2483
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2484 2485 2486 2487 2488
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2489

Z
zhangjinchao01 已提交
2490
    if filter_size_y is None:
2491 2492 2493 2494 2495 2496
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2497
    if stride_y is None:
2498 2499 2500 2501 2502 2503
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2504
    if padding_y is None:
2505 2506 2507 2508 2509 2510
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2511 2512 2513 2514 2515 2516 2517
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2518 2519
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2520
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2521 2522 2523 2524
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2525

2526
    if layer_type:
W
wanghaoshuang 已提交
2527 2528
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2529
        if trans:
2530
            assert layer_type in ["exconvt", "cudnn_convt"]
2531 2532 2533 2534 2535
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2536

X
xuwei06 已提交
2537
    l = Layer(
Z
zhangjinchao01 已提交
2538
        name=name,
Q
qijun 已提交
2539 2540 2541 2542 2543
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2544
                dilation=dilation,
Q
qijun 已提交
2545 2546 2547 2548 2549
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2550
                dilation_y=dilation_y,
Q
qijun 已提交
2551 2552
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2553 2554 2555 2556
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2557
        type=lt,
Q
qijun 已提交
2558 2559 2560 2561 2562 2563 2564 2565
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2566 2567 2568 2569


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2580 2581
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2582 2583 2584 2585 2586 2587 2588
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2617
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2618
    :type padding: int
2619 2620
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2621 2622 2623 2624
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2625
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2626
    :type pool_size: int
2627 2628
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2629 2630
    :param num_channels: number of input channel.
    :type num_channels: int
2631
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2632 2633
                      MaxPooling.
    :type pool_type: BasePoolingType
2634
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2635
    :type stride: int
2636 2637
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2638 2639
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2640 2641 2642 2643
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2644 2645
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2656 2657 2658 2659
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2660
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2661
        if (
Y
Yu Yang 已提交
2662
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2663
        else pool_type.name
2664 2665 2666 2667
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2668
    l = Layer(
Z
zhangjinchao01 已提交
2669 2670
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2683
                    padding_y=padding_y))
Q
qijun 已提交
2684
        ],
2685
        ceil_mode=ceil_mode,
Q
qijun 已提交
2686 2687 2688 2689 2690 2691 2692
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2693 2694


C
chengduoZH 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
    :type padding: int|tuple|list
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
    :param pool_size: pooling window width
    :type pool_size: int|tuple|list
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
    :type stride: int|tuple|list
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2835 2836
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2837 2838 2839 2840 2841 2842
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2843 2844 2845 2846 2847
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2848 2849 2850 2851
    The example usage is:

    ..  code-block:: python

2852 2853 2854
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2855 2856
                        pool_type=MaxPooling())

2857
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2885
    l = Layer(
Q
qijun 已提交
2886 2887
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2888 2889 2890 2891 2892
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2893
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2905 2906 2907 2908
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2909
    l = Layer(
Q
qijun 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2929 2930 2931 2932


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2933 2934 2935 2936 2937 2938
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2939
                      layer_attr=None):
Z
zhangjinchao01 已提交
2940
    """
2941
    Response normalization across feature maps.
D
dangqingqing 已提交
2942 2943
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2944

L
Luo Tao 已提交
2945 2946 2947
    The example usage is:

    ..  code-block:: python
2948

L
Luo Tao 已提交
2949 2950
        norm = img_cmrnorm_layer(input=net, size=5)

2951
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
2952
    :type name: None|basestring
Z
zhangjinchao01 已提交
2953 2954
    :param input: layer's input.
    :type input: LayerOutput
2955
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2956
    :type size: int
D
dangqingqing 已提交
2957
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2958
    :type scale: float
D
dangqingqing 已提交
2959
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2960 2961 2962 2963 2964
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2965
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2966 2967 2968
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2969
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2970 2971 2972


@wrap_bias_attr_default()
2973 2974
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2975 2976
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2977
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2978 2979 2980
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2981
                     img3D=False,
Q
qijun 已提交
2982 2983 2984 2985
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2986 2987
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2988 2989
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3008 3009 3010
    The example usage is:

    ..  code-block:: python
3011

L
Luo Tao 已提交
3012 3013
        norm = batch_norm_layer(input=net, act=ReluActivation())

3014
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
3028
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
3038
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3056 3057
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3058
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3069
    l = Layer(
Z
zhangjinchao01 已提交
3070
        name=name,
C
chengduoZH 已提交
3071
        img3D=img3D,
Q
qijun 已提交
3072 3073
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3074 3075 3076 3077 3078 3079
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3080
        mean_var_names=mean_var_names,
Q
qijun 已提交
3081
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3082

Q
qijun 已提交
3083 3084 3085 3086 3087 3088 3089
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
3113
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3114 3115 3116
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3117
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3118 3119 3120 3121 3122 3123
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3124 3125 3126
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3127 3128


G
guosheng 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
3149
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3165 3166 3167
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3168
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3169
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3192 3193 3194
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3195 3196

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3197 3198
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3199 3200
    Please refer to dropout_layer for details.

3201
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3202 3203 3204 3205 3206 3207
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
3208 3209 3210 3211 3212
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3213 3214
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3215
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3216 3217 3218 3219 3220 3221
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3222
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3223 3224 3225 3226 3227 3228 3229
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3230
    l = Layer(
Q
qijun 已提交
3231 3232 3233
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3234 3235
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3236
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3237

Q
qijun 已提交
3238 3239 3240 3241 3242 3243 3244
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3245 3246 3247 3248


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3249
@layer_support(DROPOUT, ERROR_CLIPPING)
3250
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3251 3252 3253 3254
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3255 3256 3257 3258 3259 3260
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3261
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3262 3263
    :type name: basestring
    :param input: input layers or projections
3264
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3265 3266 3267 3268
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3269
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3270 3271 3272 3273 3274 3275 3276 3277
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3278
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3279 3280

    def __is_type__(o, tp):
3281
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3303 3304
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3305

Q
qijun 已提交
3306 3307
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3308

3309 3310
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3311

3312
    layer = Layer(
Q
qijun 已提交
3313 3314
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3315 3316
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3317
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3318
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3319

3320
    sz = layer.config.size
Z
zhangjinchao01 已提交
3321

Q
qijun 已提交
3322 3323 3324 3325 3326 3327 3328 3329
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3330 3331
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3332
@wrap_bias_attr_default(has_bias=False)
3333
@layer_support(DROPOUT, ERROR_CLIPPING)
3334 3335 3336 3337
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3338

3339
    Inputs:
X
xuwei06 已提交
3340
      - a = [a1, a2, ..., am]
3341
      - b = [b1, b2, ..., bn]
3342

X
xuwei06 已提交
3343 3344 3345 3346
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3347 3348 3349 3350 3351 3352 3353

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3354
    :param name: The name of this layer. It is optional.
3355 3356 3357 3358 3359 3360 3361 3362 3363
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3364 3365 3366 3367 3368
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3390
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3391 3392
def memory(name,
           size,
3393
           memory_name=None,
Q
qijun 已提交
3394 3395 3396 3397
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3418 3419 3420 3421 3422 3423 3424 3425 3426
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3427

3428 3429 3430 3431 3432 3433 3434
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3435 3436 3437
    :type name: basestring
    :param size: size of memory.
    :type size: int
3438 3439 3440
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3441
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3451
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3462 3463
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3464

3465 3466 3467 3468 3469 3470 3471 3472
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3473 3474

    lout = LayerOutput(
3475
        name=memory_name,
Q
qijun 已提交
3476 3477 3478
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3479 3480 3481 3482
    return lout


@wrap_bias_attr_default()
3483 3484
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3485 3486 3487
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3488 3489
def lstm_step_layer(input,
                    state,
3490
                    size=None,
Q
qijun 已提交
3491 3492 3493 3494 3495 3496
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3497
    """
3498 3499
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3500 3501 3502

    ..  math::

3503
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3504

3505
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3506

3507
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3508

3509
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3510

L
luotao02 已提交
3511
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3512 3513


L
luotao02 已提交
3514
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3515
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3516
    input vectors.
Z
zhangjinchao01 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3527 3528
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3529 3530
    :code:`get_output_layer` to extract this output.

3531
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3532
    :type name: basestring
3533 3534
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
3549 3550 3551 3552 3553
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3554 3555
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3556
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3557 3558
    :rtype: LayerOutput
    """
3559 3560 3561

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3562 3563 3564 3565 3566 3567 3568
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3569
        size=state.size,
Q
qijun 已提交
3570 3571
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3572

Q
qijun 已提交
3573 3574 3575 3576 3577 3578 3579
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3580 3581 3582


@wrap_bias_attr_default()
W
wangyang59 已提交
3583
@wrap_param_attr_default()
Q
qijun 已提交
3584
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3585 3586 3587
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3588 3589 3590 3591 3592 3593 3594
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3595
                   param_attr=None,
Q
qijun 已提交
3596
                   layer_attr=None):
Z
zhangjinchao01 已提交
3597 3598 3599 3600 3601 3602 3603
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
3604
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3605
    :param gate_act:
3606 3607 3608 3609 3610
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3611 3612
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3613
    :param layer_attr:
D
dangqingqing 已提交
3614
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3615 3616 3617 3618 3619 3620 3621 3622
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3623 3624 3625 3626
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3627
        # backward model compatibility.
3628
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3629 3630 3631 3632
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3633
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3634
    return LayerOutput(
Q
qijun 已提交
3635 3636
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3637
        parents=[input, output_mem],
Q
qijun 已提交
3638 3639
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3640 3641


Y
Yu Yang 已提交
3642 3643 3644 3645
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3646
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3664
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3665 3666
    :param act:
    :param gate_act:
3667 3668 3669 3670 3671
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Y
Yu Yang 已提交
3672 3673 3674
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3675
    :rtype: LayerOutput
Y
Yu Yang 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3719 3720 3721 3722
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3723 3724 3725 3726
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3727

3728
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3729 3730 3731 3732 3733 3734 3735
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3736
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3737 3738 3739 3740 3741 3742 3743
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3744 3745 3746 3747 3748 3749 3750
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3751

Q
qijun 已提交
3752 3753 3754 3755 3756
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3757 3758 3759 3760 3761 3762 3763


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3764 3765 3766 3767 3768 3769 3770
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3771
    """
3772 3773
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3774

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
3794 3795 3796 3797 3798
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3799 3800
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3801
    :param name: The name of this layer. It is optional.
3802 3803 3804
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3805
    :return: LayerOutput object.
3806
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3807
    """
Q
qijun 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3823 3824 3825 3826 3827 3828


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3829 3830
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3831
    """
3832

Z
zhangjinchao01 已提交
3833 3834 3835
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3836
        assert input.size is not None
Z
zhangjinchao01 已提交
3837
        if size is not None:
3838
            assert input.size == size
Z
zhangjinchao01 已提交
3839 3840


3841
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3842
    """
3843
    DEPRECATED.
Z
zhangjinchao01 已提交
3844 3845 3846 3847 3848 3849 3850 3851
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3852
    return input
Z
zhangjinchao01 已提交
3853 3854 3855


@wrap_name_default("recurrent_group")
3856
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3857
    """
C
caoying03 已提交
3858 3859 3860 3861 3862
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3907 3908
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3909
    :type reverse: bool
3910

3911 3912
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3913 3914 3915 3916 3917 3918 3919 3920 3921

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3922
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3923 3924 3925 3926
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3927
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3928
        input = [input]
3929
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3930 3931

    def is_in_links(x):
3932
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3933 3934 3935 3936

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3937
        name=name,
3938 3939
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3940 3941
    in_args = []
    for each_input in input:
3942
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3943
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3944
            mem = memory(
3945
                name=None,
Q
qijun 已提交
3946 3947
                size=each_input.input.size,
                boot_layer=each_input.input)
3948
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3949
            in_args.append(mem)
3950 3951
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3952

Z
zhangjinchao01 已提交
3953 3954 3955 3956 3957
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3958 3959 3960 3961 3962 3963
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3964 3965 3966

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3967
    for layer_out in layer_outs:
3968 3969
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3970 3971
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3972 3973 3974 3975 3976
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3977

Z
zhangjinchao01 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4006 4007

    def before_real_step(self):
Q
qijun 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4017 4018 4019
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4020
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
4040
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4041 4042 4043
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4044
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4045 4046 4047 4048
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4059

4060

H
Haonan 已提交
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4073
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4097

Z
zhangjinchao01 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4114
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4115
    :type name: basestring
Z
zhangjinchao01 已提交
4116 4117 4118 4119 4120 4121
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4122
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4123 4124
    :rtype: LayerOutput
    """
Q
qijun 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4136 4137 4138


@wrap_name_default()
Q
qijun 已提交
4139 4140 4141 4142 4143 4144 4145
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4146
                num_results_per_sample=None):
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4158
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4159 4160 4161 4162
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4163 4164 4165 4166 4167
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4168 4169
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4170 4171
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4172 4173
                               bos_id=0,
                               eos_id=1,
4174
                               beam_size=5)
4175 4176 4177 4178 4179 4180 4181 4182 4183

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4184
                 step, and it is applied to sequences with arbitrary length by
4185 4186 4187 4188 4189
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4190 4191
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4192
                  In beam_search, none of the input's type should be LayerOutput.
4193
    :type input: list
4194 4195 4196
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4197
                   symbol is essential, since it is used to initialize the RNN
4198 4199 4200 4201 4202 4203 4204 4205
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4206 4207
    :param max_length: Max generated sequence length.
    :type max_length: int
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4218 4219
    :return: The generated word index.
    :rtype: LayerOutput
4220 4221
    """

Z
zhangjinchao01 已提交
4222 4223 4224 4225 4226
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4227
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4228 4229 4230 4231 4232 4233
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4234 4235 4236
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4237
        if isinstance(each_input, BaseGeneratedInput):
4238 4239
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4240
            generated_input_index = i
4241

Z
zhangjinchao01 已提交
4242 4243 4244
        else:
            real_input.append(each_input)

4245
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4246 4247 4248 4249 4250 4251 4252 4253

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4254 4255 4256 4257 4258 4259
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4260 4261 4262 4263 4264 4265

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4266
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4267 4268
        return predict

4269 4270
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4271

Q
qijun 已提交
4272

4273 4274
def __cost_input__(input, label, weight=None):
    """
4275
    inputs and parents for cost layers.
4276
    """
C
caoying03 已提交
4277 4278 4279 4280 4281 4282
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4283
    if weight is not None:
4284
        assert weight.size == 1
4285 4286 4287
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4288

Z
zhangjinchao01 已提交
4289 4290

@wrap_name_default()
L
luotao1 已提交
4291
@layer_support()
4292 4293 4294 4295 4296 4297
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4298
    """
4299
    sum of square error cost:
L
Luo Tao 已提交
4300 4301 4302

    ..  math::

4303
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4304

4305
    :param name: The name of this layer. It is optional.
4306
    :type name: basestring
Z
zhangjinchao01 已提交
4307
    :param input: Network prediction.
4308
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4309
    :param label: Data label.
4310 4311 4312 4313
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4314 4315
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4316 4317
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4318
    :return: LayerOutput object.
4319
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4320
    """
4321 4322
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4323 4324 4325 4326
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4327
        coeff=coeff,
Q
qijun 已提交
4328
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4329
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4330 4331


4332
regression_cost = square_error_cost
L
Luo Tao 已提交
4333 4334


Z
zhangjinchao01 已提交
4335
@wrap_name_default("cost")
4336
@layer_support()
Q
qijun 已提交
4337 4338 4339 4340
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4341
                        evaluator=classification_error_evaluator,
4342 4343
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4344 4345 4346
    """
    classification cost Layer.

4347
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4348 4349 4350 4351 4352
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4353 4354 4355
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4356
    :param evaluator: Evaluator method.
4357 4358
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4359 4360
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4361
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4362 4363 4364 4365 4366
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4367 4368 4369

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4370 4371 4372 4373
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4374
        coeff=coeff,
Q
qijun 已提交
4375
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4386
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4387

4388
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4389 4390 4391 4392 4393
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4394
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4395

4396

Q
qijun 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4406 4407
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4418 4419
       op = conv_operator(img=input1,
                          filter=input2,
4420
                          filter_size=3,
Z
zhangjinchao01 已提交
4421 4422 4423
                          num_filters=64,
                          num_channels=64)

4424 4425 4426 4427
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4428 4429
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4430 4431 4432
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4433
    :type filter_size_y: int
4434 4435
    :param num_filters: channel of output data.
    :type num_filters: int
4436 4437
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4438
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4439
    :type stride: int
Z
zhangjinchao01 已提交
4440
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4441
    :type stride_y: int
Z
zhangjinchao01 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4455

4456 4457
    if num_channels is None:
        num_channels = img.num_filters
4458 4459

    assert isinstance(filter, LayerOutput)
4460
    assert filter.size is not None
4461

4462 4463 4464
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4476

4477
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4478 4479
    return op

Q
qijun 已提交
4480

4481
@wrap_param_attr_default()
Q
qijun 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4492 4493
                    param_attr=None,
                    trans=False):
4494 4495 4496 4497 4498 4499 4500 4501 4502
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4503
       proj = conv_projection(input=input1,
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4518 4519
    :param num_channels: channel of input data.
    :type num_channels: int
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4532 4533
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4564
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4565 4566 4567 4568 4569
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4570 4571 4572
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4585 4586 4587 4588

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4589

D
dangqingqing 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4607

D
dangqingqing 已提交
4608
    For example,
4609

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4631 4632

    The simply usage is:
D
dangqingqing 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4651
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4694
@wrap_name_default()
L
luotao1 已提交
4695 4696
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4708 4709 4710 4711
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4712 4713 4714 4715 4716

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4717
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4718

4719
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4720
    :type name: basestring
4721 4722
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4723
    :param b: input layer b.
4724
    :type b: LayerOutput
L
luotao1 已提交
4725 4726
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4727
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4728 4729
    :rtype: LayerOutput
    """
4730 4731
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4732 4733 4734
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4735
        inputs=[a.name, b.name],
Q
qijun 已提交
4736
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4737

Q
qijun 已提交
4738 4739
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4740 4741 4742 4743 4744


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4745
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4746
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4747 4748 4749 4750 4751 4752 4753 4754
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4755 4756 4757 4758 4759
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4760
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4761 4762

    In this formular:
4763 4764
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4765 4766
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4767
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4768 4769 4770 4771 4772

    The simple usage is:

    .. code-block:: python

4773
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4774

4775
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4776
    :type name: basestring
4777 4778 4779 4780
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4781
    :param size: the layer dimension.
L
luotao02 已提交
4782
    :type size: int.
Z
zhangjinchao01 已提交
4783 4784 4785
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4786
    :type param_attr: ParameterAttribute
4787 4788 4789 4790 4791
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4792 4793
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4794
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4795 4796
    :rtype: LayerOutput
    """
4797
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4798 4799 4800 4801 4802 4803
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4804 4805 4806 4807
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4808 4809 4810 4811 4812 4813


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4814
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4815 4816
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4817
                       select=None,
Q
qijun 已提交
4818 4819
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4820 4821 4822
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4823 4824 4825
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4836
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4837

4838
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4839 4840 4841
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4842 4843
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4844
                   If is None, acts exactly like fc_layer.
4845
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4846 4847 4848 4849 4850 4851
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4852 4853 4854 4855 4856
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4857 4858
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4859
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4860 4861 4862 4863
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4864
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4865 4866
        param_attr = [param_attr]
    else:
4867
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4868 4869
            assert len(input) == len(param_attr)
        else:
4870
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4871 4872 4873
                logger.fatal(
                    "You should set the parameter name for each of the input item."
                )
Z
zhangjinchao01 已提交
4874 4875
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4876 4877 4878 4879
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4880
    Layer(
Q
qijun 已提交
4881 4882 4883
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4884 4885 4886
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4887
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4888 4889 4890 4891
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4892 4893 4894 4895 4896 4897 4898
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4899 4900 4901


@wrap_name_default()
L
luotao1 已提交
4902 4903
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
4916
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4917
    :type name: basestring
L
luotao1 已提交
4918 4919
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4920
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4921 4922
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4923
    l = Layer(
Z
zhangjinchao01 已提交
4924 4925 4926
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4927 4928 4929
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4930 4931 4932


@wrap_name_default()
L
luotao1 已提交
4933
@layer_support()
Q
qijun 已提交
4934 4935 4936 4937
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4938
                          layer_attr=None):
Z
zhangjinchao01 已提交
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
4954
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4955 4956 4957 4958 4959
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4960 4961
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4962
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4963 4964 4965 4966 4967 4968 4969 4970
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4971 4972 4973
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4974 4975 4976


@wrap_name_default()
L
luotao1 已提交
4977
@layer_support()
Q
qijun 已提交
4978
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4979
    """
4980 4981 4982 4983
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4984 4985 4986

    .. math::

4987
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4988

4989 4990 4991 4992 4993
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4994

4995
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4996 4997

    In this formular:
4998 4999 5000 5001 5002 5003
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5004 5005 5006 5007 5008

    The simple usage is:

    .. code-block:: python

5009
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5010 5011
                                       size=elem_dim)

5012 5013 5014 5015
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5016 5017
    :param size: the dimension of this layer.
    :type size: int
5018
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5019
    :type name: basestring
L
luotao1 已提交
5020 5021
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5022
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5023 5024
    :rtype: LayerOutput
    """
5025 5026 5027 5028
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5029
            size = vectors.size / weights.size
5030 5031
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5032 5033
    Layer(
        name=name,
5034
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5035
        size=size,
5036
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5037 5038 5039
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5040

5041

5042
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5043

5044

Z
zhangjinchao01 已提交
5045
@wrap_name_default()
L
luotao1 已提交
5046
@layer_support()
Z
zhangjinchao01 已提交
5047 5048 5049 5050 5051 5052 5053
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5054
                       num_channels=None,
L
luotao1 已提交
5055 5056
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5057 5058
    """
    Expand feature map to minibatch matrix.
5059
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5060
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5071
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5072 5073
    convolution neural network, and before recurrent neural network.

5074 5075 5076 5077
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5078
       block_expand = block_expand_layer(input=layer,
5079
                                         num_channels=128,
5080 5081 5082 5083 5084
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
5085 5086
    :param input: The input layer.
    :type input: LayerOutput
5087 5088
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5101
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5102
    :type name: None|basestring.
L
luotao1 已提交
5103 5104
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5105
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5106 5107
    :rtype: LayerOutput
    """
5108 5109 5110
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5128 5129


5130 5131
@wrap_name_default()
@layer_support()
5132
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5133 5134 5135 5136 5137
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5138
    So groups should be larger than 1, and the num of channels should be able
5139 5140
    to devided by groups.

X
xuwei06 已提交
5141 5142 5143 5144 5145 5146 5147 5148
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5149
    Please refer to Paper:
5150 5151 5152 5153
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5154

5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
5170
    :param name: The name of this layer. It is optional.
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5192 5193


Z
zhangjinchao01 已提交
5194
@wrap_name_default()
L
luotao1 已提交
5195
@layer_support()
Q
qijun 已提交
5196 5197 5198 5199 5200
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5201
              layer_attr=None):
Z
zhangjinchao01 已提交
5202 5203 5204 5205 5206
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5207 5208
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5209 5210
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5211 5212 5213 5214 5215 5216 5217 5218

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5219
    The example usage is:
Z
zhangjinchao01 已提交
5220 5221 5222 5223 5224 5225 5226 5227

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5228
    :param input: The input layer.
Z
zhangjinchao01 已提交
5229 5230 5231
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5232
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5233
    :type size: int
5234
    :param name: The name of this layer. It is optional.
5235
    :type name: basestring|None
Z
zhangjinchao01 已提交
5236 5237
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5238 5239
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5240
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5241 5242 5243 5244
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5245 5246 5247 5248 5249
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5250
    Layer(
5251 5252 5253 5254
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5255
        inputs=[input.name, label.name],
Q
qijun 已提交
5256
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5257 5258
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5259

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5271
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5272
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5273 5274 5275 5276 5277 5278 5279
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5280 5281 5282
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5283
    icml2006_GravesFGS06.pdf>`_.
5284 5285 5286

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5287 5288 5289
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5290 5291
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5292
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5293
          'linear' activation is expected instead in the 'input' layer.
5294

C
caoying03 已提交
5295
    The example usage is:
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5311
    :param name: The name of this layer. It is optional.
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5341
@wrap_name_default()
5342
@wrap_param_attr_default()
L
luotao1 已提交
5343
@layer_support()
Q
qijun 已提交
5344 5345 5346 5347 5348 5349
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5350
              coeff=1.0,
L
luotao1 已提交
5351
              layer_attr=None):
Z
zhangjinchao01 已提交
5352 5353 5354 5355
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5356
    The example usage is:
Z
zhangjinchao01 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5367
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5368 5369 5370 5371 5372 5373 5374
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5375
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5376
    :type name: None|basestring
5377 5378
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5379 5380
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5381
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5382 5383 5384 5385 5386
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5387 5388 5389 5390 5391 5392
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5393

Q
qijun 已提交
5394
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5395 5396 5397 5398
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5399 5400 5401 5402
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5403
        coeff=coeff,
Q
qijun 已提交
5404
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5405 5406 5407
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5408 5409 5410 5411
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5412

5413

Z
zhangjinchao01 已提交
5414
@wrap_name_default()
5415
@wrap_param_attr_default()
L
luotao1 已提交
5416
@layer_support()
Q
qijun 已提交
5417 5418 5419 5420 5421
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5422
                       layer_attr=None):
Z
zhangjinchao01 已提交
5423 5424 5425 5426 5427 5428 5429
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5430
    The example usage is:
L
Luo Tao 已提交
5431 5432 5433 5434 5435 5436

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5437 5438 5439 5440 5441 5442 5443 5444
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5445
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5446
    :type name: None|basestring
L
luotao1 已提交
5447 5448
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5449
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5450 5451 5452 5453 5454 5455
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5456
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5457 5458 5459 5460
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5461 5462 5463 5464
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5465
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5466 5467 5468
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5469 5470 5471 5472
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5473

Q
qijun 已提交
5474

Y
Yu Yang 已提交
5475
@wrap_act_default(act=SigmoidActivation())
5476
@wrap_bias_attr_default(has_bias=True)
5477
@wrap_param_attr_default()
5478 5479
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5480 5481
def nce_layer(input,
              label,
C
caoying03 已提交
5482
              num_classes=None,
Y
Yu Yang 已提交
5483
              act=None,
5484
              param_attr=None,
Q
qijun 已提交
5485 5486 5487 5488 5489 5490
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5491 5492 5493 5494 5495 5496 5497 5498 5499
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5500 5501
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5502 5503
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5504
    :param name: The name of this layer. It is optional.
5505
    :type name: basestring
R
ranqiu 已提交
5506
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
5507 5508 5509 5510 5511 5512
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5513
    :type num_classes: int
Y
Yu Yang 已提交
5514 5515
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5516 5517
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5518
    :param num_neg_samples: number of negative samples. Default is 10.
5519
    :type num_neg_samples: int
5520 5521 5522 5523
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
5524 5525 5526 5527 5528
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
5529 5530 5531 5532 5533 5534 5535
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5536 5537 5538 5539 5540 5541 5542 5543
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5544
    assert isinstance(input, collections.Sequence)
5545

5546 5547
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5548 5549
    if num_classes is None:
        num_classes = label.size
5550 5551 5552
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5553
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5554 5555
    if not isinstance(act, BaseActivation):
        raise TypeError()
5556

5557 5558
    ipts_for_layer = []
    parents = []
5559
    for each_input, attr in zip(input, param_attr):
5560
        assert isinstance(each_input, LayerOutput)
5561
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5572
    l = Layer(
5573 5574 5575 5576
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5577
        active_type=act.name,
5578 5579 5580
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5581 5582
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5583 5584 5585 5586 5587
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5588

5589

Z
zhangjinchao01 已提交
5590 5591 5592
"""
following are cost Layers.
"""
5593 5594


Z
zhangjinchao01 已提交
5595
@wrap_name_default()
L
luotao1 已提交
5596
@layer_support()
Q
qijun 已提交
5597 5598 5599 5600 5601 5602 5603
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5604
    """
5605
    A cost Layer for learning to rank using gradient descent. Details can refer
5606 5607
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5608 5609 5610 5611 5612
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5613
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5614

L
luotao02 已提交
5615
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5616

L
luotao02 已提交
5617
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5618 5619 5620 5621 5622 5623 5624 5625

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5626
    The example usage is:
Z
zhangjinchao01 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5643
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5644 5645 5646
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5647 5648
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5649
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5662 5663 5664 5665 5666 5667
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5668

X
xuwei06 已提交
5669
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5670

5671

Z
zhangjinchao01 已提交
5672
@wrap_name_default()
L
luotao1 已提交
5673
@layer_support()
Q
qijun 已提交
5674 5675 5676 5677 5678 5679
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5680 5681 5682
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5683
    The example usage is:
Z
zhangjinchao01 已提交
5684 5685 5686 5687 5688 5689 5690 5691

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5692
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5693 5694 5695 5696
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5697
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5698 5699 5700 5701 5702 5703
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5704 5705 5706
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5707
    :type max_sort_size: int
R
ranqiu 已提交
5708
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5709
    :type name: None|basestring
L
luotao1 已提交
5710 5711
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5712
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5713 5714
    :rtype: LayerOutput
    """
5715 5716 5717
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5718 5719 5720 5721 5722 5723 5724
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5725

Q
qijun 已提交
5726 5727
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5728

5729

Z
zhangjinchao01 已提交
5730
@wrap_name_default()
L
luotao1 已提交
5731
@layer_support()
5732 5733 5734 5735 5736 5737
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5738 5739 5740
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5741 5742
    The example usage is:

Z
zhangjinchao01 已提交
5743 5744
    .. code-block:: python

X
xuwei06 已提交
5745
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5746
                            label=label_layer)
Z
zhangjinchao01 已提交
5747 5748 5749 5750 5751

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5752
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5753
    :type name: None|basestring.
5754 5755
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5756
    :type coeff: float.
5757 5758 5759 5760
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5761 5762
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5763
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5764 5765 5766
    :rtype: LayerOutput.
    """

5767
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5768 5769 5770
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5771
        inputs=ipts,
Q
qijun 已提交
5772 5773
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5774
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5775

5776

Z
zhangjinchao01 已提交
5777
@wrap_name_default()
L
luotao1 已提交
5778
@layer_support()
Q
qijun 已提交
5779 5780 5781 5782
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5783 5784
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5785 5786
    """
    A loss layer for multi class entropy with selfnorm.
5787
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5788

C
caoying03 已提交
5789 5790
    The example usage is:

Z
zhangjinchao01 已提交
5791 5792
    .. code-block:: python

X
xuwei06 已提交
5793
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5794
                                          label=label_layer)
Z
zhangjinchao01 已提交
5795 5796 5797 5798 5799

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5800
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5801 5802 5803 5804 5805
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5806 5807
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5808
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5809 5810
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5811 5812 5813 5814 5815 5816 5817
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5818

Q
qijun 已提交
5819 5820 5821 5822 5823
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5824

5825

X
xuwei06 已提交
5826 5827 5828 5829 5830 5831
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5832 5833
    The example usage is:

X
xuwei06 已提交
5834 5835
    .. code-block:: python

L
Luo Tao 已提交
5836
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5837 5838 5839

    :param input: The first input layer.
    :type input: LayerOutput.
R
ranqiu 已提交
5840
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
5841 5842 5843 5844 5845 5846
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5847
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5848 5849 5850 5851 5852
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5853

Q
qijun 已提交
5854
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5855 5856


Z
zhangjinchao01 已提交
5857
@wrap_name_default()
L
luotao1 已提交
5858
@layer_support()
L
Luo Tao 已提交
5859 5860 5861 5862 5863 5864
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5865
    """
5866 5867 5868
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5869 5870 5871 5872 5873
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5874

C
caoying03 已提交
5875 5876
    The example usage is:

Z
zhangjinchao01 已提交
5877 5878
    .. code-block:: python

L
Luo Tao 已提交
5879 5880 5881 5882 5883 5884
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5885
    :param name: The name of this layer. It is optional.
L
Luo Tao 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
    :type name: None|basestring.
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5908
@wrap_name_default()
L
luotao1 已提交
5909
@layer_support()
5910 5911 5912 5913 5914
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5915
    """
5916 5917 5918
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5919 5920 5921
    loss is defined as:

    .. math:
5922
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5923
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5924

C
caoying03 已提交
5925 5926
    The example usage is:

Z
zhangjinchao01 已提交
5927 5928
    .. code-block:: python

5929
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5930 5931 5932 5933 5934

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5935
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5936 5937 5938
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5939 5940
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5941
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5942 5943
    :rtype: LayerOutput.
    """
5944 5945 5946
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5947 5948
    Layer(
        name=name,
5949
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5950 5951 5952
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5953 5954
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5955

5956

Z
zhangjinchao01 已提交
5957
@wrap_name_default()
L
luotao1 已提交
5958
@layer_support()
Q
qijun 已提交
5959 5960 5961 5962
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5963
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5964 5965 5966
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5967 5968
    The example usage is:

Z
zhangjinchao01 已提交
5969 5970
    .. code-block:: python

X
xuwei06 已提交
5971
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5972
                                               label=label_layer)
Z
zhangjinchao01 已提交
5973 5974 5975 5976 5977

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5978
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5979 5980 5981
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5982 5983
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5984
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5985 5986 5987
    :rtype: LayerOutput
    """

5988 5989
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5990 5991 5992 5993
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6006 6007


C
caoying03 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6030 6031
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6032
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6033
    """
C
caoying03 已提交
6034 6035 6036
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6037

C
caoying03 已提交
6038 6039 6040 6041 6042
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6043

C
caoying03 已提交
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6062
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6083
    :param input: Input beams for this layer.
C
caoying03 已提交
6084
    :type input: BeamInput
R
ranqiu 已提交
6085
    :param name: The name of this layer.
C
caoying03 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6112 6113 6114
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6115 6116
@wrap_name_default()
@layer_support()
6117
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6118 6119
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6120
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6130
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6131

D
dangqingqing 已提交
6132 6133 6134
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6135 6136
    The example usage is:

D
dangqingqing 已提交
6137 6138
    .. code-block:: python

6139 6140
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6141 6142 6143 6144 6145

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6146
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
6147
    :type name: None|basestring
6148 6149
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6163
        coeff=coeff,
D
dangqingqing 已提交
6164 6165 6166
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6186 6187
    The example usage is:

W
wwhu 已提交
6188 6189 6190 6191 6192 6193
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6194
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6220 6221


6222 6223 6224 6225
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6226 6227 6228 6229 6230 6231
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6232
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6233 6234 6235 6236 6237 6238 6239
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6240 6241 6242 6243 6244 6245 6246
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6247 6248


D
dangqingqing 已提交
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6262
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6263 6264 6265 6266 6267 6268 6269
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6270
    efficient manner to improve unidirectional RNNs.
6271

R
ranqiu 已提交
6272
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6273 6274 6275 6276
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6277

D
dangqingqing 已提交
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6301
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6321 6322


6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6342 6343 6344 6345 6346 6347
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6348
    :param name: The name of this layer. It is optional.
6349 6350 6351 6352
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6353 6354 6355 6356 6357 6358

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6359 6360 6361 6362 6363 6364 6365 6366
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6367
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6368
    assert isinstance(param_attr, ParameterAttribute)
6369 6370 6371

    l = Layer(
        name=name,
C
caoying03 已提交
6372
        type=LayerType.PRELU,
C
caoying03 已提交
6373
        inputs=Input(input.name, **param_attr.attr),
6374 6375 6376 6377 6378 6379 6380
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6381 6382


6383
@wrap_name_default()
C
caoying03 已提交
6384
@layer_support(ERROR_CLIPPING, DROPOUT)
6385 6386 6387 6388 6389 6390 6391
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6392 6393
                     gate_bias_attr=True,
                     inproj_attr=None,
6394 6395 6396 6397 6398 6399 6400
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6401
    product between :match:`X'` and :math:`\sigma` is finally returned.
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
6421
    :param name: The name of this layer. It is optional.
6422 6423 6424 6425 6426 6427 6428 6429
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6430 6431 6432 6433 6434 6435
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6458
        layer_attr=inproj_attr,
6459 6460 6461 6462 6463 6464 6465 6466 6467
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6468
        param_attr=gate_param_attr,
6469 6470 6471 6472 6473
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6474 6475


6476
@layer_support()
6477
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6478 6479
def switch_order_layer(input,
                       name=None,
6480
                       reshape_axis=None,
W
wanghaoshuang 已提交
6481 6482
                       act=None,
                       layer_attr=None):
6483
    """
6484
    This layer switch dimension order of image input.
6485 6486
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6487 6488 6489 6490

    The example usage is:

    .. code-block:: python
6491 6492
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6493
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6494 6495 6496

    :param input: The input layer.
    :type input: LayerOutput
6497
    :param name: The name of this layer. It is optional.
6498
    :type name: basestring
R
ranqiu 已提交
6499 6500
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6501 6502 6503
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6504
    assert isinstance(input, LayerOutput)
6505 6506 6507 6508 6509
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6510 6511
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6512
        inputs=input.name,
6513 6514
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6515
        active_type=act.name,
6516 6517 6518
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6519
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6520
        activation=act,
6521 6522
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6523 6524


6525 6526
@wrap_name_default()
@layer_support()
6527
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6528
    """
6529
    The crop layer crops images by offset and shape. User can set crop shape by
6530
    args 'shape' explicitly or by reference input layer.
6531

6532 6533 6534
    The example usage is:

    .. code-block:: python
W
whs 已提交
6535
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6536 6537 6538 6539

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6540 6541
    :param offset: The crop offset
    :type offset: Sequence
6542 6543 6544 6545 6546 6547 6548
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6549
    :type shape: Sequence | None
6550
    :param name: The name of this layer. It is optional.
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6572 6573


C
caoying03 已提交
6574 6575
@wrap_name_default()
@layer_support()
6576
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6577
    """
6578
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6579
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6580

C
caoying03 已提交
6581 6582 6583
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6584 6585 6586 6587

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6588 6589

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6590

C
caoying03 已提交
6591

6592 6593 6594
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6595
    :type input: LayerOutput
6596
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6597 6598 6599 6600
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6601

6602 6603 6604 6605 6606 6607 6608
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6609
    l = Layer(
6610 6611
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6612 6613 6614 6615 6616 6617 6618
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6619 6620


G
guosheng 已提交
6621
@wrap_name_default("clip")
6622
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6623 6624 6625 6626 6627 6628 6629 6630 6631
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6632
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6633

6634
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6635 6636 6637
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6638 6639 6640 6641
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6642 6643
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6644 6645 6646 6647 6648
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6649 6650
        min=min,
        max=max)
G
guosheng 已提交
6651 6652
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6653 6654


6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6679
    :param name: The name of this layer. It is optional.
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6719 6720


6721 6722
@wrap_name_default()
@layer_support()
6723
def kmax_seq_score_layer(input, name=None, beam_size=1):
6724
    """
C
caoying03 已提交
6725
    This layer accepts one input which are scores over a sequence or a nested
6726 6727 6728 6729
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6730
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6731 6732


6733
    :param name: The name of this layer. It is optional.
6734
    :type name: basestring
C
caoying03 已提交
6735
    :param input: The input layer. It stores scores over a sequence or a nested
6736 6737
        sequence and its size must be 1.
    :type input: LayerOutput.
R
ranqiu 已提交
6738
    :param beam_size: sequence indices with top beam_size scores are returned.
6739 6740 6741 6742
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6743
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6744
                                            "accepts only one input.")
6745
    assert input.size == 1, (
6746
        "input of kmax_seq_score_layer is a score "
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6757 6758


6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6785
        conv = img_conv3d_layer(input=data, filter_size=1,
6786 6787 6788 6789 6790
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6791
    :param name: The name of this layer. It is optional.
6792 6793 6794
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
C
chengduoZH 已提交
6795
    :param filter_size: The x dimension of a filter kernel. Or input a list.
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
    :type filter_size: int|tuple|list
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
6810
    :type bias_attr: ParameterAttribute|None|Bool|Any
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6834 6835 6836 6837 6838 6839
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6840

C
chengduoZH 已提交
6841 6842 6843 6844 6845 6846
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6847

C
chengduoZH 已提交
6848 6849 6850 6851 6852 6853
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6900 6901


G
guosheng 已提交
6902 6903 6904 6905 6906
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6907 6908
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6909 6910
    adds a bias to it.

X
xuwei06 已提交
6911
    This layer is very like the SlopeInterceptLayer, except the scale and
6912 6913
    bias are trainable.

G
guosheng 已提交
6914 6915 6916 6917 6918 6919 6920 6921
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6922
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6923 6924 6925 6926 6927
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6928 6929 6930 6931 6932
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
G
guosheng 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)