Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
623d24ad
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
623d24ad
编写于
2月 24, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert mixed layer, projection and operator
上级
4311bfed
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
239 addition
and
15 deletion
+239
-15
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+2
-0
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+235
-13
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
623d24ad
...
...
@@ -112,6 +112,7 @@ __all__ = [
'priorbox_layer'
,
'spp_layer'
,
'pad_layer'
,
'layer_support'
,
]
...
...
@@ -708,6 +709,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self
.
size
=
ml
.
config
.
size
self
.
finalized
=
True
@
wrap_name_default
(
"mixed"
)
...
...
python/paddle/v2/data_type.py
浏览文件 @
623d24ad
...
...
@@ -14,9 +14,9 @@
from
paddle.trainer.PyDataProvider2
import
\
InputType
,
dense_vector
,
sparse_binary_vector
,
\
sparse_vector
,
integer_value
sparse_vector
,
integer_value
,
integer_value_sequence
__all__
=
[
'InputType'
,
'dense_vector'
,
'sparse_binary_vector'
,
'sparse_vector'
,
'integer_value'
'integer_value'
,
'integer_value_sequence'
]
python/paddle/v2/layer.py
浏览文件 @
623d24ad
...
...
@@ -72,16 +72,38 @@ import paddle.trainer_config_helpers as conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
#import pudb;pudb.set_trace()
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'full_matrix_projection'
,
'trans_full_matrix_projection'
,
'table_projection'
,
'identity_projection'
,
'scaling_projection'
,
'dotmul_projection'
,
'context_projection'
,
'conv_projection'
,
]
...
...
@@ -101,9 +123,8 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
):
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layers__
=
parent_layers
...
...
@@ -122,6 +143,9 @@ class Layer(object):
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
if
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
...
...
@@ -130,7 +154,7 @@ class Layer(object):
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
,
parent_names
):
def
__convert_to_v2__
(
method_name
,
name_prefix
=
None
,
parent_names
=
None
):
if
name_prefix
is
not
None
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
else
:
...
...
@@ -160,7 +184,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
getattr
(
conf_helps
,
method_name
)(
**
args
)
return
V2LayerImpl
...
...
@@ -191,6 +215,81 @@ class DataLayerV2(Layer):
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class
AddToSealedMixedLayerExceptionV2
(
Exception
):
def
__init__
(
self
):
Exception
.
__init__
(
self
)
def
__init__
(
self
,
size
=
0
,
input
=
None
,
name
=
None
,
act
=
None
,
bias_attr
=
None
,
layer_attr
=
None
):
self
.
__method_name__
=
'mixed_layer'
self
.
finalized
=
False
self
.
__parent_layers__
=
dict
()
other_kwargs
=
dict
()
self
.
input_name
=
'input'
self
.
__parent_layers__
[
self
.
input_name
]
=
[]
if
input
is
not
None
:
self
.
__parent_layers__
[
self
.
input_name
]
=
input
self
.
name
=
name
other_kwargs
[
'size'
]
=
size
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
Layer
.
__init__
(
self
,
name
,
self
.
__parent_layers__
)
self
.
__other_kwargs__
=
other_kwargs
def
__iadd__
(
self
,
other
):
if
not
self
.
finalized
:
self
.
__parent_layers__
[
self
.
input_name
].
append
(
other
)
return
self
else
:
raise
MixedLayerTypeV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__parent_layers__
[
self
.
input_name
])
==
0
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
self
.
finalized
=
True
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
@
wrap_name_default
(
"mixed"
)
@
wrap_act_default
(
act
=
conf_helps
.
LinearActivation
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
(
conf_helps
.
layers
.
ERROR_CLIPPING
,
conf_helps
.
layers
.
DROPOUT
)
def
mixed
(
size
=
0
,
name
=
None
,
input
=
None
,
act
=
None
,
bias_attr
=
False
,
layer_attr
=
None
):
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
...
...
@@ -226,12 +325,124 @@ sum_cost = __convert_to_v2__(
huber_cost
=
__convert_to_v2__
(
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
# convert projection
projection_list
=
[
# [V1_method_name], all the parent_names is `input`
'full_matrix_projection'
,
'trans_full_matrix_projection'
,
'table_projection'
,
'scaling_projection'
,
'dotmul_projection'
,
'context_projection'
,
'conv_projection'
,
'identity_projection'
,
]
for
prj
in
projection_list
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
])
# convert operator
operator_list
=
[
# [V1_method_name, parent_names],
[
'dotmul_operator'
,
[
'a'
,
'b'
]],
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
])
def
test_projection
():
"""
TODO: move to tests file
"""
input
=
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
data
(
name
=
'word'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
fc0
=
fc
(
input
=
input
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
fc1
=
fc
(
input
=
input
,
size
=
200
,
act
=
conf_helps
.
SigmoidActivation
())
mixed0
=
mixed
(
size
=
256
,
input
=
[
full_matrix_projection
(
input
=
fc0
),
full_matrix_projection
(
input
=
fc1
)
])
with
mixed
(
size
=
200
)
as
mixed1
:
mixed1
+=
full_matrix_projection
(
input
=
fc0
)
mixed1
+=
identity_projection
(
input
=
fc1
)
table
=
table_projection
(
input
=
word
)
emb0
=
mixed
(
size
=
512
,
input
=
table
)
with
mixed
(
size
=
512
)
as
emb1
:
emb1
+=
table
scale
=
scaling_projection
(
input
=
fc0
)
scale0
=
mixed
(
size
=
100
,
input
=
scale
)
with
mixed
(
size
=
100
)
as
scale1
:
scale1
+=
scale
dotmul
=
dotmul_projection
(
input
=
fc0
)
dotmul0
=
mixed
(
size
=
100
,
input
=
dotmul
)
with
mixed
(
size
=
100
)
as
dotmul1
:
dotmul1
+=
dotmul
context
=
context_projection
(
input
=
fc0
,
context_len
=
5
)
context0
=
mixed
(
size
=
100
,
input
=
context
)
with
mixed
(
size
=
100
)
as
context1
:
context1
+=
context
conv
=
conv_projection
(
input
=
input
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
mixed
(
input
=
conv
,
bias_attr
=
True
)
with
mixed
(
bias_attr
=
True
)
as
conv1
:
conv1
+=
conv
print
parse_network
(
mixed0
)
print
parse_network
(
mixed1
)
print
parse_network
(
emb0
)
print
parse_network
(
emb1
)
print
parse_network
(
scale0
)
print
parse_network
(
scale1
)
print
parse_network
(
dotmul0
)
print
parse_network
(
dotmul1
)
print
parse_network
(
conv0
)
print
parse_network
(
conv1
)
def
test_operator
():
"""
TODO: move to tests file
"""
ipt0
=
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
data
(
name
=
'word'
,
type
=
data_type
.
dense_vector
(
128
))
fc0
=
fc
(
input
=
ipt0
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
fc1
=
fc
(
input
=
ipt0
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
dotmul_op
=
dotmul_operator
(
a
=
fc0
,
b
=
fc1
)
dotmul0
=
mixed
(
input
=
dotmul_op
)
with
mixed
()
as
dotmul1
:
dotmul1
+=
dotmul_op
conv
=
conv_operator
(
img
=
ipt0
,
filter
=
ipt1
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
mixed
(
input
=
conv
)
with
mixed
()
as
conv1
:
conv1
+=
conv
print
parse_network
(
dotmul0
)
print
parse_network
(
dotmul1
)
print
parse_network
(
conv0
)
print
parse_network
(
conv1
)
def
test_cost
(
pixel
,
label
,
weight
,
score
):
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
...
...
@@ -255,3 +466,14 @@ if __name__ == '__main__':
print
parse_network
(
cost5
,
cost6
)
print
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
print
parse_network
(
inference
,
maxid
)
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
test_cost
(
pixel
,
label
,
weight
,
score
)
test_projection
()
test_operator
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录