Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0f4c7332
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0f4c7332
编写于
7月 20, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ROIPooling for Fast(er) R-CNN
上级
a98346f4
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
298 addition
and
0 deletion
+298
-0
paddle/gserver/layers/ROIPoolLayer.cpp
paddle/gserver/layers/ROIPoolLayer.cpp
+154
-0
paddle/gserver/layers/ROIPoolLayer.h
paddle/gserver/layers/ROIPoolLayer.h
+53
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+34
-0
proto/ModelConfig.proto
proto/ModelConfig.proto
+9
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+11
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+37
-0
未找到文件。
paddle/gserver/layers/ROIPoolLayer.cpp
0 → 100644
浏览文件 @
0f4c7332
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ROIPoolLayer.h"
namespace
paddle
{
REGISTER_LAYER
(
roi_pool
,
ROIPoolLayer
);
bool
ROIPoolLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
Layer
::
init
(
layerMap
,
parameterMap
);
const
ROIPoolConfig
&
layerConf
=
config_
.
inputs
(
0
).
roi_pool_conf
();
pooledWidth_
=
layerConf
.
pooled_width
();
pooledHeight_
=
layerConf
.
pooled_height
();
spatialScale_
=
layerConf
.
spatial_scale
();
return
true
;
}
void
ROIPoolLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
ROIPoolConfig
&
layerConf
=
config_
.
inputs
(
0
).
roi_pool_conf
();
height_
=
getInput
(
0
).
getFrameHeight
();
if
(
!
height_
)
height_
=
layerConf
.
height
();
width_
=
getInput
(
0
).
getFrameWidth
();
if
(
!
width_
)
width_
=
layerConf
.
width
();
channels_
=
getInputValue
(
0
)
->
getWidth
()
/
width_
/
height_
;
size_t
batchSize
=
getInput
(
0
).
getBatchSize
();
size_t
numROIs
=
getInput
(
1
).
getBatchSize
();
real
*
bottomData
=
getInputValue
(
0
)
->
getData
();
size_t
batchOffset
=
getInputValue
(
0
)
->
getWidth
();
size_t
channelOffset
=
height_
*
width_
;
real
*
bottomROIs
=
getInputValue
(
1
)
->
getData
();
size_t
roiOffset
=
getInputValue
(
1
)
->
getWidth
();
size_t
poolChannelOffset
=
pooledHeight_
*
pooledWidth_
;
resetOutput
(
numROIs
,
channels_
*
pooledHeight_
*
pooledWidth_
);
real
*
outputData
=
getOutputValue
()
->
getData
();
Matrix
::
resizeOrCreate
(
maxIdxs_
,
numROIs
,
channels_
*
pooledHeight_
*
pooledWidth_
,
false
,
false
);
real
*
argmaxData
=
maxIdxs_
->
getData
();
size_t
uZero
=
0
;
size_t
uOne
=
1
;
for
(
size_t
n
=
0
;
n
<
numROIs
;
++
n
)
{
size_t
roiBatchIdx
=
bottomROIs
[
0
];
size_t
roiStartW
=
std
::
round
(
bottomROIs
[
1
]
*
spatialScale_
);
size_t
roiStartH
=
std
::
round
(
bottomROIs
[
2
]
*
spatialScale_
);
size_t
roiEndW
=
std
::
round
(
bottomROIs
[
3
]
*
spatialScale_
);
size_t
roiEndH
=
std
::
round
(
bottomROIs
[
4
]
*
spatialScale_
);
CHECK_GE
(
roiBatchIdx
,
0
);
CHECK_LT
(
roiBatchIdx
,
batchSize
);
size_t
roiHeight
=
std
::
max
(
roiEndH
-
roiStartH
+
1
,
uOne
);
size_t
roiWidth
=
std
::
max
(
roiEndW
-
roiStartW
+
1
,
uOne
);
real
binSizeH
=
static_cast
<
real
>
(
roiHeight
)
/
static_cast
<
real
>
(
pooledHeight_
);
real
binSizeW
=
static_cast
<
real
>
(
roiWidth
)
/
static_cast
<
real
>
(
pooledWidth_
);
real
*
batchData
=
bottomData
+
batchOffset
*
roiBatchIdx
;
for
(
size_t
c
=
0
;
c
<
channels_
;
++
c
)
{
for
(
size_t
ph
=
0
;
ph
<
pooledHeight_
;
++
ph
)
{
for
(
size_t
pw
=
0
;
pw
<
pooledWidth_
;
++
pw
)
{
size_t
hstart
=
static_cast
<
size_t
>
(
std
::
floor
(
ph
*
binSizeH
));
size_t
wstart
=
static_cast
<
size_t
>
(
std
::
floor
(
pw
*
binSizeW
));
size_t
hend
=
static_cast
<
size_t
>
(
std
::
ceil
((
ph
+
1
)
*
binSizeH
));
size_t
wend
=
static_cast
<
size_t
>
(
std
::
ceil
((
pw
+
1
)
*
binSizeW
));
hstart
=
std
::
min
(
std
::
max
(
hstart
+
roiStartH
,
uZero
),
height_
);
wstart
=
std
::
min
(
std
::
max
(
wstart
+
roiStartW
,
uZero
),
width_
);
hend
=
std
::
min
(
std
::
max
(
hend
+
roiStartH
,
uZero
),
height_
);
wend
=
std
::
min
(
std
::
max
(
wend
+
roiStartW
,
uZero
),
width_
);
bool
isEmpty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
size_t
poolIndex
=
ph
*
pooledWidth_
+
pw
;
if
(
isEmpty
)
{
outputData
[
poolIndex
]
=
0
;
argmaxData
[
poolIndex
]
=
-
1
;
}
for
(
size_t
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
size_t
w
=
wstart
;
w
<
wend
;
++
w
)
{
size_t
index
=
h
*
width_
+
w
;
if
(
batchData
[
index
]
>
outputData
[
poolIndex
])
{
outputData
[
poolIndex
]
=
batchData
[
index
];
argmaxData
[
poolIndex
]
=
index
;
}
}
}
}
}
batchData
+=
channelOffset
;
outputData
+=
poolChannelOffset
;
argmaxData
+=
poolChannelOffset
;
}
bottomROIs
+=
roiOffset
;
}
}
void
ROIPoolLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
real
*
bottomROIs
=
getInputValue
(
1
)
->
getData
();
size_t
numROIs
=
getInput
(
1
).
getBatchSize
();
size_t
roiOffset
=
getInputValue
(
1
)
->
getWidth
();
MatrixPtr
inGrad
=
getInputGrad
(
0
);
real
*
inDiffData
=
inGrad
->
getData
();
size_t
batchOffset
=
getInputValue
(
0
)
->
getWidth
();
size_t
channelOffset
=
height_
*
width_
;
MatrixPtr
outGrad
=
getOutputGrad
();
real
*
outDiffData
=
outGrad
->
getData
();
size_t
poolChannelOffset
=
pooledHeight_
*
pooledWidth_
;
real
*
argmaxData
=
maxIdxs_
->
getData
();
for
(
size_t
n
=
0
;
n
<
numROIs
;
++
n
)
{
size_t
roiBatchIdx
=
bottomROIs
[
0
];
real
*
batchDiffData
=
inDiffData
+
batchOffset
*
roiBatchIdx
;
for
(
size_t
c
=
0
;
c
<
channels_
;
++
c
)
{
for
(
size_t
ph
=
0
;
ph
<
pooledHeight_
;
++
ph
)
{
for
(
size_t
pw
=
0
;
pw
<
pooledWidth_
;
++
pw
)
{
size_t
poolIndex
=
ph
*
pooledWidth_
+
pw
;
if
(
argmaxData
[
poolIndex
]
>
0
)
{
size_t
index
=
static_cast
<
size_t
>
(
argmaxData
[
poolIndex
]);
batchDiffData
[
index
]
+=
outDiffData
[
poolIndex
];
}
}
}
batchDiffData
+=
channelOffset
;
outDiffData
+=
poolChannelOffset
;
argmaxData
+=
poolChannelOffset
;
}
bottomROIs
+=
roiOffset
;
}
}
}
// namespace paddle
paddle/gserver/layers/ROIPoolLayer.h
0 → 100644
浏览文件 @
0f4c7332
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
namespace
paddle
{
/**
* A layer used by Fast R-CNN to extract feature maps of ROIs from the last
* feature map.
* - Input: This layer needs two input layers: The first input layer is a
* convolution layer; The second input layer contains the ROI data which is the
* output of ProposalLayer in Faster R-CNN. layers for generating bbox
* location offset and the classification confidence. - Output: The
* ROIs' feature map. Reference: Shaoqing Ren, Kaiming He, Ross Girshick, and
* Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region
* Proposal
*/
class
ROIPoolLayer
:
public
Layer
{
protected:
size_t
channels_
;
size_t
width_
;
size_t
height_
;
size_t
pooledWidth_
;
size_t
pooledHeight_
;
real
spatialScale_
;
MatrixPtr
maxIdxs_
;
public:
explicit
ROIPoolLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
};
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
0f4c7332
...
...
@@ -1830,6 +1830,40 @@ TEST(Layer, CropLayer) {
}
}
TEST
(
Layer
,
roi_pool
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"roi_pool"
);
config
.
biasSize
=
0
;
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ROIPoolConfig
*
roiPoolConf
=
input
->
mutable_roi_pool_conf
();
roiPoolConf
->
set_pooled_width
(
7
);
roiPoolConf
->
set_pooled_height
(
7
);
roiPoolConf
->
set_spatial_scale
(
1.
/
16
);
roiPoolConf
->
set_width
(
14
);
roiPoolConf
->
set_height
(
14
);
MatrixPtr
roiValue
=
Matrix
::
create
(
10
,
10
,
false
,
false
);
roiValue
->
zeroMem
();
real
*
roiData
=
roiValue
->
getData
();
for
(
size_t
i
=
0
;
i
<
roiValue
->
getElementCnt
()
/
5
;
++
i
)
{
*
roiData
++
=
std
::
rand
()
%
2
;
*
roiData
++
=
std
::
rand
()
%
224
;
*
roiData
++
=
std
::
rand
()
%
224
;
size_t
xMin
=
static_cast
<
size_t
>
(
*
(
roiData
-
2
));
size_t
yMin
=
static_cast
<
size_t
>
(
*
(
roiData
-
1
));
*
roiData
++
=
xMin
+
std
::
rand
()
%
(
224
-
xMin
);
*
roiData
++
=
yMin
+
std
::
rand
()
%
(
224
-
yMin
);
}
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"input"
,
3
*
14
*
14
,
{}});
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"rois"
,
roiValue
,
{}});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"roi_pool"
,
5
,
false
,
useGpu
,
false
);
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
proto/ModelConfig.proto
浏览文件 @
0f4c7332
...
...
@@ -289,6 +289,14 @@ message DetectionOutputConfig {
optional
uint32
width
=
9
[
default
=
1
];
}
message
ROIPoolConfig
{
required
uint32
pooled_width
=
1
;
required
uint32
pooled_height
=
2
;
required
float
spatial_scale
=
3
;
optional
uint32
height
=
4
[
default
=
1
];
optional
uint32
width
=
5
[
default
=
1
];
}
message
LayerInputConfig
{
required
string
input_layer_name
=
1
;
optional
string
input_parameter_name
=
2
;
...
...
@@ -309,6 +317,7 @@ message LayerInputConfig {
optional
RowConvConfig
row_conv_conf
=
15
;
optional
MultiBoxLossConfig
multibox_loss_conf
=
16
;
optional
DetectionOutputConfig
detection_output_conf
=
17
;
optional
ROIPoolConfig
roi_pool_conf
=
18
;
}
message
LayerConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
0f4c7332
...
...
@@ -1732,6 +1732,17 @@ class DetectionOutputLayer(LayerBase):
self
.
config
.
size
=
size
@
config_layer
(
'roi_pool'
)
class
ROIPoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
pooled_width
,
pooled_height
,
spatial_scale
):
super
(
ROIPoolLayer
,
self
).
__init__
(
name
,
'roi_pool'
,
0
,
inputs
)
config_assert
(
len
(
inputs
)
==
2
,
'ROIPoolLayer must have 2 inputs'
)
self
.
config
.
inputs
[
0
].
roi_pool_conf
.
pooled_width
=
pooled_width
self
.
config
.
inputs
[
0
].
roi_pool_conf
.
pooled_height
=
pooled_height
self
.
config
.
inputs
[
0
].
roi_pool_conf
.
spatial_scale
=
spatial_scale
@
config_layer
(
'data'
)
class
DataLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
height
=
None
,
width
=
None
,
device
=
None
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0f4c7332
...
...
@@ -117,6 +117,7 @@ __all__ = [
'cross_channel_norm_layer'
,
'multibox_loss_layer'
,
'detection_output_layer'
,
'roi_pool_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
...
...
@@ -201,6 +202,7 @@ class LayerType(object):
PRIORBOX_LAYER
=
'priorbox'
MULTIBOX_LOSS_LAYER
=
'multibox_loss'
DETECTION_OUTPUT_LAYER
=
'detection_output'
ROI_POOL_LAYER
=
'roi_pool'
CTC_LAYER
=
'ctc'
WARP_CTC_LAYER
=
'warp_ctc'
...
...
@@ -1200,6 +1202,41 @@ def detection_output_layer(input_loc,
name
,
LayerType
.
DETECTION_OUTPUT_LAYER
,
parents
=
parents
,
size
=
size
)
@
wrap_name_default
(
"roi_pool"
)
def
roi_pool_layer
(
input
,
rois
,
pooled_width
,
pooled_height
,
spatial_scale
,
name
=
None
):
"""
A layer used by Fast R-CNN to extract feature maps of ROIs from the last
feature map.
:param name: The Layer Name.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput.
:param rois: The input ROIs' data.
:type rois: LayerOutput.
:param pooled_width: The width after pooling.
:type pooled_width: int
:param pooled_height: The height after pooling.
:type pooled_height: int
:param spatial_scale: The spatial scale between the image and feature map.
:type spatial_scale: float
:return: LayerOutput
"""
Layer
(
name
=
name
,
type
=
LayerType
.
ROI_POOL_LAYER
,
inputs
=
[
input
.
name
,
rois
.
name
],
pooled_width
=
pooled_width
,
pooled_height
=
pooled_height
,
spatial_scale
=
spatial_scale
)
return
LayerOutput
(
name
,
LayerType
.
ROI_POOL_LAYER
,
parents
=
[
input
,
rois
])
@
wrap_name_default
(
"cross_channel_norm"
)
def
cross_channel_norm_layer
(
input
,
name
=
None
,
param_attr
=
None
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录