Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ea8e050b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ea8e050b
编写于
11月 10, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update doc of layers.py
上级
0e73967a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
106 addition
and
72 deletion
+106
-72
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+106
-72
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
ea8e050b
...
...
@@ -4495,9 +4495,9 @@ def conv_projection(input,
param_attr
=
None
,
trans
=
False
):
"""
Different from img_conv_layer and conv_op, conv_projection is a
n
Projection,
which can be used in mixed_layer and con
at_layer. It use
cudnn to implement
conv
and only support
GPU mode.
Different from img_conv_layer and conv_op, conv_projection is a Projection,
which can be used in mixed_layer and con
cat_layer. It uses
cudnn to implement
conv
olution and only supports
GPU mode.
The example usage is:
...
...
@@ -4510,32 +4510,45 @@ def conv_projection(input,
:param input: The input of this layer.
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel.
:type filter_size: int
:param filter_size_y: The y dimension of a filter kernel. Since
PaddlePaddle now supports rectangular filters,
the filter's shape can be (filter_size, filter_size_y).
:param filter_size: The dimensions of the filter kernel. If the parameter is
set to one integer, the two dimensions on x and y axises
will be same when filter_size_y is not set. If it is set
to a list, the first element indicates the dimension on
the x axis, and the second is used to specify the dimension
on the y axis when filter_size is not provided.
:type filter_size: int | tuple | list
:param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
is not set, it will be set automatically according to filter_size.
:type filter_size_y: int
:param num_filters:
channel of output data
.
:param num_filters:
The number of filters
.
:type num_filters: int
:param num_channels:
channel of input data
.
:param num_channels:
The number of the input channels
.
:type num_channels: int
:param stride: The x dimension of the stride.
:type stride: int
:param stride_y: The y dimension of the stride.
:param stride: The strides. If the parameter is set to one integer, the strides
on x and y axises will be same when stride_y is not set. If it is
set to a list, the first element indicates the stride on the x axis,
and the second is used to specify the stride on the y axis when
stride_y is not provided.
:type stride: int | tuple | list
:param stride_y: The stride on the y axis.
:type stride_y: int
:param padding: The x dimension of padding.
:type padding: int
:param padding_y: The y dimension of padding.
:param padding: The padding sizes. If the parameter is set to one integer, the padding
sizes on x and y axises will be same when padding_y is not set. If it
is set to a list, the first element indicates the padding size on the
x axis, and the second is used to specify the padding size on the y axis
when padding_y is not provided.
:type padding: int | tuple | list
:param padding_y: The padding size on the y axis.
:type padding_y: int
:param groups: The group number.
:type groups: int
:param param_attr: Convolution param attribute. None means default attribute
:param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param trans:
whether it is convTrans or conv
:param trans:
Whether it is ConvTransProjection or ConvProjection
:type trans: bool
:return: A
DotMul
Projection Object.
:rtype:
DotMul
Projection
:return: A Projection Object.
:rtype:
ConvTransProjection | Conv
Projection
"""
if
num_channels
is
None
:
assert
input
.
num_filters
is
not
None
...
...
@@ -4600,13 +4613,13 @@ def pad_layer(input,
layer_attr
=
None
):
"""
This operation pads zeros to the input data according to pad_c,pad_h
and pad_w. pad_c, pad_h, pad_w specif
ies the which dimension and size
of padding
. And the input data shape is NCHW.
and pad_w. pad_c, pad_h, pad_w specif
y the size in the corresponding
dimension
. And the input data shape is NCHW.
For example, pad_c=[2,3] means padding 2 zeros before the
input data and 3 zeros after the input data in channel dimension.
pad
_h means padding zeros in height dimension. pad_w means padding zeros
in
width dimension.
For example, pad_c=[2,3] means padding 2 zeros before the
input data
and 3 zeros after the input data in the channel dimension. pad_h means
pad
ding zeros in the height dimension. pad_w means padding zeros in the
width dimension.
For example,
...
...
@@ -4643,13 +4656,14 @@ def pad_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param pad_c:
padding size in
channel dimension.
:param pad_c:
The padding size in the
channel dimension.
:type pad_c: list | None
:param pad_h:
padding size in
height dimension.
:param pad_h:
The padding size in the
height dimension.
:type pad_h: list | None
:param pad_w:
padding size in
width dimension.
:param pad_w:
The padding size in the
width dimension.
:type pad_w: list | None
:param layer_attr: Extra Layer Attribute.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:param name: The name of this layer. It is optional.
:type name: basestring
...
...
@@ -4698,7 +4712,7 @@ def pad_layer(input,
@
layer_support
()
def
conv_shift_layer
(
a
,
b
,
name
=
None
,
layer_attr
=
None
):
"""
This layer performs cyclic convolution
for two input
. For example:
This layer performs cyclic convolution
on two inputs
. For example:
- a[in]: contains M elements.
- b[in]: contains N elements (N should be odd).
- c[out]: contains M elements.
...
...
@@ -4707,7 +4721,7 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}
In this formula
r
:
In this formula:
- a's index is computed modulo M. When it is negative, then get item from
the right side (which is the end of array) to the left.
- b's index is computed modulo N. When it is negative, then get item from
...
...
@@ -4721,11 +4735,12 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
:param name: The name of this layer. It is optional.
:type name: basestring
:param a:
Input layer a
.
:param a:
The first input of this layer
.
:type a: LayerOutput
:param b:
input layer b
.
:param b:
The second input of this layer
.
:type b: LayerOutput
:param layer_attr: layer's extra attribute.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -4756,8 +4771,8 @@ def tensor_layer(a,
bias_attr
=
None
,
layer_attr
=
None
):
"""
This layer performs tensor operation
for two input
.
For example
, each sample
:
This layer performs tensor operation
on two inputs
.
For example:
.. math::
y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
...
...
@@ -4777,21 +4792,23 @@ def tensor_layer(a,
:param name: The name of this layer. It is optional.
:type name: basestring
:param a:
Input layer a
.
:param a:
The first input of this layer
.
:type a: LayerOutput
:param b:
input layer b
.
:param b:
The second input of this layer
.
:type b: LayerOutput
:param size:
the layer dimension
.
:type size: int
.
:param size:
The dimension of this layer
.
:type size: int
:param act: Activation type. LinearActivation is the default.
:type act: BaseActivation
:param param_attr: The Parameter Attribute.
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: Extra Layer config.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute | None
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -4827,7 +4844,7 @@ def selective_fc_layer(input,
layer_attr
=
None
):
"""
Selectived fully connected layer. Different from fc_layer, the output
of this layer
may
be sparse. It requires an additional input to indicate
of this layer
can
be sparse. It requires an additional input to indicate
several selected columns for output. If the selected columns is not
specified, selective_fc_layer acts exactly like fc_layer.
...
...
@@ -4841,21 +4858,33 @@ def selective_fc_layer(input,
:type name: basestring
:param input: The input of this layer.
:type input: LayerOutput | list | tuple
:param select: The select layer. The output of select layer should be a
sparse binary matrix, and treat as the mask of selective fc.
If is None, acts exactly like fc_layer.
:param select: The layer to select columns to output. It should be a sparse
binary matrix, and is treated as the mask of selective fc. If
it is not set or set to None, selective_fc_layer acts exactly
like fc_layer.
:type select: LayerOutput
:param size: The layer dimension.
:param size: The dimension of this layer, which should be equal to that of
the layer 'select'.
:type size: int
:param act: Activation type. TanhActivation is the default.
:type act: BaseActivation
:param param_attr: The Parameter Attribute.
:param pass_generation: The flag which indicates whether it is during generation.
:type pass_generation: bool
:param has_selected_colums: The flag which indicates whether the parameter 'select'
has been set. True is the default.
:type has_selected_colums: bool
:param mul_ratio: A ratio helps to judge how sparse the output is and determine
the computation method for speed consideration.
:type mul_ratio: float
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: Extra Layer config.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute | None
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -4906,7 +4935,7 @@ def selective_fc_layer(input,
@
layer_support
()
def
sampling_id_layer
(
input
,
name
=
None
,
layer_attr
=
None
):
"""
A layer for sampling id from multinomial distribution from the input layer.
A layer for sampling id from
a
multinomial distribution from the input layer.
Sampling one id for one sample.
The simple usage is:
...
...
@@ -4919,8 +4948,9 @@ def sampling_id_layer(input, name=None, layer_attr=None):
:type input: LayerOutput
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -4941,8 +4971,7 @@ def slope_intercept_layer(input,
intercept
=
0.0
,
layer_attr
=
None
):
"""
This layer for applying a slope and an intercept to the input
element-wise. There is no activation and weight.
This layer for applying a slope and an intercept to the input.
.. math::
y = slope * x + intercept
...
...
@@ -4957,12 +4986,13 @@ def slope_intercept_layer(input,
:type input: LayerOutput
:param name: The name of this layer. It is optional.
:type name: basestring
:param slope: the scale factor.
:type slope: float.
:param intercept: the offset.
:type intercept: float.
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:param slope: The scale factor.
:type slope: float
:param intercept: The offset.
:type intercept: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -5017,12 +5047,13 @@ def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
:type weights: LayerOutput
:param vectors: The vector layer.
:type vectors: LayerOutput
:param size:
t
he dimension of this layer.
:param size:
T
he dimension of this layer.
:type size: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -5069,11 +5100,11 @@ def block_expand_layer(input,
outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x
The expand method is the same with ExpandConvLayer, but saved the transposed
The expand
ing
method is the same with ExpandConvLayer, but saved the transposed
value. After expanding, output.sequenceStartPositions will store timeline.
The number of time steps
are
outputH * outputW and the dimension of each
The number of time steps
is
outputH * outputW and the dimension of each
time step is block_y * block_x * num_channels. This layer can be used after
convolution neural network, and before recurrent neural network.
convolution
al
neural network, and before recurrent neural network.
The simple usage is:
...
...
@@ -5088,8 +5119,10 @@ def block_expand_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param num_channels: The channel number of input layer.
:type num_channels: int | None
:param num_channels: The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.
:type num_channels: int
:param block_x: The width of sub block.
:type block_x: int
:param block_y: The width of sub block.
...
...
@@ -5103,9 +5136,10 @@ def block_expand_layer(input,
:param padding_y: The padding size in vertical direction.
:type padding_y: int
:param name: The name of this layer. It is optional.
:type name: None | basestring.
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:type name: basestring.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录