layers.py 247.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
118
    'dot_prod_layer',
Q
qijun 已提交
119
    'out_prod_layer',
X
xuwei06 已提交
120
    'printer_layer',
Q
qijun 已提交
121
    'print_layer',
Y
yuan 已提交
122
    'priorbox_layer',
123
    'cross_channel_norm_layer',
124 125
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
126
    'roi_pool_layer',
Q
qijun 已提交
127
    'spp_layer',
D
dangqingqing 已提交
128
    'pad_layer',
L
Luo Tao 已提交
129
    'eos_layer',
130
    'smooth_l1_cost',
131
    'layer_support',
W
wwhu 已提交
132
    'multiplex_layer',
D
dangqingqing 已提交
133
    'row_conv_layer',
134
    'dropout_layer',
135
    'prelu_layer',
136
    'switch_order_layer',
137
    'gated_unit_layer',
138
    'crop_layer',
139
    'sub_nested_seq_layer',
140
    'clip_layer',
141
    'slice_projection',
142
    'seq_slice_layer',
143
    'kmax_seq_score_layer',
C
chengduoZH 已提交
144
    'img_pool3d_layer',
G
guosheng 已提交
145
    'scale_shift_layer',
C
chengduoZH 已提交
146
    'img_conv3d_layer',
147
    'resize_layer',
Y
yangyaming 已提交
148
    'sub_seq_layer',
Y
yangyaming 已提交
149
    'scale_sub_region_layer',
150
    'factorization_machine',
Q
qijun 已提交
151
]
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158


class LayerType(object):
    """
    Layer type enumerations.
    """

159 160 161 162 163 164 165 166
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
167
    POOLING_AVG = 'average'
168
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
169
    COST = 'cost'
170 171
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
172
    HSIGMOID = 'hsigmoid'
173 174 175 176 177
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
178
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
179
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
180
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
181 182 183
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
184
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
185 186 187 188
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
189
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
190 191 192 193 194 195 196

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
197
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
198 199 200
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
201
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
202
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
203
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
204
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
205 206 207 208 209 210 211 212 213 214 215

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
216
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
217
    BLOCK_EXPAND = "blockexpand"
218
    MAXOUT = "maxout"
Q
qijun 已提交
219
    SPP_LAYER = "spp"
D
dangqingqing 已提交
220
    PAD_LAYER = "pad"
W
wwhu 已提交
221
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
222
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
223 224 225

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
226 227
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
228
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
229 230 231 232 233

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
234
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
235

236 237 238
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

239 240
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
241
    HUBER_REGRESSION = 'huber_regression'
242
    HUBER_CLASSIFICATION = 'huber_classification'
243 244
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
245
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
246 247 248 249 250 251
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
252
    SWITCH_ORDER_LAYER = 'switch_order'
253
    CROP_LAYER = 'crop'
C
caoying03 已提交
254
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
255
    CLIP_LAYER = 'clip'
256
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
257

258
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
259
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
260

261
    RESIZE = 'resize'
Y
yangyaming 已提交
262
    SUB_SEQ_LAYER = 'subseq'
263

Y
yangyaming 已提交
264
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
265

266 267
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
288
    """
L
Luo Tao 已提交
289
    PaddlePaddle supports three sequence types:
290 291 292

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
293 294
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
295

L
Luo Tao 已提交
296
    Accordingly, AggregateLevel supports two modes:
297

L
Luo Tao 已提交
298
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
299
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
300 301
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
302
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
303 304 305
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
306 307
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
308 309 310
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
333
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
334 335
    """

Q
qijun 已提交
336 337 338 339 340 341 342 343 344
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
345
                 reverse=None):
Z
zhangjinchao01 已提交
346 347
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
348
        assert size is not None
Z
zhangjinchao01 已提交
349 350
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
351
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
352
        self.layer_type = layer_type
353 354
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
355 356 357 358 359 360 361 362
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
363
        self.reverse = reverse
Z
zhangjinchao01 已提交
364

365 366 367 368 369 370 371 372
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

373 374 375 376
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

377 378 379 380 381 382 383 384
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
385 386 387

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
388
DEVICE = 'device'
Z
zhangjinchao01 已提交
389 390 391


def layer_support(*attrs):
392
    attrs_list = list(attrs)
393
    attrs_list.append(DEVICE)
Q
qijun 已提交
394

Z
zhangjinchao01 已提交
395 396 397
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
398
            for attr in attrs_list:
Z
zhangjinchao01 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
415 416 417 418 419
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
450
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
451 452 453 454 455 456 457 458
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
459 460
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
461 462 463 464
    proj.origin = input
    return proj


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
486
    :param input: The input of this layer.
487 488 489 490 491 492 493 494
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
495 496
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
497 498 499 500
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
531
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
540 541
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
542 543 544 545
    proj.origin = input
    return proj


546
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
576
    :param input: The input of this layer.
577
    :type input: LayerOutput
Z
zhangjinchao01 已提交
578 579
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
580
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
581 582 583 584 585 586
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
587 588
        if size is None:
            size = input.size - offset
Q
qijun 已提交
589
        proj = IdentityOffsetProjection(
590
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
591 592 593 594
        proj.origin = input
    return proj


595 596
def slice_projection(input, slices):
    """
597 598
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
599 600

    .. math::
601
       output = [input.slices()]
602 603 604 605 606 607 608 609 610

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
611
    :param input: The input of this layer.
612 613 614 615
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
616
    :type slices: pair of int
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
649
    :param input: The input of this layer.
X
xuwei06 已提交
650 651 652 653 654 655
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
656
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
657 658 659 660
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
661
@wrap_param_attr_default()
662
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
663
    """
664
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
678
    :param input: The input of this layer.
679 680 681 682 683 684
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
685 686
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
687
    proj.origin = input
688
    return proj
Z
zhangjinchao01 已提交
689

690 691

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
692 693
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
694

Z
zhangjinchao01 已提交
695
    .. math::
L
Luo Tao 已提交
696
       out.row[i] += scale * (a.row[i] .* b.row[i])
697

Z
zhangjinchao01 已提交
698 699
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
700

Z
zhangjinchao01 已提交
701
    The example usage is:
702

Z
zhangjinchao01 已提交
703
    .. code-block:: python
704

L
Luo Tao 已提交
705
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
706

707 708 709 710
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
711 712
    :param scale: config scalar, default value is one.
    :type scale: float
713 714
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
715
    """
716 717 718
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
719
    a = kwargs.get('x', a)  # For Backward capacity.
720 721 722 723 724 725
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
726
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
727
    op.origin = [a, b]
728
    return op
Z
zhangjinchao01 已提交
729

730

Z
zhangjinchao01 已提交
731
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
732 733 734
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
749
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
750 751 752 753 754 755 756 757 758
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
759
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
760 761 762 763 764 765 766 767 768 769 770
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
771 772 773 774 775 776
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
790
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
791 792 793 794 795 796
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
797
        :param act: Activation type.
Z
zhangjinchao01 已提交
798
        :type act: BaseActivation
R
ranqiu 已提交
799 800 801
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
802
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
803 804 805
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
806 807 808 809 810 811 812
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
813 814 815 816 817
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

818
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
819 820 821 822 823 824 825 826
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
827
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
828
            self.inputs.append(other)
829 830 831 832
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
833 834 835 836 837 838 839 840
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

841
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
842 843
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
844
        assert len(self.inputs) != 0
845
        ml = MixedLayer(
Z
zhangjinchao01 已提交
846 847 848 849 850
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
851
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
852 853 854
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
855
        self.finalized = True
Z
zhangjinchao01 已提交
856 857 858 859 860 861


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
862 863 864 865 866
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
894
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
895
                  then this function will just return layer's name.
896
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
897
    :type act: BaseActivation
R
ranqiu 已提交
898 899 900
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
901
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
902 903 904 905 906 907 908 909 910
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
911 912 913 914 915 916
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
917
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924 925
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
926 927
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
928 929 930 931 932 933 934
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
935
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
936

R
ranqiu 已提交
937
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
938 939 940
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
941
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
942
    :type height: int | None
L
Luo Tao 已提交
943
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
944
    :type width: int | None
Z
zhangjinchao01 已提交
945 946
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
947
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
948 949
    :rtype: LayerOutput
    """
Q
qijun 已提交
950 951 952 953
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
954
        depth=depth,
L
Luo Tao 已提交
955 956
        height=height,
        width=width,
Q
qijun 已提交
957
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
958

C
chengduoZH 已提交
959 960
    if depth is None:
        depth = 1
961 962
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
963 964
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
965
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
966 967

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
968 969 970 971


@wrap_name_default("embedding")
@wrap_param_attr_default()
972
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
973 974 975 976
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

977
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
978
    :type name: basestring
R
ranqiu 已提交
979
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
980 981 982 983 984
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
985
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
986
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
987
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
988
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
989 990
    :rtype: LayerOutput
    """
Q
qijun 已提交
991 992 993 994 995 996
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
997 998 999 1000 1001 1002 1003 1004 1005
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1006 1007 1008 1009 1010 1011 1012
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1025
    which is equal to:
Z
zhangjinchao01 已提交
1026 1027 1028 1029 1030 1031

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1032
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1033
    :type name: basestring
R
ranqiu 已提交
1034 1035
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1036 1037
    :param size: The layer dimension.
    :type size: int
1038
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1039 1040 1041
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1042 1043 1044
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1045
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1046
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1047
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1048
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1049 1050 1051 1052
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1053
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1054 1055
        param_attr = [param_attr]
    else:
1056
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1057 1058
            assert len(input) == len(param_attr)
        else:
1059
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1060
                logger.fatal(
W
wangmeng28 已提交
1061 1062 1063 1064 1065
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1066 1067
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1068
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1069 1070

    Layer(
Q
qijun 已提交
1071 1072 1073
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1074 1075 1076 1077 1078
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1079 1080 1081
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1082

1083

1084
@wrap_name_default("print")
1085
def printer_layer(input, format=None, name=None):
1086 1087
    """
    Print the output value of input layers. This layer is useful for debugging.
1088

1089
    :param name: The name of this layer. It is optional.
1090
    :type name: basestring
R
ranqiu 已提交
1091 1092
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1093
    :return: LayerOutput
1094
    """
1095 1096 1097 1098 1099
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1100 1101 1102

    Layer(
        name=name,
1103
        format=format,
1104
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1105
        inputs=[l.name for l in input], )
1106
    # this layer don't return anything, can not be input of other layer.
1107

X
xuwei06 已提交
1108 1109 1110 1111 1112 1113 1114
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1115

Y
yuan 已提交
1116
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1117
def priorbox_layer(input,
G
gaoyuan 已提交
1118
                   image,
G
gaoyuan 已提交
1119 1120 1121 1122 1123
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1124 1125 1126
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1127
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1128
    :type name: basestring
R
ranqiu 已提交
1129
    :param input: The input of this layer.
Y
yuan 已提交
1130
    :type input: LayerOutput
G
gaoyuan 已提交
1131 1132
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1144
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1145 1146 1147
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1148
        inputs=[input.name, image.name],
Y
yuan 已提交
1149 1150 1151 1152 1153 1154
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1155 1156
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1157
        parents=[input, image],
G
gaoyuan 已提交
1158 1159 1160
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1176
    :param name: The name of this layer. It is optional.
1177
    :type name: basestring
Y
yangyaming 已提交
1178 1179
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1180
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1181
    :type input_conf: LayerOutput | List of LayerOutput
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1203
    input_loc_num = len(input_loc)
1204 1205 1206 1207 1208 1209

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1210
    input_conf_num = len(input_conf)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1248 1249
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1250

1251
    :param name: The name of this layer. It is optional.
1252
    :type name: basestring
Y
yangyaming 已提交
1253 1254
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1255
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1256
    :type input_conf: LayerOutput | List of LayerOutput.
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1278
    input_loc_num = len(input_loc)
1279 1280 1281 1282 1283 1284

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1285 1286
    input_conf_num = len(input_conf)

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1315 1316 1317 1318 1319 1320
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1321
                   num_channels=None,
G
guosheng 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1339 1340
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1341 1342
    :return: LayerOutput
    """
G
guosheng 已提交
1343 1344 1345 1346
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1347 1348 1349 1350 1351 1352
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1353 1354
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1355 1356
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1357 1358


1359 1360
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1361 1362 1363 1364 1365
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1366

1367
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1368
    :type name: basestring
R
ranqiu 已提交
1369
    :param input: The input of this layer.
G
gaoyuan 已提交
1370 1371 1372 1373 1374
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1375
    assert input.num_filters is not None
G
gaoyuan 已提交
1376 1377
    Layer(
        name=name,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1391 1392
    return LayerOutput(
        name,
1393
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1394 1395 1396 1397 1398
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1399 1400 1401 1402
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1403 1404 1405 1406
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1407
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1408
                  stride=-1,
Z
zhangjinchao01 已提交
1409 1410 1411 1412
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1413 1414
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1415 1416 1417
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1418
    operation. Note that for sequence with sub-sequence, the default value
1419 1420
    of stride is -1.

Z
zhangjinchao01 已提交
1421 1422 1423 1424 1425 1426
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1427
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1428

L
Luo Tao 已提交
1429 1430
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1431
    :type agg_level: AggregateLevel
1432
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1433
    :type name: basestring
R
ranqiu 已提交
1434
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1435 1436 1437
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1438
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1439
    :param stride: The step size between successive pooling regions.
1440
    :type stride: Int
R
ranqiu 已提交
1441 1442 1443
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1444
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1445
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1446
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1447
    :return: LayerOutput object.
Y
Yu Yang 已提交
1448
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1449 1450
    """
    extra_dict = dict()
1451
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1452 1453
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1454 1455 1456 1457
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1458 1459
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1460 1461 1462
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1463 1464 1465 1466 1467 1468
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1469
        stride=stride,
Q
qijun 已提交
1470
        **extra_dict)
Z
zhangjinchao01 已提交
1471

Q
qijun 已提交
1472 1473
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1474

Q
qijun 已提交
1475

Z
zhangjinchao01 已提交
1476 1477
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1478
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1479 1480
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1481
@layer_support()
Q
qijun 已提交
1482 1483
def lstmemory(input,
              name=None,
1484
              size=None,
Q
qijun 已提交
1485 1486 1487 1488 1489 1490
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1491 1492 1493 1494 1495 1496 1497 1498
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1499
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1500

L
luotao02 已提交
1501
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1502

L
luotao02 已提交
1503
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1504

L
luotao02 已提交
1505
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1506

L
luotao02 已提交
1507
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1508 1509


C
caoying03 已提交
1510
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1511
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1512 1513 1514 1515
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1516

C
caoying03 已提交
1517
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1518 1519
    to config a simple plain lstm layer.

C
caoying03 已提交
1520 1521 1522 1523
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1524 1525 1526 1527 1528

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1529 1530
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1531
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1532 1533 1534
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1535
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1536 1537 1538 1539 1540
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1541 1542 1543
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1544
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1545
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1546
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1547
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1548
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1549
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1550 1551 1552 1553 1554 1555
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1556
    assert input.size is not None and input.size % 4 == 0
1557

1558 1559 1560 1561 1562
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1563 1564 1565
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1566

Q
qijun 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1577

Q
qijun 已提交
1578 1579 1580 1581 1582
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1583

Z
zhangjinchao01 已提交
1584 1585 1586

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1587
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1588 1589
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1590
@layer_support()
Q
qijun 已提交
1591
def grumemory(input,
1592
              size=None,
Q
qijun 已提交
1593 1594 1595 1596 1597 1598
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1620 1621
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1622 1623 1624 1625 1626

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1627 1628 1629
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1630 1631 1632 1633 1634

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1635
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1636
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1637 1638 1639
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1640

C
caoying03 已提交
1641 1642 1643
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1644 1645 1646 1647 1648 1649 1650 1651

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1652 1653
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1654
    :type input: LayerOutput.
1655 1656
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1657
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1658
    :type reverse: bool
R
ranqiu 已提交
1659
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1660 1661 1662 1663 1664 1665
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1666 1667 1668
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1669
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1670
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1671
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1672
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1673
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1674
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1675 1676 1677 1678
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1679 1680 1681 1682 1683 1684
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1685 1686 1687
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1688

Q
qijun 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1698

Q
qijun 已提交
1699 1700 1701 1702 1703
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1704

Z
zhangjinchao01 已提交
1705 1706 1707

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1708 1709
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1710
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1711
             stride=-1,
Z
zhangjinchao01 已提交
1712 1713 1714 1715
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1716 1717 1718
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1719
    of stride is -1.
1720

L
Luo Tao 已提交
1721 1722 1723 1724 1725 1726
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1727
    :param agg_level: Aggregated level
1728
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1729
    :type name: basestring
R
ranqiu 已提交
1730
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1731
    :type input: LayerOutput
L
Luo Tao 已提交
1732
    :param stride: The step size between successive pooling regions.
1733
    :type stride: Int
Z
zhangjinchao01 已提交
1734 1735
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1736
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1737 1738
    :rtype: LayerOutput
    """
1739 1740 1741 1742 1743 1744
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1745
    if agg_level == AggregateLevel.TO_SEQUENCE:
1746 1747
        assert stride == -1

Z
zhangjinchao01 已提交
1748 1749 1750 1751 1752
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1753
        stride=stride,
Q
qijun 已提交
1754 1755 1756 1757 1758 1759
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1760 1761 1762 1763


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1764 1765
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1766
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1767
              stride=-1,
Z
zhangjinchao01 已提交
1768 1769 1770 1771
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1772 1773 1774
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1775
    of stride is -1.
1776

L
Luo Tao 已提交
1777 1778 1779 1780 1781 1782
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1783
    :param agg_level: aggregation level
1784
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1785
    :type name: basestring
R
ranqiu 已提交
1786
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1787
    :type input: LayerOutput
L
Luo Tao 已提交
1788
    :param stride: The step size between successive pooling regions.
1789
    :type stride: Int
Z
zhangjinchao01 已提交
1790 1791
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1792
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1793 1794
    :rtype: LayerOutput
    """
1795 1796 1797 1798 1799 1800 1801

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1802
    if agg_level == AggregateLevel.TO_SEQUENCE:
1803 1804
        assert stride == -1

Z
zhangjinchao01 已提交
1805 1806 1807 1808 1809
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1810
        stride=stride,
Q
qijun 已提交
1811 1812 1813 1814 1815 1816
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1817 1818 1819


class ExpandLevel(object):
1820 1821 1822 1823 1824
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1825 1826
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1827 1828
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1829 1830
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1831 1832
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1833 1834
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1835 1836
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1837

1838

Z
zhangjinchao01 已提交
1839 1840
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1841 1842
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1843 1844
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1845
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1857
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1858

R
ranqiu 已提交
1859
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1860 1861 1862
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1863
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1864
    :type name: basestring
R
ranqiu 已提交
1865 1866 1867
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1868
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1869 1870 1871 1872
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1873
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1883 1884 1885 1886 1887 1888
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1889 1890


X
xuwei06 已提交
1891
@wrap_name_default()
X
xuwei06 已提交
1892
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1893
@layer_support()
X
xuwei06 已提交
1894 1895 1896
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1897
                 act=None,
X
xuwei06 已提交
1898 1899
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1900
    """
X
xuwei06 已提交
1901
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1902

X
xuwei06 已提交
1903
    If as_row_vector:
X
xuwei06 已提交
1904
    .. math::
X
xuwei06 已提交
1905 1906 1907 1908 1909
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1910 1911 1912 1913 1914

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1915
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1916

R
ranqiu 已提交
1917
    :param input: The input of this layer.
X
xuwei06 已提交
1918 1919 1920
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1921
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1922 1923 1924 1925 1926 1927
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
1928
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1929
    :type act: BaseActivation
X
xuwei06 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1940
        active_type=act.name,
X
xuwei06 已提交
1941
        num_filters=num_repeats,
X
xuwei06 已提交
1942
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1943
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1944 1945 1946 1947 1948
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1949
        activation=act,
Q
qijun 已提交
1950 1951
        parents=[input])

X
xuwei06 已提交
1952

1953 1954 1955
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1956
@layer_support(ERROR_CLIPPING, DROPOUT)
1957 1958 1959 1960 1961 1962 1963 1964
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1965
    the dimension of each instance is M, and the input reshape_size is N, then the
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1976
    :param input: The input of this layer.
1977 1978 1979
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1980
    :param name: The name of this layer. It is optional.
1981
    :type name: basestring
1982
    :param act: Activation type. IdentityActivation is the default activation.
1983 1984 1985
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1986 1987 1988
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1989
    :type bias_attr: ParameterAttribute | None | bool | Any
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2028 2029
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2030 2031
    :param weight: Weight layer.
    :type weight: LayerOutput
2032
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2033 2034 2035
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2036
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2037 2038
    :rtype: LayerOutput
    """
2039
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2040
    assert len(input) == 2
2041 2042 2043 2044 2045 2046 2047
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2048 2049 2050 2051
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2052 2053 2054 2055 2056 2057
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2058 2059


L
liaogang 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2076
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2077

L
liaogang 已提交
2078
    :param   input:        A input layer.
L
liaogang 已提交
2079
    :type    input:        LayerOutput.
L
liaogang 已提交
2080
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2081
    :type    out_size_x:   int | None
L
liaogang 已提交
2082
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2083
    :type    out_size_y:   int | None
L
liaogang 已提交
2084
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2085
    :type    name:         None | basestring
L
liaogang 已提交
2086
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2087 2088 2089 2090 2091 2092 2093
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2094
    assert input.num_filters is not None
L
liaogang 已提交
2095
    num_channels = input.num_filters
Q
qijun 已提交
2096 2097 2098 2099 2100 2101 2102
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2103
                channels=num_channels)),
Q
qijun 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2113

Z
zhangjinchao01 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2133
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2134 2135 2136
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2137
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2138 2139 2140
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2141
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2142 2143
    :rtype: LayerOutput
    """
2144 2145 2146
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2147 2148 2149
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2150
        inputs=[weight.name, input.name],
Q
qijun 已提交
2151 2152 2153
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2154 2155 2156 2157 2158 2159


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2160
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2161 2162

    .. math::
2163
       y  = w x
Z
zhangjinchao01 已提交
2164

2165 2166 2167 2168 2169
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2170 2171 2172 2173 2174 2175 2176

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2177
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2178 2179 2180
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2181
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2182 2183 2184
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2185
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2186 2187
    :rtype: LayerOutput
    """
2188 2189 2190
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2191 2192 2193 2194
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2195 2196 2197
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2198 2199 2200 2201 2202 2203


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2204
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2217
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2218
    :type input: LayerOutput
2219
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2220 2221 2222
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2223
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2224 2225 2226 2227 2228 2229
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2230 2231 2232
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2233 2234


2235 2236
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2237
def rotate_layer(input, height, width, name=None, layer_attr=None):
2238
    """
H
Haonan 已提交
2239 2240
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2241 2242

    .. math::
H
Haonan 已提交
2243
       y(j,i,:) = x(M-i-1,j,:)
2244

H
Haonan 已提交
2245
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2246 2247 2248 2249 2250 2251

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2252 2253
                          height=100,
                          width=100)
2254

R
ranqiu 已提交
2255
    :param input: The input of this layer.
2256 2257 2258
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2259
    :param name: The name of this layer. It is optional.
2260 2261 2262 2263 2264 2265 2266
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2267 2268 2269
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2270
        width=width,
H
Haonan 已提交
2271 2272 2273 2274 2275 2276 2277 2278
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2279 2280


Z
zhangjinchao01 已提交
2281 2282
@wrap_name_default()
@layer_support()
2283
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2284 2285 2286 2287
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2288
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2289 2290 2291 2292 2293
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2294

2295 2296
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2297

L
Luo Tao 已提交
2298 2299 2300 2301 2302 2303
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2304
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2316
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2317 2318
    :rtype: LayerOutput
    """
2319
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2320 2321 2322 2323 2324 2325
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2326
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2327
    else:
2328 2329
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2330 2331 2332 2333 2334 2335
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2336
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2337
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2338

2339

Z
zhangjinchao01 已提交
2340 2341
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2342
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2343
@layer_support()
Q
qijun 已提交
2344 2345
def hsigmoid(input,
             label,
2346
             num_classes=None,
Q
qijun 已提交
2347 2348 2349 2350
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2362
                        label=data_layer)
Z
zhangjinchao01 已提交
2363

R
ranqiu 已提交
2364 2365
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2366 2367 2368
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2369
    :type num_classes: int | None
2370
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2371
    :type name: basestring
R
ranqiu 已提交
2372 2373 2374
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2375
    :type bias_attr: ParameterAttribute | None | bool | Any
2376
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2377
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2378 2379
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2380
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2381 2382 2383 2384
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2385 2386 2387 2388 2389 2390 2391 2392 2393
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2394 2395 2396
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2397 2398 2399 2400 2401
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2402 2403
    ipts_for_layer = []
    parents = []
2404
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2405
        assert isinstance(each_input, LayerOutput)
2406
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2407 2408 2409 2410
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2411
    l = Layer(
Z
zhangjinchao01 已提交
2412 2413 2414 2415 2416
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2417 2418 2419
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2420

2421

Z
zhangjinchao01 已提交
2422 2423 2424 2425 2426
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2436
                   dilation=1,
Q
qijun 已提交
2437 2438 2439 2440 2441 2442 2443
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2444
                   dilation_y=None,
2445 2446
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2447
    """
2448
    Convolution layer for image. Paddle can support both square and non-square
2449
    input currently.
Z
zhangjinchao01 已提交
2450 2451 2452 2453

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2454

2455
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2456
    and non-square input currently.
2457

X
xuwei06 已提交
2458
    The details of convolution transpose layer,
2459 2460 2461
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2462 2463 2464 2465
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2466 2467 2468
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2469
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2470 2471
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2472

L
Luo Tao 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2483
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2484
    :type name: basestring
R
ranqiu 已提交
2485
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2486
    :type input: LayerOutput
2487 2488
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2489
    :type filter_size: int | tuple | list
C
caoying03 已提交
2490 2491 2492
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2493
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2494
    :param num_filters: Each filter group's number of filter
2495
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2496 2497 2498
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2499 2500
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2501
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2502 2503
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2504 2505
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2506
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2507 2508
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2509 2510
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2511
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2512 2513
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2514 2515 2516
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2517
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2527 2528
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2529
    :param layer_type: specify the layer_type, default is None. If trans=True,
2530 2531
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2532
                       "cudnn_conv"
2533
    :type layer_type: String
D
dangqingqing 已提交
2534
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2535 2536 2537 2538 2539
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2540

Z
zhangjinchao01 已提交
2541
    if filter_size_y is None:
2542 2543 2544 2545 2546 2547
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2548
    if stride_y is None:
2549 2550 2551 2552 2553 2554
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2555
    if padding_y is None:
2556 2557 2558 2559 2560 2561
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2562 2563 2564 2565 2566 2567 2568
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2569 2570
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2571
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2572 2573 2574 2575
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2576

2577
    if layer_type:
W
wanghaoshuang 已提交
2578
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2579 2580 2581
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2582
        if trans:
2583
            assert layer_type in ["exconvt", "cudnn_convt"]
2584 2585 2586 2587 2588
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2589

X
xuwei06 已提交
2590
    l = Layer(
Z
zhangjinchao01 已提交
2591
        name=name,
Q
qijun 已提交
2592 2593 2594 2595 2596
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2597
                dilation=dilation,
Q
qijun 已提交
2598 2599 2600 2601 2602
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2603
                dilation_y=dilation_y,
Q
qijun 已提交
2604 2605
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2606 2607 2608 2609
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2610
        type=lt,
Q
qijun 已提交
2611 2612 2613 2614 2615 2616 2617 2618
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2619 2620 2621 2622


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2633 2634
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2635 2636 2637 2638 2639 2640 2641
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2670
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2671
    :type padding: int
2672
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2673
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2674 2675
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2676
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2677
    :type input: LayerOutput
2678
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2679
    :type pool_size: int
2680
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2681
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2682 2683
    :param num_channels: number of input channel.
    :type num_channels: int
2684
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2685 2686
                      MaxPooling.
    :type pool_type: BasePoolingType
2687
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2688
    :type stride: int
2689
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2690
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2691 2692
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2693 2694 2695 2696
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2697 2698
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2709
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2710
                               CudnnMaxPooling], \
X
xzl 已提交
2711
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2712

2713
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2714
        if (
Y
Yu Yang 已提交
2715
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2716
        else pool_type.name
2717 2718 2719 2720
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2721
    l = Layer(
Z
zhangjinchao01 已提交
2722 2723
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2736
                    padding_y=padding_y))
Q
qijun 已提交
2737
        ],
2738
        ceil_mode=ceil_mode,
Q
qijun 已提交
2739 2740 2741 2742 2743 2744 2745
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2746 2747


C
chengduoZH 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2800
    :type padding: int | tuple | list
C
chengduoZH 已提交
2801 2802
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2803
    :param input: The input of this layer.
C
chengduoZH 已提交
2804 2805
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2806
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2807 2808 2809 2810 2811 2812
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2813
    :type stride: int | tuple | list
C
chengduoZH 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2888 2889
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2890 2891 2892 2893 2894 2895
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2896 2897 2898 2899 2900
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2901 2902 2903 2904
    The example usage is:

    ..  code-block:: python

2905 2906 2907
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2908 2909
                        pool_type=MaxPooling())

2910
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2911
    :type name: basestring
R
ranqiu 已提交
2912
    :param input: The input of this layer.
Q
qijun 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2938
    l = Layer(
Q
qijun 已提交
2939 2940
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2941 2942 2943 2944 2945
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2946
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2958 2959 2960 2961
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2962
    l = Layer(
Q
qijun 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2982 2983 2984 2985


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2986 2987 2988 2989 2990 2991
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2992
                      layer_attr=None):
Z
zhangjinchao01 已提交
2993
    """
2994
    Response normalization across feature maps.
R
ranqiu 已提交
2995 2996 2997 2998

    Reference:
        ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
Z
zhangjinchao01 已提交
2999

L
Luo Tao 已提交
3000 3001 3002
    The example usage is:

    ..  code-block:: python
3003

L
Luo Tao 已提交
3004 3005
        norm = img_cmrnorm_layer(input=net, size=5)

3006
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3007
    :type name: basestring
R
ranqiu 已提交
3008
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3009
    :type input: LayerOutput
3010
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3011
    :type size: int
D
dangqingqing 已提交
3012
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3013
    :type scale: float
D
dangqingqing 已提交
3014
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3015
    :type power: float
R
ranqiu 已提交
3016 3017 3018 3019 3020
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3021
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3022
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3023 3024 3025
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3026
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3027 3028 3029


@wrap_bias_attr_default()
3030 3031
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3032 3033
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3034
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3035 3036 3037
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3038
                     img3D=False,
Q
qijun 已提交
3039 3040 3041 3042
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3043 3044
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3045 3046
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3047
    """
R
ranqiu 已提交
3048
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3062 3063 3064 3065
    Reference:
        Batch Normalization: Accelerating Deep Network Training by Reducing
        Internal Covariate Shift
        http://arxiv.org/abs/1502.03167
Z
zhangjinchao01 已提交
3066

L
Luo Tao 已提交
3067 3068 3069
    The example usage is:

    ..  code-block:: python
3070

L
Luo Tao 已提交
3071 3072
        norm = batch_norm_layer(input=net, act=ReluActivation())

3073
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3074
    :type name: basestring
R
ranqiu 已提交
3075
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3076
    :type input: LayerOutput
3077 3078 3079 3080 3081
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3082 3083
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3084
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3085 3086 3087
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3088
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3089
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3090
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3091
    :type act: BaseActivation
R
ranqiu 已提交
3092 3093 3094
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3095
    :type num_channels: int
R
ranqiu 已提交
3096 3097 3098 3099
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3100
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3101 3102
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3103
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3104 3105
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3106
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3107 3108 3109 3110 3111 3112
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3113
    :type use_global_stats: bool | None.
R
ranqiu 已提交
3114 3115
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3116
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3117 3118
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3119
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3129
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3130
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3131
    l = Layer(
Z
zhangjinchao01 已提交
3132
        name=name,
C
chengduoZH 已提交
3133
        img3D=img3D,
Q
qijun 已提交
3134 3135
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3136 3137 3138 3139 3140 3141
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3142
        mean_var_names=mean_var_names,
Q
qijun 已提交
3143
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3144

Q
qijun 已提交
3145 3146 3147 3148 3149 3150 3151
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3173
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3174
    :type input: LayerOutput
3175
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3176
    :type name: basestring
R
ranqiu 已提交
3177 3178 3179
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3180
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3181 3182 3183 3184 3185 3186
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3187 3188 3189
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3190 3191


G
guosheng 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3210
    :param input: The input of this layer.
G
guosheng 已提交
3211
    :type input: LayerOutput
3212
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3213
    :type name: basestring
R
ranqiu 已提交
3214 3215
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3229 3230 3231
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3232
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3233
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3252 3253 3254
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3255

C
caoying03 已提交
3256 3257 3258
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3259

3260
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3261
    :type name: basestring
R
ranqiu 已提交
3262
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3263
                 LayerOutput.
R
ranqiu 已提交
3264
    :type input: LayerOutput | list | tuple
3265
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3266
    :type act: BaseActivation
R
ranqiu 已提交
3267 3268 3269
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3270
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3271 3272
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3273
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3274
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3275 3276 3277 3278 3279 3280
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3281
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3282 3283 3284 3285 3286 3287 3288
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3289
    l = Layer(
Q
qijun 已提交
3290 3291 3292
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3293 3294
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3295
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3296

Q
qijun 已提交
3297 3298 3299 3300 3301 3302 3303
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3304 3305 3306 3307


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3308
@layer_support(DROPOUT, ERROR_CLIPPING)
3309
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3310
    """
R
ranqiu 已提交
3311 3312
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3313

3314 3315 3316 3317 3318 3319
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3320
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3321
    :type name: basestring
R
ranqiu 已提交
3322
    :param input: The input layers or projections
R
ranqiu 已提交
3323
    :type input: list | tuple | collections.Sequence
3324
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3325
    :type act: BaseActivation
R
ranqiu 已提交
3326 3327
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3328
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3329
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3330 3331 3332 3333 3334 3335 3336 3337
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3338
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3339 3340

    def __is_type__(o, tp):
3341
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3363 3364
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3365

Q
qijun 已提交
3366 3367
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3368

3369 3370
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3371

3372
    layer = Layer(
Q
qijun 已提交
3373 3374
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3375 3376
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3377
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3378
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3379

3380
    sz = layer.config.size
Z
zhangjinchao01 已提交
3381

Q
qijun 已提交
3382 3383 3384 3385 3386 3387 3388 3389
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3390 3391
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3392
@wrap_bias_attr_default(has_bias=False)
3393
@layer_support(DROPOUT, ERROR_CLIPPING)
3394 3395 3396
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3397
    Concatenate sequence a and sequence b.
3398

3399
    Inputs:
X
xuwei06 已提交
3400
      - a = [a1, a2, ..., am]
3401
      - b = [b1, b2, ..., bn]
3402

X
xuwei06 已提交
3403 3404 3405 3406
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3407 3408 3409 3410 3411 3412 3413

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3414
    :param name: The name of this layer. It is optional.
3415
    :type name: basestring
R
ranqiu 已提交
3416
    :param a: The first input sequence layer
3417
    :type a: LayerOutput
R
ranqiu 已提交
3418
    :param b: The second input sequence layer
3419
    :type b: LayerOutput
3420
    :param act: Activation type. IdentityActivation is the default activation.
3421
    :type act: BaseActivation
R
ranqiu 已提交
3422 3423
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3424
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3425 3426 3427
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3428
    :type bias_attr: ParameterAttribute | None | bool | Any
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3450
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3451 3452
def memory(name,
           size,
3453
           memory_name=None,
Q
qijun 已提交
3454 3455 3456 3457
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3458 3459
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3460
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3461

R
ranqiu 已提交
3462
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3463

R
ranqiu 已提交
3464 3465
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3466

R
ranqiu 已提交
3467 3468
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3469

R
ranqiu 已提交
3470
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3471

3472 3473 3474 3475 3476
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3477 3478
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3479 3480

    .. code-block:: python
L
Liu Yiqun 已提交
3481

3482 3483 3484 3485
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3486
    :param name: The name of the layer which this memory remembers.
3487 3488
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3489
    :type name: basestring
R
ranqiu 已提交
3490
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3491
    :type size: int
R
ranqiu 已提交
3492
    :param memory_name: The name of the memory. It is ignored when name is provided.
3493
    :type memory_name: basestring
3494
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3495
    :type is_seq: bool
R
ranqiu 已提交
3496 3497
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3498
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3499 3500 3501 3502
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3503
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3504 3505
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3506
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3507 3508
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3509
    :type boot_with_const_id: int
R
ranqiu 已提交
3510
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3521 3522
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3523

3524 3525 3526 3527 3528 3529 3530 3531
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3532 3533

    lout = LayerOutput(
3534
        name=memory_name,
Q
qijun 已提交
3535 3536 3537
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3538 3539 3540 3541
    return lout


@wrap_bias_attr_default()
3542 3543
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3544 3545 3546
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3547 3548
def lstm_step_layer(input,
                    state,
3549
                    size=None,
Q
qijun 已提交
3550 3551 3552 3553 3554 3555
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3556
    """
3557 3558
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3559 3560 3561

    ..  math::

3562
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3563

3564
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3565

3566
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3567

3568
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3569

L
luotao02 已提交
3570
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3571 3572


L
luotao02 已提交
3573
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3574
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3575
    input vectors.
Z
zhangjinchao01 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3586
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3587
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3588 3589
    :code:`get_output_layer` to extract this output.

3590
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3591
    :type name: basestring
R
ranqiu 已提交
3592 3593
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3594
    :type size: int
R
ranqiu 已提交
3595
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3596
    :type input: LayerOutput
3597
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3598
    :type state: LayerOutput
3599
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3600
    :type act: BaseActivation
3601 3602
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3603
    :type gate_act: BaseActivation
3604 3605
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3606
    :type state_act: BaseActivation
R
ranqiu 已提交
3607 3608 3609
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3610
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3611
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3612
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3613
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3614 3615
    :rtype: LayerOutput
    """
3616 3617 3618

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3626
        size=state.size,
Q
qijun 已提交
3627 3628
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3629

Q
qijun 已提交
3630 3631 3632 3633 3634 3635 3636
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3637 3638 3639


@wrap_bias_attr_default()
W
wangyang59 已提交
3640
@wrap_param_attr_default()
Q
qijun 已提交
3641
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3642 3643 3644
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3645 3646 3647 3648 3649 3650 3651
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3652
                   param_attr=None,
Q
qijun 已提交
3653
                   layer_attr=None):
Z
zhangjinchao01 已提交
3654 3655
    """

R
ranqiu 已提交
3656
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3657
    :type input: LayerOutput
R
ranqiu 已提交
3658 3659 3660 3661 3662 3663
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3664 3665
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3666
    :type act: BaseActivation
3667
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3668
    :type name: basestring
3669 3670
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3671
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3672 3673 3674 3675
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3676
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3677 3678 3679 3680
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3681
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3682 3683 3684 3685 3686 3687 3688 3689
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3690 3691 3692 3693
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3694
        # backward model compatibility.
3695
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3696 3697 3698 3699
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3700
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3701
    return LayerOutput(
Q
qijun 已提交
3702 3703
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3704
        parents=[input, output_mem],
Q
qijun 已提交
3705 3706
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3707 3708


Y
Yu Yang 已提交
3709 3710 3711 3712
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3713
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3725
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3726 3727
    and DROPOUT.

3728
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3729 3730 3731 3732 3733 3734
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3735
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3736
    :type name: basestring
3737 3738
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3739
    :type act: BaseActivation
3740 3741
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3742
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3743 3744 3745 3746
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3747
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3748 3749 3750 3751 3752
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3753
    :rtype: LayerOutput
Y
Yu Yang 已提交
3754 3755 3756 3757 3758 3759
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3760
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3761 3762 3763 3764
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3765

Y
Yu Yang 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3803 3804 3805 3806
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3807 3808 3809 3810
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3811

3812
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3813
    :type name: basestring
R
ranqiu 已提交
3814
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3815 3816
                   multiple outputs.
    :type input: LayerOutput
3817
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3818
    :type arg_name: basestring
R
ranqiu 已提交
3819 3820
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3821
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3822 3823 3824 3825 3826 3827 3828
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3829 3830 3831 3832 3833 3834 3835
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3836

Q
qijun 已提交
3837 3838 3839 3840 3841
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3842 3843 3844 3845 3846 3847 3848


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3849 3850 3851 3852 3853 3854 3855
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3856
    """
3857 3858
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3859

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3875
    :param input: The input of this layer.
3876
    :type input: LayerOutput
3877
    :param act: Activation type. TanhActivation is the default activation.
3878
    :type act: BaseActivation
P
peterzhang2029 已提交
3879 3880 3881 3882
    :param bias_attr: The parameter attribute for bias. If this parameter is set to 
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3883
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3884 3885
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3886
    :type param_attr: ParameterAttribute
3887
    :param name: The name of this layer. It is optional.
3888
    :type name: basestring
R
ranqiu 已提交
3889 3890
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3891
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3892
    :return: LayerOutput object.
3893
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3894
    """
Q
qijun 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3910 3911 3912 3913 3914


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
3915
    and can be a sequence or non-sequence.
3916 3917
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3918
    """
3919

Z
zhangjinchao01 已提交
3920 3921 3922
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3923
        assert input.size is not None
Z
zhangjinchao01 已提交
3924
        if size is not None:
3925
            assert input.size == size
Z
zhangjinchao01 已提交
3926 3927


3928
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3929
    """
3930
    DEPRECATED.
Z
zhangjinchao01 已提交
3931 3932 3933 3934 3935 3936 3937 3938
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3939
    return input
Z
zhangjinchao01 已提交
3940 3941 3942


@wrap_name_default("recurrent_group")
3943
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3944
    """
C
caoying03 已提交
3945 3946 3947
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
3948 3949
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

3971 3972
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
3973

R
ranqiu 已提交
3974 3975 3976
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
3977 3978 3979 3980
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
3981
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
3982 3983 3984 3985 3986 3987 3988
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
3989
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
3990

R
ranqiu 已提交
3991
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3992

R
ranqiu 已提交
3993
    :param reverse: If reverse is set to True, the recurrent unit will process the
3994
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3995
    :type reverse: bool
3996

3997 3998
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3999 4000 4001 4002 4003 4004 4005

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4006
    :type targetInlink: LayerOutput | SubsequenceInput
4007

D
dangqingqing 已提交
4008
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4009 4010 4011 4012
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4013
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4014
        input = [input]
4015
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4016 4017

    def is_in_links(x):
4018
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4019 4020 4021 4022

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4023
        name=name,
4024 4025
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4026 4027
    in_args = []
    for each_input in input:
4028
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4029
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4030
            mem = memory(
4031
                name=None,
Q
qijun 已提交
4032 4033
                size=each_input.input.size,
                boot_layer=each_input.input)
4034
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4035
            in_args.append(mem)
4036 4037
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4038

Z
zhangjinchao01 已提交
4039 4040 4041 4042 4043
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4044 4045 4046 4047 4048 4049
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4050 4051 4052

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4053
    for layer_out in layer_outs:
4054 4055
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4056 4057
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4058 4059 4060 4061 4062
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4063

Z
zhangjinchao01 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4092 4093

    def before_real_step(self):
Q
qijun 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4103 4104 4105
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4106
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4124
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4125
    :type input: LayerOutput
4126
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4127
    :type name: basestring
R
ranqiu 已提交
4128 4129
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4130
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4132 4133 4134 4135
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4146

4147

R
ranqiu 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
    :type input: LayerOutput
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4199
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4200
    :type name: basestring
R
ranqiu 已提交
4201
    :param input1: The first input layer.
H
Haonan 已提交
4202
    :type input: LayerOutput
R
ranqiu 已提交
4203
    :param input2: The second input layer.
H
Haonan 已提交
4204
    :type input2: LayerOutput
R
ranqiu 已提交
4205 4206
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4207 4208 4209 4210 4211 4212 4213
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4224

Z
zhangjinchao01 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4241
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4242
    :type name: basestring
R
ranqiu 已提交
4243
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4244
    :type input: LayerOutput
R
ranqiu 已提交
4245
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4246
    :type eos_id: int
R
ranqiu 已提交
4247 4248
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4249
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4250
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4251 4252
    :rtype: LayerOutput
    """
Q
qijun 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4264 4265 4266


@wrap_name_default()
Q
qijun 已提交
4267 4268 4269 4270 4271 4272 4273
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4274
                num_results_per_sample=None):
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4286
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4287 4288 4289 4290
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4291 4292 4293 4294 4295
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4296 4297
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4298 4299
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4300 4301
                               bos_id=0,
                               eos_id=1,
4302
                               beam_size=5)
4303 4304 4305 4306 4307 4308

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4309 4310
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4311
    :type name: basestring
4312
    :param step: A callable function that defines the calculation in a time
4313
                 step, and it is applied to sequences with arbitrary length by
4314 4315 4316 4317 4318
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4319 4320
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4321
                  In beam_search, none of the input's type should be LayerOutput.
4322
    :type input: list
4323 4324 4325
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4326
                   symbol is essential, since it is used to initialize the RNN
4327 4328 4329 4330 4331 4332 4333 4334
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4335 4336
    :param max_length: Max generated sequence length.
    :type max_length: int
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4347 4348
    :return: The generated word index.
    :rtype: LayerOutput
4349 4350
    """

Z
zhangjinchao01 已提交
4351 4352 4353 4354 4355
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4356
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4357 4358 4359 4360 4361 4362
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4363 4364 4365
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4366
        if isinstance(each_input, BaseGeneratedInput):
4367 4368
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4369
            generated_input_index = i
4370

Z
zhangjinchao01 已提交
4371 4372 4373
        else:
            real_input.append(each_input)

4374
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4375 4376 4377 4378 4379 4380 4381 4382

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4383 4384 4385 4386 4387 4388
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4389 4390 4391 4392 4393 4394

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4395
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4396 4397
        return predict

4398 4399
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4400

Q
qijun 已提交
4401

4402 4403
def __cost_input__(input, label, weight=None):
    """
4404
    inputs and parents for cost layers.
4405
    """
C
caoying03 已提交
4406 4407 4408 4409 4410 4411
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4412
    if weight is not None:
4413
        assert weight.size == 1
4414 4415 4416
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4417

Z
zhangjinchao01 已提交
4418 4419

@wrap_name_default()
L
luotao1 已提交
4420
@layer_support()
4421 4422 4423 4424 4425 4426
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4427
    """
4428
    sum of square error cost:
L
Luo Tao 已提交
4429 4430 4431

    ..  math::

4432
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4433

4434
    :param name: The name of this layer. It is optional.
4435
    :type name: basestring
R
ranqiu 已提交
4436
    :param input: The first input layer.
4437
    :type input: LayerOutput
R
ranqiu 已提交
4438
    :param label: The input label.
4439
    :type label: LayerOutput
R
ranqiu 已提交
4440 4441
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4442
    :type weight: LayerOutput
R
ranqiu 已提交
4443
    :param coeff: The weight of the gradient in the back propagation.
4444
                  1.0 is the default value.
4445
    :type coeff: float
R
ranqiu 已提交
4446 4447
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4448
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4449
    :return: LayerOutput object.
4450
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4451
    """
4452 4453
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4454 4455 4456 4457
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4458
        coeff=coeff,
Q
qijun 已提交
4459
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4460
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4461 4462


4463
regression_cost = square_error_cost
L
Luo Tao 已提交
4464 4465


Z
zhangjinchao01 已提交
4466
@wrap_name_default("cost")
4467
@layer_support()
Q
qijun 已提交
4468 4469 4470 4471
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4472
                        evaluator=classification_error_evaluator,
4473 4474
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4475 4476 4477
    """
    classification cost Layer.

4478
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4479
    :type name: basestring
R
ranqiu 已提交
4480
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4481
    :type input: LayerOutput
R
ranqiu 已提交
4482
    :param label: The input label.
Z
zhangjinchao01 已提交
4483
    :type label: LayerOutput
R
ranqiu 已提交
4484 4485
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4486
    :type weight: LayerOutput
R
ranqiu 已提交
4487 4488 4489 4490
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4491
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4492
    :param coeff: The weight of the gradient in the back propagation.
4493
                  1.0 is the default value.
4494
    :type coeff: float
D
dangqingqing 已提交
4495
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4496 4497 4498 4499 4500
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4501 4502 4503

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4504 4505 4506 4507
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4508
        coeff=coeff,
Q
qijun 已提交
4509
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4520
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4521

4522
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4523 4524 4525 4526 4527
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4528
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4529

4530

Q
qijun 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4540 4541
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4542 4543 4544 4545
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4546
    supports GPU mode.
Z
zhangjinchao01 已提交
4547 4548 4549 4550 4551

    The example usage is:

    .. code-block:: python

4552 4553
       op = conv_operator(img=input1,
                          filter=input2,
4554
                          filter_size=3,
Z
zhangjinchao01 已提交
4555 4556 4557
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4558
    :param img: The input image.
4559
    :type img: LayerOutput
R
ranqiu 已提交
4560
    :param filter: The input filter.
4561
    :type filter: LayerOutput
R
ranqiu 已提交
4562
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4563
    :type filter_size: int
R
ranqiu 已提交
4564 4565 4566
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4567
    :type filter_size_y: int
R
ranqiu 已提交
4568
    :param num_filters: The number of the output channels.
4569
    :type num_filters: int
R
ranqiu 已提交
4570 4571 4572
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4573
    :type num_channels: int
R
ranqiu 已提交
4574
    :param stride: The stride on the x axis.
L
luotao02 已提交
4575
    :type stride: int
R
ranqiu 已提交
4576 4577
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4578
    :type stride_y: int
R
ranqiu 已提交
4579
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4580
    :type padding: int
R
ranqiu 已提交
4581 4582
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4593

4594 4595
    if num_channels is None:
        num_channels = img.num_filters
4596 4597

    assert isinstance(filter, LayerOutput)
4598
    assert filter.size is not None
4599

4600 4601 4602
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4614

4615
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4616 4617
    return op

Q
qijun 已提交
4618

4619
@wrap_param_attr_default()
Q
qijun 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4630 4631
                    param_attr=None,
                    trans=False):
4632
    """
R
ranqiu 已提交
4633 4634 4635
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4636 4637 4638 4639 4640

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4641
       proj = conv_projection(input=input1,
4642 4643 4644 4645
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4646
    :param input: The input of this layer.
4647
    :type input: LayerOutput
R
ranqiu 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size is not provided.
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4657
    :type filter_size_y: int
R
ranqiu 已提交
4658
    :param num_filters: The number of filters.
4659
    :type num_filters: int
R
ranqiu 已提交
4660
    :param num_channels: The number of the input channels.
4661
    :type num_channels: int
R
ranqiu 已提交
4662 4663 4664 4665 4666 4667 4668
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4669
    :type stride_y: int
R
ranqiu 已提交
4670 4671 4672 4673 4674 4675 4676
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4677 4678 4679
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4680 4681
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4682
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4683
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4684
    :type trans: bool
R
ranqiu 已提交
4685 4686
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4715
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4716 4717 4718 4719 4720
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4721 4722 4723
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4736 4737 4738 4739

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4740

D
dangqingqing 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4751 4752
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4753

R
ranqiu 已提交
4754 4755 4756 4757
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4758

D
dangqingqing 已提交
4759
    For example,
4760

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4782 4783

    The simply usage is:
D
dangqingqing 已提交
4784 4785 4786 4787 4788 4789 4790 4791

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4792
    :param input: The input of this layer.
D
dangqingqing 已提交
4793
    :type input: LayerOutput
R
ranqiu 已提交
4794
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4795
    :type pad_c: list | None
R
ranqiu 已提交
4796
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4797
    :type pad_h: list | None
R
ranqiu 已提交
4798
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4799
    :type pad_w: list | None
R
ranqiu 已提交
4800 4801
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4802
    :type layer_attr: ExtraLayerAttribute
4803
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4846
@wrap_name_default()
L
luotao1 已提交
4847 4848
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4849
    """
R
ranqiu 已提交
4850
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4851 4852 4853 4854 4855 4856 4857 4858
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4859
    In this formula:
4860 4861 4862 4863
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4864 4865 4866 4867 4868

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4869
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4870

4871
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4872
    :type name: basestring
R
ranqiu 已提交
4873
    :param a: The first input of this layer.
4874
    :type a: LayerOutput
R
ranqiu 已提交
4875
    :param b: The second input of this layer.
4876
    :type b: LayerOutput
R
ranqiu 已提交
4877 4878
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4879
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4880
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4881 4882
    :rtype: LayerOutput
    """
4883 4884
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4885 4886 4887
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4888
        inputs=[a.name, b.name],
Q
qijun 已提交
4889
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4890

Q
qijun 已提交
4891 4892
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4893 4894 4895 4896 4897


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4898
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4899
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4900 4901 4902 4903 4904 4905 4906 4907
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4908
    """
R
ranqiu 已提交
4909 4910
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
4911 4912

    .. math::
4913
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4914 4915

    In this formular:
4916 4917
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4918 4919
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4920
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4921 4922 4923 4924 4925

    The simple usage is:

    .. code-block:: python

4926
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4927

4928
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4929
    :type name: basestring
R
ranqiu 已提交
4930
    :param a: The first input of this layer.
4931
    :type a: LayerOutput
R
ranqiu 已提交
4932
    :param b: The second input of this layer.
4933
    :type b: LayerOutput
R
ranqiu 已提交
4934 4935
    :param size: The dimension of this layer.
    :type size: int
4936
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
4937
    :type act: BaseActivation
R
ranqiu 已提交
4938 4939
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4940
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
4941 4942 4943 4944
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4945
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
4946 4947
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
4948
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4950 4951
    :rtype: LayerOutput
    """
4952
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4953 4954 4955 4956 4957 4958
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4959 4960 4961 4962
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4963 4964 4965 4966 4967 4968


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4969
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4970 4971
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4972
                       select=None,
Q
qijun 已提交
4973 4974
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4975 4976 4977
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4978 4979 4980
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4981 4982
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
4983
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
4984 4985 4986 4987 4988 4989 4990
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4991
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4992

4993
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4994
    :type name: basestring
R
ranqiu 已提交
4995 4996
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
4997 4998 4999 5000
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5001
    :type select: LayerOutput
R
ranqiu 已提交
5002 5003
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5004
    :type size: int
5005
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5006
    :type act: BaseActivation
R
ranqiu 已提交
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5017
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5018 5019 5020 5021
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5022
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5023 5024
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5025
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5026
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5027 5028 5029 5030
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5031
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5032 5033
        param_attr = [param_attr]
    else:
5034
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5035 5036
            assert len(input) == len(param_attr)
        else:
5037
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5038
                logger.fatal(
W
wangmeng28 已提交
5039 5040 5041 5042 5043
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5044 5045
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5046 5047 5048 5049
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5050
    Layer(
Q
qijun 已提交
5051 5052 5053
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5054 5055 5056
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5057
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5058 5059 5060 5061
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5062 5063 5064 5065 5066 5067 5068
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5069 5070 5071


@wrap_name_default()
L
luotao1 已提交
5072 5073
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5074
    """
R
ranqiu 已提交
5075
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5076 5077 5078 5079 5080 5081 5082 5083
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5084
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5085
    :type input: LayerOutput
5086
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5087
    :type name: basestring
R
ranqiu 已提交
5088 5089 5090
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5091
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5092 5093
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5094
    l = Layer(
Z
zhangjinchao01 已提交
5095 5096 5097
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5098 5099 5100
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5101 5102 5103


@wrap_name_default()
L
luotao1 已提交
5104
@layer_support()
Q
qijun 已提交
5105 5106 5107 5108
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5109
                          layer_attr=None):
Z
zhangjinchao01 已提交
5110
    """
R
ranqiu 已提交
5111
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5122
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5123
    :type input: LayerOutput
5124
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5125
    :type name: basestring
R
ranqiu 已提交
5126 5127 5128 5129 5130 5131 5132
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5133
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5134 5135 5136 5137 5138 5139 5140 5141
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5142 5143 5144
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5145 5146 5147


@wrap_name_default()
L
luotao1 已提交
5148
@layer_support()
Q
qijun 已提交
5149
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5150
    """
5151 5152 5153 5154
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5155 5156 5157

    .. math::

5158
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5159

5160 5161 5162 5163 5164
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5165

5166
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5167 5168

    In this formular:
5169 5170 5171 5172 5173 5174
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5175 5176 5177 5178 5179

    The simple usage is:

    .. code-block:: python

5180
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5181 5182
                                       size=elem_dim)

5183 5184 5185 5186
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5187
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5188
    :type size: int
5189
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5190
    :type name: basestring
R
ranqiu 已提交
5191 5192 5193
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5194
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5195 5196
    :rtype: LayerOutput
    """
5197 5198 5199 5200
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5201
            size = vectors.size / weights.size
5202 5203
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5204 5205
    Layer(
        name=name,
5206
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5207
        size=size,
5208
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5209 5210 5211
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5212

5213

5214
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5215

5216

Z
zhangjinchao01 已提交
5217
@wrap_name_default()
L
luotao1 已提交
5218
@layer_support()
Z
zhangjinchao01 已提交
5219 5220 5221 5222 5223 5224 5225
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5226
                       num_channels=None,
L
luotao1 已提交
5227 5228
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5229 5230
    """
    Expand feature map to minibatch matrix.
5231
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5232
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5233 5234 5235 5236 5237 5238 5239

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5240
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5241
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5242
    The number of time steps is outputH * outputW and the dimension of each
5243
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5244
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5245

5246 5247 5248 5249
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5250
       block_expand = block_expand_layer(input=layer,
5251
                                         num_channels=128,
5252 5253 5254 5255 5256
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5257
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5258
    :type input: LayerOutput
R
ranqiu 已提交
5259 5260 5261 5262
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5275
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5276 5277 5278 5279
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5280
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5281 5282
    :rtype: LayerOutput
    """
5283 5284 5285
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5303 5304


5305 5306
@wrap_name_default()
@layer_support()
5307
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5308
    """
R
ranqiu 已提交
5309 5310 5311 5312
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5313

5314
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5315 5316 5317 5318 5319 5320 5321
    to be devided by groups.

    Reference:
        Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
        Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf
5322

X
xuwei06 已提交
5323 5324 5325 5326 5327 5328 5329 5330
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5331 5332 5333 5334 5335 5336 5337 5338
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5339
    :param input: The input of this layer.
5340
    :type input: LayerOutput
R
ranqiu 已提交
5341 5342 5343 5344
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5345 5346
    :param groups: The group number of input layer.
    :type groups: int
5347
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5348 5349 5350
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5370 5371


Z
zhangjinchao01 已提交
5372
@wrap_name_default()
L
luotao1 已提交
5373
@layer_support()
Q
qijun 已提交
5374 5375 5376 5377 5378
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5379
              layer_attr=None):
Z
zhangjinchao01 已提交
5380 5381
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5382
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5383 5384
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5385 5386 5387 5388
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5389 5390

    Note:
R
ranqiu 已提交
5391 5392 5393 5394 5395
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5396

C
caoying03 已提交
5397
    The example usage is:
Z
zhangjinchao01 已提交
5398 5399 5400 5401 5402 5403 5404 5405

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5406
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5407
    :type input: LayerOutput
R
ranqiu 已提交
5408
    :param label: The input label.
Z
zhangjinchao01 已提交
5409
    :type label: LayerOutput
R
ranqiu 已提交
5410
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5411
    :type size: int
5412
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5413 5414
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5415
    :type norm_by_times: bool
R
ranqiu 已提交
5416 5417 5418
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5419
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5420 5421 5422 5423
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5424 5425 5426 5427 5428
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5429
    Layer(
5430 5431 5432 5433
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5434
        inputs=[input.name, label.name],
Q
qijun 已提交
5435
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5436 5437
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5438

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5450
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5451
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5452 5453 5454 5455 5456 5457 5458
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5459 5460 5461 5462
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5463 5464

    Note:
R
ranqiu 已提交
5465 5466 5467
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5468
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5469
          should be consistent with those used in your labels.
5470
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5471
          'linear' activation is expected to be used instead in the 'input' layer.
5472

C
caoying03 已提交
5473
    The example usage is:
5474 5475 5476 5477 5478 5479 5480 5481 5482

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5483
    :param input: The input of this layer.
5484
    :type input: LayerOutput
R
ranqiu 已提交
5485
    :param label: The input label.
5486
    :type label: LayerOutput
R
ranqiu 已提交
5487
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5488
    :type size: int
5489
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5490 5491
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5492
    :type blank: int
R
ranqiu 已提交
5493
    :param norm_by_times: Whether to do normalization by times. False is the default.
5494
    :type norm_by_times: bool
R
ranqiu 已提交
5495 5496 5497
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5520
@wrap_name_default()
5521
@wrap_param_attr_default()
L
luotao1 已提交
5522
@layer_support()
Q
qijun 已提交
5523 5524 5525 5526 5527 5528
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5529
              coeff=1.0,
L
luotao1 已提交
5530
              layer_attr=None):
Z
zhangjinchao01 已提交
5531 5532 5533 5534
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5535
    The example usage is:
Z
zhangjinchao01 已提交
5536 5537 5538 5539 5540 5541 5542

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5543
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5544
    :type input: LayerOutput
R
ranqiu 已提交
5545
    :param label: The input label.
5546
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5547 5548
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5549 5550
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5551
    :type weight: LayerOutput
R
ranqiu 已提交
5552 5553
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5554
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5555
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5556 5557
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5558
                  1.0 is the default value.
5559
    :type coeff: float
R
ranqiu 已提交
5560 5561 5562
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5563
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5564 5565 5566 5567 5568
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5569 5570 5571 5572 5573 5574
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5575

Q
qijun 已提交
5576
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5577 5578 5579 5580
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5581 5582 5583 5584
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5585
        coeff=coeff,
Q
qijun 已提交
5586
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5587 5588 5589
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5590 5591 5592 5593
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5594

5595

Z
zhangjinchao01 已提交
5596
@wrap_name_default()
5597
@wrap_param_attr_default()
L
luotao1 已提交
5598
@layer_support()
Q
qijun 已提交
5599 5600 5601 5602 5603
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5604
                       layer_attr=None):
Z
zhangjinchao01 已提交
5605 5606 5607
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5608 5609 5610
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5611

C
caoying03 已提交
5612
    The example usage is:
L
Luo Tao 已提交
5613 5614 5615 5616 5617 5618

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5619 5620
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5621
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5622
    :type size: int
R
ranqiu 已提交
5623 5624 5625 5626
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5627
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5628
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5629 5630 5631 5632
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5633
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5634 5635 5636 5637 5638 5639
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5640
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5641 5642 5643 5644
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5645 5646 5647 5648
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5649
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5650 5651 5652
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5653 5654 5655 5656
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5657

Q
qijun 已提交
5658

C
caoying03 已提交
5659 5660 5661 5662 5663
"""
Following are cost Layers.
"""


5664
@wrap_bias_attr_default(has_bias=True)
5665
@wrap_param_attr_default()
5666 5667
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5668 5669
def nce_layer(input,
              label,
C
caoying03 已提交
5670
              num_classes=None,
5671
              param_attr=None,
Q
qijun 已提交
5672 5673 5674 5675 5676 5677
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5678 5679
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5680 5681 5682 5683

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5684 5685 5686 5687 5688

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5689 5690
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5691 5692
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5693
    :param name: The name of this layer. It is optional.
5694
    :type name: basestring
R
ranqiu 已提交
5695
    :param input: The first input of this layer.
R
ranqiu 已提交
5696
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5697
    :param label: The input label.
5698
    :type label: LayerOutput
C
caoying03 已提交
5699
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5700
                   mini-batch. It is optional.
5701
    :type weight: LayerOutput
R
ranqiu 已提交
5702
    :param num_classes: The number of classes.
5703
    :type num_classes: int
5704
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5705
    :type act: BaseActivation
R
ranqiu 已提交
5706 5707
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5708
    :type param_attr: ParameterAttribute
5709 5710
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5711
    :type num_neg_samples: int
C
caoying03 已提交
5712 5713 5714
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5715
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5716 5717 5718
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5719
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5720 5721 5722 5723
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5724
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5725 5726
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5727
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5728
    :return: LayerOutput object.
5729 5730 5731 5732
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5733 5734 5735 5736 5737 5738 5739 5740
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5741
    assert isinstance(input, collections.Sequence)
5742

5743 5744
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5745 5746
    if num_classes is None:
        num_classes = label.size
5747 5748 5749
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5750
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5751

5752 5753
    ipts_for_layer = []
    parents = []
5754
    for each_input, attr in zip(input, param_attr):
5755
        assert isinstance(each_input, LayerOutput)
5756
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5767
    l = Layer(
5768 5769 5770 5771
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5772
        active_type=SigmoidActivation().name,
5773 5774 5775
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5776 5777
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5778 5779 5780 5781
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5782
        activation=SigmoidActivation())
5783 5784


Z
zhangjinchao01 已提交
5785
@wrap_name_default()
L
luotao1 已提交
5786
@layer_support()
Q
qijun 已提交
5787 5788 5789 5790 5791 5792 5793
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5794
    """
R
ranqiu 已提交
5795 5796 5797 5798 5799
    A cost Layer for learning to rank using gradient descent.

    Reference:
        Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
Z
zhangjinchao01 已提交
5800 5801 5802

    .. math::

L
luotao02 已提交
5803
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5804

L
luotao02 已提交
5805
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5806

L
luotao02 已提交
5807
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5808 5809 5810 5811 5812 5813 5814 5815

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5816
    The example usage is:
Z
zhangjinchao01 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5830 5831
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5832
    :type weight: LayerOutput
R
ranqiu 已提交
5833
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5834 5835
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5836
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5837
    :type coeff: float
R
ranqiu 已提交
5838 5839
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5840
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5841
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5854 5855 5856 5857 5858 5859
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5860

X
xuwei06 已提交
5861
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5862

5863

Z
zhangjinchao01 已提交
5864
@wrap_name_default()
L
luotao1 已提交
5865
@layer_support()
Q
qijun 已提交
5866 5867 5868 5869 5870 5871
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5872 5873 5874
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5875
    The example usage is:
Z
zhangjinchao01 已提交
5876 5877 5878 5879 5880 5881 5882 5883

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5884 5885
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5886
    :type input: LayerOutput
R
ranqiu 已提交
5887
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5888 5889
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5890
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5891
                     minimum size of the list.
Z
zhangjinchao01 已提交
5892
    :type NDCG_num: int
R
ranqiu 已提交
5893 5894 5895 5896 5897
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5898
    :type max_sort_size: int
R
ranqiu 已提交
5899
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5900 5901 5902
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5903
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5904
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5905 5906
    :rtype: LayerOutput
    """
5907 5908 5909
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5910 5911 5912 5913 5914 5915 5916
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5917

Q
qijun 已提交
5918 5919
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5920

5921

Z
zhangjinchao01 已提交
5922
@wrap_name_default()
L
luotao1 已提交
5923
@layer_support()
5924 5925 5926 5927 5928 5929
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5930 5931 5932
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5933 5934
    The example usage is:

Z
zhangjinchao01 已提交
5935 5936
    .. code-block:: python

X
xuwei06 已提交
5937
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5938
                            label=label_layer)
Z
zhangjinchao01 已提交
5939 5940 5941 5942

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5943
    :type input: LayerOutput
R
ranqiu 已提交
5944
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5945 5946
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5947
                  1.0 is the default value.
R
ranqiu 已提交
5948
    :type coeff: float
R
ranqiu 已提交
5949 5950
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
5951
    :type weight: LayerOutout
R
ranqiu 已提交
5952 5953
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5954
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5955
    :return: LayerOutput object.
R
ranqiu 已提交
5956
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5957 5958
    """

5959
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5960 5961 5962
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5963
        inputs=ipts,
Q
qijun 已提交
5964 5965
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5966
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5967

5968

Z
zhangjinchao01 已提交
5969
@wrap_name_default()
L
luotao1 已提交
5970
@layer_support()
Q
qijun 已提交
5971 5972 5973 5974
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5975 5976
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5977 5978
    """
    A loss layer for multi class entropy with selfnorm.
5979
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5980

C
caoying03 已提交
5981 5982
    The example usage is:

Z
zhangjinchao01 已提交
5983 5984
    .. code-block:: python

X
xuwei06 已提交
5985
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5986
                                          label=label_layer)
Z
zhangjinchao01 已提交
5987 5988

    :param input: The first input layer.
R
ranqiu 已提交
5989
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5990
    :param label: The input label.
R
ranqiu 已提交
5991
    :type input: LayerOutput
R
ranqiu 已提交
5992
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5993 5994
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5995
                  1.0 is the default value.
R
ranqiu 已提交
5996
    :type coeff: float
Z
zhangjinchao01 已提交
5997
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5998 5999 6000
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6001
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6002
    :return: LayerOutput object.
R
ranqiu 已提交
6003
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6004
    """
Q
qijun 已提交
6005 6006 6007 6008 6009 6010 6011
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6012

Q
qijun 已提交
6013 6014 6015 6016 6017
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6018

6019

X
xuwei06 已提交
6020 6021 6022 6023
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6024
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6025

C
caoying03 已提交
6026 6027
    The example usage is:

X
xuwei06 已提交
6028 6029
    .. code-block:: python

L
Luo Tao 已提交
6030
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6031

R
ranqiu 已提交
6032
    :param input: The input of this layer.
R
ranqiu 已提交
6033
    :type input: LayerOutput
R
ranqiu 已提交
6034
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6035 6036 6037
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6038 6039 6040 6041
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6042
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6043 6044 6045 6046 6047
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6048

Q
qijun 已提交
6049
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6050 6051


Z
zhangjinchao01 已提交
6052
@wrap_name_default()
L
luotao1 已提交
6053
@layer_support()
L
Luo Tao 已提交
6054 6055 6056 6057 6058 6059
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6060
    """
6061 6062 6063
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6064 6065 6066 6067 6068
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6069

C
caoying03 已提交
6070 6071
    The example usage is:

Z
zhangjinchao01 已提交
6072 6073
    .. code-block:: python

L
Luo Tao 已提交
6074 6075 6076
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
R
ranqiu 已提交
6077
    :type input: LayerOutput
L
Luo Tao 已提交
6078
    :param label: The input label.
R
ranqiu 已提交
6079
    :type input: LayerOutput
R
ranqiu 已提交
6080
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6081
    :type name: basestring
L
Luo Tao 已提交
6082
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6083 6084
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6085
                  1.0 is the default value.
R
ranqiu 已提交
6086 6087 6088
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
Luo Tao 已提交
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6105
@wrap_name_default()
L
luotao1 已提交
6106
@layer_support()
6107 6108 6109 6110 6111
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6112
    """
6113 6114 6115
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6116 6117 6118
    loss is defined as:

    .. math:
6119
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6120
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6121

C
caoying03 已提交
6122 6123
    The example usage is:

Z
zhangjinchao01 已提交
6124 6125
    .. code-block:: python

6126
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6127 6128

    :param input: The first input layer.
R
ranqiu 已提交
6129
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6130
    :param label: The input label.
R
ranqiu 已提交
6131
    :type input: LayerOutput
R
ranqiu 已提交
6132
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6133 6134
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6135
                  1.0 is the default value.
R
ranqiu 已提交
6136 6137 6138
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6139
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6140
    :return: LayerOutput object.
R
ranqiu 已提交
6141
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6142
    """
6143 6144 6145
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6146 6147
    Layer(
        name=name,
6148
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6149 6150 6151
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6152 6153
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6154

6155

Z
zhangjinchao01 已提交
6156
@wrap_name_default()
L
luotao1 已提交
6157
@layer_support()
Q
qijun 已提交
6158 6159 6160 6161
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6162
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6163 6164 6165
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6166 6167
    The example usage is:

Z
zhangjinchao01 已提交
6168 6169
    .. code-block:: python

X
xuwei06 已提交
6170
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6171
                                               label=label_layer)
Z
zhangjinchao01 已提交
6172 6173 6174 6175 6176

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6177
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6178 6179
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6180
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6181
    :type coeff: float
R
ranqiu 已提交
6182 6183
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6184
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6185
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6186 6187 6188
    :rtype: LayerOutput
    """

6189 6190
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6191 6192 6193 6194
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6207 6208


C
caoying03 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6231 6232
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6233
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6234
    """
C
caoying03 已提交
6235 6236 6237
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6238

C
caoying03 已提交
6239 6240 6241 6242 6243
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6244

C
caoying03 已提交
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6263
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6284
    :param input: Input beams for this layer.
C
caoying03 已提交
6285
    :type input: BeamInput
R
ranqiu 已提交
6286
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6313 6314 6315
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6316 6317
@wrap_name_default()
@layer_support()
6318
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6319 6320
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6321
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6322 6323 6324 6325 6326 6327 6328 6329 6330

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6331
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6332

R
ranqiu 已提交
6333 6334 6335
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6336

C
caoying03 已提交
6337 6338
    The example usage is:

D
dangqingqing 已提交
6339 6340
    .. code-block:: python

6341 6342
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6343 6344 6345 6346 6347

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6348
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6349
    :type name: basestring
R
ranqiu 已提交
6350
    :param coeff: The weight of the gradient in the back propagation.
6351
                  1.0 is the default value.
6352
    :type coeff: float
R
ranqiu 已提交
6353 6354
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6367
        coeff=coeff,
D
dangqingqing 已提交
6368 6369 6370
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6371 6372 6373 6374 6375


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6376 6377 6378
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6379
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6380 6381
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6382 6383 6384 6385 6386 6387 6388 6389

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6390 6391
    The example usage is:

W
wwhu 已提交
6392 6393 6394 6395 6396 6397
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6398
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6399
    :type name: basestring
R
ranqiu 已提交
6400 6401
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6425 6426


6427 6428 6429 6430
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6431 6432 6433 6434 6435 6436
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6437
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6438
    :type name: basestring
R
ranqiu 已提交
6439
    :param input: The input of this layer.
R
ranqiu 已提交
6440 6441 6442 6443 6444
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6445 6446 6447 6448 6449 6450 6451
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6452 6453


D
dangqingqing 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6467
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6468 6469 6470 6471 6472 6473 6474
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6475
    efficient manner to improve unidirectional RNNs.
6476

R
ranqiu 已提交
6477
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6478 6479 6480 6481
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6482

D
dangqingqing 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6498
    :param input: The input of this layer.
D
dangqingqing 已提交
6499 6500 6501 6502
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6503
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6504
    :type act: BaseActivation
R
ranqiu 已提交
6505 6506
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6507
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6508 6509
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6510
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6526 6527


6528 6529 6530 6531 6532 6533 6534 6535 6536
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6537
    The Parametric Relu activation that actives outputs with a learnable weight.
6538 6539 6540 6541 6542 6543 6544 6545 6546

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6547 6548 6549 6550 6551 6552
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6553
    :param name: The name of this layer. It is optional.
6554
    :type name: basestring
R
ranqiu 已提交
6555
    :param input: The input of this layer.
6556
    :type input: LayerOutput
R
ranqiu 已提交
6557
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6558 6559

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6560 6561
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6562 6563

    :type partial_sum: int
6564
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6565 6566 6567
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6568
    :type layer_attr: ExtraLayerAttribute | None
6569 6570 6571 6572
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6573
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6574
    assert isinstance(param_attr, ParameterAttribute)
6575 6576 6577

    l = Layer(
        name=name,
C
caoying03 已提交
6578
        type=LayerType.PRELU,
C
caoying03 已提交
6579
        inputs=Input(input.name, **param_attr.attr),
6580 6581 6582 6583 6584 6585 6586
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6587 6588


6589
@wrap_name_default()
C
caoying03 已提交
6590
@layer_support(ERROR_CLIPPING, DROPOUT)
6591 6592 6593 6594 6595 6596 6597
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6598 6599
                     gate_bias_attr=True,
                     inproj_attr=None,
6600 6601 6602 6603 6604 6605 6606
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6607
    product between :match:`X'` and :math:`\sigma` is finally returned.
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6621
    :param input: The input of this layer.
6622
    :type input: LayerOutput
R
ranqiu 已提交
6623
    :param size: The dimension of this layer's output.
6624
    :type size: int
6625 6626
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6627
    :type act: BaseActivation
6628
    :param name: The name of this layer. It is optional.
6629
    :type name: basestring
R
ranqiu 已提交
6630 6631
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6632
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6633 6634 6635
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6636
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6637
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6638
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6639 6640 6641
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6642
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6643 6644 6645
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6646
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6647
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6648
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6649 6650 6651
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6652
    :type layer_attr: ExtraLayerAttribute | None
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6665
        layer_attr=inproj_attr,
6666 6667 6668 6669 6670 6671 6672 6673 6674
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6675
        param_attr=gate_param_attr,
6676 6677 6678 6679 6680
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6681 6682


6683
@layer_support()
6684
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6685 6686
def switch_order_layer(input,
                       name=None,
6687
                       reshape_axis=None,
W
wanghaoshuang 已提交
6688 6689
                       act=None,
                       layer_attr=None):
6690
    """
6691
    This layer switch dimension order of image input.
6692 6693
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6694 6695 6696 6697

    The example usage is:

    .. code-block:: python
6698 6699
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6700
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6701

R
ranqiu 已提交
6702
    :param input: The input of this layer.
6703
    :type input: LayerOutput
6704
    :param name: The name of this layer. It is optional.
6705
    :type name: basestring
R
ranqiu 已提交
6706 6707
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6708 6709 6710
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6711
    assert isinstance(input, LayerOutput)
6712 6713 6714 6715 6716
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6717 6718
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6719
        inputs=input.name,
6720 6721
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6722
        active_type=act.name,
6723 6724 6725
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6726
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6727
        activation=act,
6728 6729
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6730 6731


6732 6733
@wrap_name_default()
@layer_support()
6734
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6735
    """
R
ranqiu 已提交
6736 6737 6738
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6739

6740 6741 6742
    The example usage is:

    .. code-block:: python
W
whs 已提交
6743
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6744

R
ranqiu 已提交
6745 6746
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6747 6748
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6749
    :type offset: Sequence
R
ranqiu 已提交
6750
    :param axis: The start axis to be cropped. For image input layer:
6751 6752 6753 6754
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6755 6756
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6757
    :type shape: Sequence | None
6758
    :param name: The name of this layer. It is optional.
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6780 6781


C
caoying03 已提交
6782 6783
@wrap_name_default()
@layer_support()
6784
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6785
    """
6786
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6787
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6788

C
caoying03 已提交
6789 6790 6791
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6792 6793 6794 6795

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6796

R
ranqiu 已提交
6797
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6798

C
caoying03 已提交
6799

R
ranqiu 已提交
6800
    :param input: The input of this layer. It is a nested sequence.
6801
    :type input: LayerOutput
R
ranqiu 已提交
6802
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6803
    :type input: LayerOutput
6804
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6805 6806 6807 6808
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6809

6810 6811 6812 6813 6814 6815 6816
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6817
    l = Layer(
6818 6819
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6820 6821 6822 6823 6824 6825 6826
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6827 6828


G
guosheng 已提交
6829
@wrap_name_default("clip")
6830
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6840
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6841

6842
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6843
    :type name: basestring
R
ranqiu 已提交
6844
    :param input: The input of this layer.
G
guosheng 已提交
6845
    :type input: LayerOutput.
6846
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6847
    :type min: float
6848
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6849
    :type max: float
6850 6851
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6852 6853 6854 6855 6856
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6857 6858
        min=min,
        max=max)
G
guosheng 已提交
6859 6860
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6861 6862


6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6887
    :param name: The name of this layer. It is optional.
6888
    :type name: basestring
R
ranqiu 已提交
6889
    :param input: The input of this layer, which should be a sequence.
6890
    :type input: LayerOutput
R
ranqiu 已提交
6891
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6892
    :type starts: LayerOutput | None
R
ranqiu 已提交
6893
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6894
    :type ends: LayerOutput | None
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6926 6927


6928 6929
@wrap_name_default()
@layer_support()
6930
def kmax_seq_score_layer(input, name=None, beam_size=1):
6931
    """
R
ranqiu 已提交
6932
    This layer accepts one input which is scores over a sequence or a nested
6933 6934 6935 6936
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6937
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6938 6939


6940
    :param name: The name of this layer. It is optional.
6941
    :type name: basestring
R
ranqiu 已提交
6942 6943
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6944
    :type input: LayerOutput
R
ranqiu 已提交
6945 6946
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6947 6948 6949
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6950
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6951
                                            "accepts only one input.")
6952
    assert input.size == 1, (
6953
        "input of kmax_seq_score_layer is a score "
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6964 6965


6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6992
        conv = img_conv3d_layer(input=data, filter_size=1,
6993 6994 6995 6996 6997
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6998
    :param name: The name of this layer. It is optional.
6999
    :type name: basestring
R
ranqiu 已提交
7000
    :param input: The input of this layer.
7001
    :type input: LayerOutput
R
ranqiu 已提交
7002 7003
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7004
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7005 7006
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7007
    :param act: Activation type. ReluActivation is the default activation.
7008
    :type act: BaseActivation
R
ranqiu 已提交
7009
    :param groups: The number of the filter groups.
7010
    :type groups: int
R
ranqiu 已提交
7011 7012
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7013
    :type stride: int | tuple | list
R
ranqiu 已提交
7014 7015
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7016
    :type padding: int | tuple | list
R
ranqiu 已提交
7017 7018 7019
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7020
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7021
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7022 7023
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7024
    :type num_channels: int
R
ranqiu 已提交
7025 7026
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7027
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7028
    :param shared_biases: Whether biases will be shared between filters or not.
7029
    :type shared_biases: bool
R
ranqiu 已提交
7030 7031
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7032
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7033
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7034
    :type trans: bool
R
ranqiu 已提交
7035 7036 7037 7038
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7039 7040 7041 7042 7043 7044 7045
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7046 7047 7048 7049 7050 7051
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7052

C
chengduoZH 已提交
7053 7054 7055 7056 7057 7058
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7059

C
chengduoZH 已提交
7060 7061 7062 7063 7064 7065
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7112 7113


G
guosheng 已提交
7114 7115 7116 7117 7118
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7119
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7120
    the input matrix. For each element, the layer first re-scales it and then
7121 7122
    adds a bias to it.

X
xuwei06 已提交
7123
    This layer is very like the SlopeInterceptLayer, except the scale and
7124 7125
    bias are trainable.

G
guosheng 已提交
7126 7127 7128 7129 7130 7131 7132 7133
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7134
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7135
    :type name: basestring
R
ranqiu 已提交
7136 7137
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7138 7139
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7140
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7141 7142 7143
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7144
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7155 7156 7157 7158 7159 7160 7161 7162 7163


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7164
    :param input: The input of this layer.
7165 7166 7167
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7168
    :param size: The resized output dimension of this layer.
7169 7170 7171 7172 7173 7174
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
7175 7176


Y
yangyaming 已提交
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7194 7195
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7196
    :type offsets: LayerOutput
R
ranqiu 已提交
7197
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7198
    :type sizes: LayerOutput
7199
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7200
    :type act: BaseActivation.
R
ranqiu 已提交
7201 7202 7203
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7229 7230


Y
yangyaming 已提交
7231 7232
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7233
    """
Y
yangyaming 已提交
7234 7235 7236 7237 7238 7239
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7240 7241 7242

    .. code-block:: python

Y
yangyaming 已提交
7243 7244 7245
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7261 7262
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7263 7264 7265 7266 7267 7268 7269
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7270
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7271 7272 7273 7274 7275
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7276
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7277
        parents=[input, indices],
Y
yangyaming 已提交
7278
        num_filters=input.num_filters,
Y
yangyaming 已提交
7279
        size=input.size)
7280 7281


7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7296 7297 7298 7299 7300
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7301 7302
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7303

7304 7305 7306 7307
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7308 7309 7310 7311 7312

    For details of Factorization Machine, please refer to the paper:
        Rendle, Steffen. Factorization machines. IEEE 10th International
        Conference on Data Mining (ICDM). IEEE, 2010.

7313 7314
    .. code-block:: python
       factor_machine = factorization_machine(input=input_layer, factor_size=10)
7315

7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
    :param input: The input layer.
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
                        the latent vector size
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the latent vectors will
                       be initialized smartly. It's better to set it by
                       yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)