layers.py 233.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Y
yangyaming 已提交
146
    'sub_seq_layer',
Q
qijun 已提交
147
]
Z
zhangjinchao01 已提交
148 149 150 151 152 153 154


class LayerType(object):
    """
    Layer type enumerations.
    """

155 156 157 158 159 160 161 162
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
163
    POOLING_AVG = 'average'
164
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
165
    COST = 'cost'
166 167
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
168
    HSIGMOID = 'hsigmoid'
169 170 171 172 173
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
174
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
175
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
176
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
177 178 179
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
180
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
181 182 183 184
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
185
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
186 187 188 189 190 191 192

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
193
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
194 195 196
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
197
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
198
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
199
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
211
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
212
    BLOCK_EXPAND = "blockexpand"
213
    MAXOUT = "maxout"
Q
qijun 已提交
214
    SPP_LAYER = "spp"
D
dangqingqing 已提交
215
    PAD_LAYER = "pad"
W
wwhu 已提交
216
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
217
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
218 219 220

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
221 222
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
223 224 225 226 227

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
228
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
229

230 231 232
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

233 234
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
235
    HUBER_REGRESSION = 'huber_regression'
236
    HUBER_CLASSIFICATION = 'huber_classification'
237 238
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
239
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
240 241 242 243 244 245
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
246
    SWITCH_ORDER_LAYER = 'switch_order'
247
    CROP_LAYER = 'crop'
C
caoying03 已提交
248
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
249
    CLIP_LAYER = 'clip'
250
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
251

252
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
253
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
254

255
    RESIZE = 'resize'
Y
yangyaming 已提交
256
    SUB_SEQ_LAYER = 'subseq'
257

Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
278
    """
L
Luo Tao 已提交
279
    PaddlePaddle supports three sequence types:
280 281 282

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
283 284
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
285

L
Luo Tao 已提交
286
    Accordingly, AggregateLevel supports two modes:
287

L
Luo Tao 已提交
288
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
289
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
290 291
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
292
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
293 294 295
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
296 297
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
298 299 300
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
323
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
324 325
    """

Q
qijun 已提交
326 327 328 329 330 331 332 333 334
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
335
                 reverse=None):
Z
zhangjinchao01 已提交
336 337
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
338
        assert size is not None
Z
zhangjinchao01 已提交
339 340
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
341
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
342
        self.layer_type = layer_type
343 344
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
345 346 347 348 349 350 351 352
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
353
        self.reverse = reverse
Z
zhangjinchao01 已提交
354

355 356 357 358 359 360 361 362
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

363 364 365 366
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

367 368 369 370 371 372 373 374
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
375 376 377

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
378
DEVICE = 'device'
Z
zhangjinchao01 已提交
379 380 381


def layer_support(*attrs):
382
    attrs_list = list(attrs)
383
    attrs_list.append(DEVICE)
Q
qijun 已提交
384

Z
zhangjinchao01 已提交
385 386 387
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
388
            for attr in attrs_list:
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
405 406 407 408 409
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
440
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
449 450
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
451 452 453 454
    proj.origin = input
    return proj


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
476
    :param input: The input of this layer.
477 478 479 480 481 482 483 484
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
485 486
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
487 488 489 490
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
521
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
522 523 524 525 526 527 528 529
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
530 531
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
532 533 534 535
    proj.origin = input
    return proj


536
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
566
    :param input: The input of this layer.
567
    :type input: LayerOutput
Z
zhangjinchao01 已提交
568 569
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
570
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
571 572 573 574 575 576
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
577 578
        if size is None:
            size = input.size - offset
Q
qijun 已提交
579
        proj = IdentityOffsetProjection(
580
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
581 582 583 584
        proj.origin = input
    return proj


585 586
def slice_projection(input, slices):
    """
587 588
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
589 590

    .. math::
591
       output = [input.slices()]
592 593 594 595 596 597 598 599 600

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
601
    :param input: The input of this layer.
602 603 604 605
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
606
    :type slices: pair of int
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
639
    :param input: The input of this layer.
X
xuwei06 已提交
640 641 642 643 644 645
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
646
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
647 648 649 650
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
651
@wrap_param_attr_default()
652
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
653
    """
654
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
668
    :param input: The input of this layer.
669 670 671 672 673 674
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
675 676
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
677
    proj.origin = input
678
    return proj
Z
zhangjinchao01 已提交
679

680 681

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
682 683
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
684

Z
zhangjinchao01 已提交
685
    .. math::
L
Luo Tao 已提交
686
       out.row[i] += scale * (a.row[i] .* b.row[i])
687

Z
zhangjinchao01 已提交
688 689
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
690

Z
zhangjinchao01 已提交
691
    The example usage is:
692

Z
zhangjinchao01 已提交
693
    .. code-block:: python
694

L
Luo Tao 已提交
695
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
696

697 698 699 700
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
701 702
    :param scale: config scalar, default value is one.
    :type scale: float
703 704
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
705
    """
706 707 708
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
709
    a = kwargs.get('x', a)  # For Backward capacity.
710 711 712 713 714 715
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
716
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
717
    op.origin = [a, b]
718
    return op
Z
zhangjinchao01 已提交
719

720

Z
zhangjinchao01 已提交
721
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
722 723 724
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
739
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
740 741 742 743 744 745 746 747 748
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
749
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
750 751 752 753 754 755 756 757 758 759 760
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
761 762 763 764 765 766
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
780
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
781 782 783 784 785 786
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
787
        :param act: Activation type.
Z
zhangjinchao01 已提交
788
        :type act: BaseActivation
789 790 791 792
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
R
ranqiu 已提交
793
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
794 795 796
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
797 798 799 800 801 802 803
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
804 805 806 807 808
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

809
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
810 811 812 813 814 815 816 817
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
818
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
819
            self.inputs.append(other)
820 821 822 823
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
824 825 826 827 828 829 830 831
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

832
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
833 834
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
835
        assert len(self.inputs) != 0
836
        ml = MixedLayer(
Z
zhangjinchao01 已提交
837 838 839 840 841
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
842
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
843 844 845
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
846
        self.finalized = True
Z
zhangjinchao01 已提交
847 848 849 850 851 852


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
853 854 855 856 857
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
885
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
886
                  then this function will just return layer's name.
R
ranqiu 已提交
887
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
888
    :type act: BaseActivation
889 890 891 892
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
893
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
894 895 896 897 898 899 900 901 902
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
903 904 905 906 907 908
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
909
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
910 911 912 913 914 915 916 917
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
918 919
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
927
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
928

R
ranqiu 已提交
929
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
930 931 932
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
933
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
934
    :type height: int | None
L
Luo Tao 已提交
935
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
936
    :type width: int | None
Z
zhangjinchao01 已提交
937 938
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
939
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
940 941
    :rtype: LayerOutput
    """
Q
qijun 已提交
942 943 944 945
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
946
        depth=depth,
L
Luo Tao 已提交
947 948
        height=height,
        width=width,
Q
qijun 已提交
949
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
950

C
chengduoZH 已提交
951 952
    if depth is None:
        depth = 1
953 954
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
955 956
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
957
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
958 959

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
960 961 962 963


@wrap_name_default("embedding")
@wrap_param_attr_default()
964
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
965 966 967 968
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

969
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
970
    :type name: basestring
R
ranqiu 已提交
971
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
972 973 974 975 976
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
977
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
978
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
979
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
980
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
981 982
    :rtype: LayerOutput
    """
Q
qijun 已提交
983 984 985 986 987 988
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
989 990 991 992 993 994 995 996 997
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
998 999 1000 1001 1002 1003 1004
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1017
    which is equal to:
Z
zhangjinchao01 已提交
1018 1019 1020 1021 1022 1023

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1024
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1025
    :type name: basestring
R
ranqiu 已提交
1026 1027
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1028 1029
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1030
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1031 1032 1033
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1034 1035 1036 1037
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1038
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1039
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1040
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1041
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1042 1043 1044 1045
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1046
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1047 1048
        param_attr = [param_attr]
    else:
1049
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1050 1051
            assert len(input) == len(param_attr)
        else:
1052
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1053
                logger.fatal(
W
wangmeng28 已提交
1054 1055 1056 1057 1058
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1059 1060
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1061
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1062 1063

    Layer(
Q
qijun 已提交
1064 1065 1066
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1067 1068 1069 1070 1071
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1072 1073 1074
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1075

1076

1077
@wrap_name_default("print")
1078
def printer_layer(input, format=None, name=None):
1079 1080
    """
    Print the output value of input layers. This layer is useful for debugging.
1081

1082
    :param name: The name of this layer. It is optional.
1083
    :type name: basestring
R
ranqiu 已提交
1084 1085
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1086
    :return: LayerOutput
1087
    """
1088 1089 1090 1091 1092
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1093 1094 1095

    Layer(
        name=name,
1096
        format=format,
1097
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1098
        inputs=[l.name for l in input], )
1099
    # this layer don't return anything, can not be input of other layer.
1100

X
xuwei06 已提交
1101 1102 1103 1104 1105 1106 1107
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1108

Y
yuan 已提交
1109
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1110
def priorbox_layer(input,
G
gaoyuan 已提交
1111
                   image,
G
gaoyuan 已提交
1112 1113 1114 1115 1116
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1117 1118 1119
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1120
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1121
    :type name: basestring
R
ranqiu 已提交
1122
    :param input: The input of this layer.
Y
yuan 已提交
1123
    :type input: LayerOutput
G
gaoyuan 已提交
1124 1125
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1137
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1138 1139 1140
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1141
        inputs=[input.name, image.name],
Y
yuan 已提交
1142 1143 1144 1145 1146 1147
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1148 1149
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1150
        parents=[input, image],
G
gaoyuan 已提交
1151 1152 1153
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1169
    :param name: The name of this layer. It is optional.
1170
    :type name: basestring
Y
yangyaming 已提交
1171 1172
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1173
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1174
    :type input_conf: LayerOutput | List of LayerOutput
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1196
    input_loc_num = len(input_loc)
1197 1198 1199 1200 1201 1202

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1203
    input_conf_num = len(input_conf)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1241 1242
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1243

1244
    :param name: The name of this layer. It is optional.
1245
    :type name: basestring
Y
yangyaming 已提交
1246 1247
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1248
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1249
    :type input_conf: LayerOutput | List of LayerOutput.
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1271
    input_loc_num = len(input_loc)
1272 1273 1274 1275 1276 1277

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1278 1279
    input_conf_num = len(input_conf)

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1308 1309
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1310 1311 1312 1313 1314
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1315

1316
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1317
    :type name: basestring
R
ranqiu 已提交
1318
    :param input: The input of this layer.
G
gaoyuan 已提交
1319 1320 1321 1322 1323
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1324
    assert input.num_filters is not None
G
gaoyuan 已提交
1325 1326
    Layer(
        name=name,
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1340 1341
    return LayerOutput(
        name,
1342
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1343 1344 1345 1346 1347
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1348 1349 1350 1351
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1352 1353 1354 1355
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1356
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1357
                  stride=-1,
Z
zhangjinchao01 已提交
1358 1359 1360 1361
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1362 1363
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1364 1365 1366
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1367
    operation. Note that for sequence with sub-sequence, the default value
1368 1369
    of stride is -1.

Z
zhangjinchao01 已提交
1370 1371 1372 1373 1374 1375
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1376
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1377

L
Luo Tao 已提交
1378 1379
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1380
    :type agg_level: AggregateLevel
1381
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1382
    :type name: basestring
R
ranqiu 已提交
1383
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1384 1385 1386
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1387
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1388
    :param stride: The step size between successive pooling regions.
1389
    :type stride: Int
1390 1391 1392 1393
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1394
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1395
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1396
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1397
    :return: LayerOutput object.
Y
Yu Yang 已提交
1398
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1399 1400
    """
    extra_dict = dict()
1401
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1402 1403
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1404 1405 1406 1407
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1408 1409
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1410 1411 1412
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1413 1414 1415 1416 1417 1418
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1419
        stride=stride,
Q
qijun 已提交
1420
        **extra_dict)
Z
zhangjinchao01 已提交
1421

Q
qijun 已提交
1422 1423
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1424

Q
qijun 已提交
1425

Z
zhangjinchao01 已提交
1426 1427
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1428
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1429 1430
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1431
@layer_support()
Q
qijun 已提交
1432 1433
def lstmemory(input,
              name=None,
1434
              size=None,
Q
qijun 已提交
1435 1436 1437 1438 1439 1440
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1441 1442 1443 1444 1445 1446 1447 1448
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1449
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1450

L
luotao02 已提交
1451
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1452

L
luotao02 已提交
1453
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1454

L
luotao02 已提交
1455
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1456

L
luotao02 已提交
1457
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1458 1459


C
caoying03 已提交
1460
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1461
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1462 1463 1464 1465
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1466

C
caoying03 已提交
1467
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1468 1469
    to config a simple plain lstm layer.

C
caoying03 已提交
1470 1471 1472 1473
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1474 1475 1476 1477 1478

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1479 1480
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1481
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1482 1483 1484
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1485
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1486 1487 1488 1489 1490
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1491 1492 1493 1494
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1495
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1496
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1497
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1498
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1499
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1500
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1501 1502 1503 1504 1505 1506
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1507
    assert input.size is not None and input.size % 4 == 0
1508

1509 1510 1511 1512 1513
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1514 1515 1516
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1517

Q
qijun 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1528

Q
qijun 已提交
1529 1530 1531 1532 1533
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1534

Z
zhangjinchao01 已提交
1535 1536 1537

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1538
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1539 1540
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1541
@layer_support()
Q
qijun 已提交
1542
def grumemory(input,
1543
              size=None,
Q
qijun 已提交
1544 1545 1546 1547 1548 1549
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1571 1572
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1573 1574 1575 1576 1577

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1578 1579 1580
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1581 1582 1583 1584 1585

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1586
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1587
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1588 1589 1590
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1591

C
caoying03 已提交
1592 1593 1594
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1595 1596 1597 1598 1599 1600 1601 1602

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1603 1604
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1605
    :type input: LayerOutput.
1606 1607
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1608
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1609
    :type reverse: bool
R
ranqiu 已提交
1610
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1611 1612 1613 1614 1615 1616
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1617 1618 1619 1620
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1621
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1622
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1623
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1624
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1625
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1626
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1627 1628 1629 1630
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1631 1632 1633 1634 1635 1636
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1637 1638 1639
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1640

Q
qijun 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1650

Q
qijun 已提交
1651 1652 1653 1654 1655
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1656

Z
zhangjinchao01 已提交
1657 1658 1659

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1660 1661
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1662
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1663
             stride=-1,
Z
zhangjinchao01 已提交
1664 1665 1666 1667
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1668 1669 1670
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1671
    of stride is -1.
1672

L
Luo Tao 已提交
1673 1674 1675 1676 1677 1678
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1679
    :param agg_level: Aggregated level
1680
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1681
    :type name: basestring
R
ranqiu 已提交
1682
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1683
    :type input: LayerOutput
L
Luo Tao 已提交
1684
    :param stride: The step size between successive pooling regions.
1685
    :type stride: Int
Z
zhangjinchao01 已提交
1686 1687
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1688
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1689 1690
    :rtype: LayerOutput
    """
1691 1692 1693 1694 1695 1696
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1697
    if agg_level == AggregateLevel.TO_SEQUENCE:
1698 1699
        assert stride == -1

Z
zhangjinchao01 已提交
1700 1701 1702 1703 1704
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1705
        stride=stride,
Q
qijun 已提交
1706 1707 1708 1709 1710 1711
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1712 1713 1714 1715


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1716 1717
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1718
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1719
              stride=-1,
Z
zhangjinchao01 已提交
1720 1721 1722 1723
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1724 1725 1726
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1727
    of stride is -1.
1728

L
Luo Tao 已提交
1729 1730 1731 1732 1733 1734
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1735
    :param agg_level: aggregation level
1736
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1737
    :type name: basestring
R
ranqiu 已提交
1738
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1739
    :type input: LayerOutput
L
Luo Tao 已提交
1740
    :param stride: The step size between successive pooling regions.
1741
    :type stride: Int
Z
zhangjinchao01 已提交
1742 1743
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1744
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1745 1746
    :rtype: LayerOutput
    """
1747 1748 1749 1750 1751 1752 1753

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1754
    if agg_level == AggregateLevel.TO_SEQUENCE:
1755 1756
        assert stride == -1

Z
zhangjinchao01 已提交
1757 1758 1759 1760 1761
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1762
        stride=stride,
Q
qijun 已提交
1763 1764 1765 1766 1767 1768
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1769 1770 1771


class ExpandLevel(object):
1772 1773 1774 1775 1776
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1777 1778
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1779 1780
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1781 1782
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1783 1784
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1785 1786
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1787 1788
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1789

1790

Z
zhangjinchao01 已提交
1791 1792
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1793 1794
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1795 1796
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1797
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1809
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1810

R
ranqiu 已提交
1811
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1812 1813 1814
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1815
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1816
    :type name: basestring
1817 1818 1819 1820
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1821
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1822 1823 1824 1825
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1826
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1836 1837 1838 1839 1840 1841
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1842 1843


X
xuwei06 已提交
1844
@wrap_name_default()
X
xuwei06 已提交
1845
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1846
@layer_support()
X
xuwei06 已提交
1847 1848 1849
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1850
                 act=None,
X
xuwei06 已提交
1851 1852
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1853
    """
X
xuwei06 已提交
1854
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1855

X
xuwei06 已提交
1856
    If as_row_vector:
X
xuwei06 已提交
1857
    .. math::
X
xuwei06 已提交
1858 1859 1860 1861 1862
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1863 1864 1865 1866 1867

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1868
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1869

R
ranqiu 已提交
1870
    :param input: The input of this layer.
X
xuwei06 已提交
1871 1872 1873
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1874
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1875 1876 1877 1878 1879 1880
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1881
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1882
    :type act: BaseActivation
X
xuwei06 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1893
        active_type=act.name,
X
xuwei06 已提交
1894
        num_filters=num_repeats,
X
xuwei06 已提交
1895
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1896
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1897 1898 1899 1900 1901
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1902
        activation=act,
Q
qijun 已提交
1903 1904
        parents=[input])

X
xuwei06 已提交
1905

1906 1907 1908
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1909
@layer_support(ERROR_CLIPPING, DROPOUT)
1910 1911 1912 1913 1914 1915 1916 1917
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1918
    the dimension of each instance is M, and the input reshape_size is N, then the
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1929
    :param input: The input of this layer.
1930 1931 1932
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1933
    :param name: The name of this layer. It is optional.
1934
    :type name: basestring
R
ranqiu 已提交
1935
    :param act: Activation type. IdentityActivation is the default.
1936 1937 1938
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1939 1940 1941 1942
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1943
    :type bias_attr: ParameterAttribute | None | bool | Any
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1982 1983
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1984 1985
    :param weight: Weight layer.
    :type weight: LayerOutput
1986
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1987 1988 1989
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1990
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1991 1992
    :rtype: LayerOutput
    """
1993
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1994
    assert len(input) == 2
1995 1996 1997 1998 1999 2000 2001
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2002 2003 2004 2005
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2006 2007 2008 2009 2010 2011
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2012 2013


L
liaogang 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2030
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2031

L
liaogang 已提交
2032
    :param   input:        A input layer.
L
liaogang 已提交
2033
    :type    input:        LayerOutput.
L
liaogang 已提交
2034
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2035
    :type    out_size_x:   int | None
L
liaogang 已提交
2036
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2037
    :type    out_size_y:   int | None
L
liaogang 已提交
2038
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2039
    :type    name:         None | basestring
L
liaogang 已提交
2040
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2041 2042 2043 2044 2045 2046 2047
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2048
    assert input.num_filters is not None
L
liaogang 已提交
2049
    num_channels = input.num_filters
Q
qijun 已提交
2050 2051 2052 2053 2054 2055 2056
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2057
                channels=num_channels)),
Q
qijun 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2067

Z
zhangjinchao01 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2087
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2088 2089 2090
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2091
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2092 2093 2094
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2095
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2096 2097
    :rtype: LayerOutput
    """
2098 2099 2100
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2101 2102 2103
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2104
        inputs=[weight.name, input.name],
Q
qijun 已提交
2105 2106 2107
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2108 2109 2110 2111 2112 2113


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2114
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2115 2116

    .. math::
2117
       y  = w x
Z
zhangjinchao01 已提交
2118

2119 2120 2121 2122 2123
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2124 2125 2126 2127 2128 2129 2130

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2131
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2132 2133 2134
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2135
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2136 2137 2138
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2139
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2140 2141
    :rtype: LayerOutput
    """
2142 2143 2144
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2145 2146 2147 2148
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2149 2150 2151
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2152 2153 2154 2155 2156 2157


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2158
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2171
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2172
    :type input: LayerOutput
2173
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2174 2175 2176
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2177
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2178 2179 2180 2181 2182 2183
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2184 2185 2186
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2187 2188


2189 2190
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2191
def rotate_layer(input, height, width, name=None, layer_attr=None):
2192
    """
H
Haonan 已提交
2193 2194
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2195 2196

    .. math::
H
Haonan 已提交
2197
       y(j,i,:) = x(M-i-1,j,:)
2198

H
Haonan 已提交
2199
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2200 2201 2202 2203 2204 2205

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2206 2207
                          height=100,
                          width=100)
2208

R
ranqiu 已提交
2209
    :param input: The input of this layer.
2210 2211 2212
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2213
    :param name: The name of this layer. It is optional.
2214 2215 2216 2217 2218 2219 2220
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2221 2222 2223
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2224
        width=width,
H
Haonan 已提交
2225 2226 2227 2228 2229 2230 2231 2232
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2233 2234


Z
zhangjinchao01 已提交
2235 2236
@wrap_name_default()
@layer_support()
2237
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2238 2239 2240 2241
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2242
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2243 2244 2245 2246 2247
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2248

2249 2250
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2251

L
Luo Tao 已提交
2252 2253 2254 2255 2256 2257
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2258
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2270
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2271 2272
    :rtype: LayerOutput
    """
2273
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2274 2275 2276 2277 2278 2279
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2280
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2281
    else:
2282 2283
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2284 2285 2286 2287 2288 2289
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2290
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2291
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2292

2293

Z
zhangjinchao01 已提交
2294 2295
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2296
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2297
@layer_support()
Q
qijun 已提交
2298 2299
def hsigmoid(input,
             label,
2300
             num_classes=None,
Q
qijun 已提交
2301 2302 2303 2304
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2316
                        label=data_layer)
Z
zhangjinchao01 已提交
2317

R
ranqiu 已提交
2318 2319
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2320 2321 2322
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2323
    :type num_classes: int | None
2324
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2325
    :type name: basestring
2326 2327 2328 2329
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2330
    :type bias_attr: ParameterAttribute | None | bool | Any
2331
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2332
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2333 2334
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2335
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2336 2337 2338 2339
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2340 2341 2342 2343 2344 2345 2346 2347 2348
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2349 2350 2351
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2352 2353 2354 2355 2356
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2357 2358
    ipts_for_layer = []
    parents = []
2359
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2360
        assert isinstance(each_input, LayerOutput)
2361
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2362 2363 2364 2365
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2366
    l = Layer(
Z
zhangjinchao01 已提交
2367 2368 2369 2370 2371
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2372 2373 2374
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2375

2376

Z
zhangjinchao01 已提交
2377 2378 2379 2380 2381
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2391
                   dilation=1,
Q
qijun 已提交
2392 2393 2394 2395 2396 2397 2398
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2399
                   dilation_y=None,
2400 2401
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2402
    """
2403
    Convolution layer for image. Paddle can support both square and non-square
2404
    input currently.
Z
zhangjinchao01 已提交
2405 2406 2407 2408

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2409

2410
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2411
    and non-square input currently.
2412

X
xuwei06 已提交
2413
    The details of convolution transpose layer,
2414 2415 2416
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2417 2418 2419 2420
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2421 2422 2423
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2424
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2425 2426
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2427

L
Luo Tao 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2438
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2439
    :type name: basestring
R
ranqiu 已提交
2440
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2441
    :type input: LayerOutput
2442 2443
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2444
    :type filter_size: int | tuple | list
C
caoying03 已提交
2445 2446 2447
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2448
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2449
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2450
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2451 2452 2453
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2454 2455
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2456
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2457 2458
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2459 2460
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2461
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2462 2463
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2464 2465
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2466
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2467 2468
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2469 2470 2471 2472
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2473
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2483 2484
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2485
    :param layer_type: specify the layer_type, default is None. If trans=True,
2486 2487
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2488
                       "cudnn_conv"
2489
    :type layer_type: String
D
dangqingqing 已提交
2490
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2491 2492 2493 2494 2495
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2496

Z
zhangjinchao01 已提交
2497
    if filter_size_y is None:
2498 2499 2500 2501 2502 2503
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2504
    if stride_y is None:
2505 2506 2507 2508 2509 2510
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2511
    if padding_y is None:
2512 2513 2514 2515 2516 2517
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2518 2519 2520 2521 2522 2523 2524
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2525 2526
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2527
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2528 2529 2530 2531
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2532

2533
    if layer_type:
W
wanghaoshuang 已提交
2534 2535
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2536
        if trans:
2537
            assert layer_type in ["exconvt", "cudnn_convt"]
2538 2539 2540 2541 2542
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2543

X
xuwei06 已提交
2544
    l = Layer(
Z
zhangjinchao01 已提交
2545
        name=name,
Q
qijun 已提交
2546 2547 2548 2549 2550
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2551
                dilation=dilation,
Q
qijun 已提交
2552 2553 2554 2555 2556
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2557
                dilation_y=dilation_y,
Q
qijun 已提交
2558 2559
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2560 2561 2562 2563
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2564
        type=lt,
Q
qijun 已提交
2565 2566 2567 2568 2569 2570 2571 2572
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2573 2574 2575 2576


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2587 2588
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2589 2590 2591 2592 2593 2594 2595
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2624
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2625
    :type padding: int
2626
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2627
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2628 2629
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2630
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2631
    :type input: LayerOutput
2632
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2633
    :type pool_size: int
2634
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2635
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2636 2637
    :param num_channels: number of input channel.
    :type num_channels: int
2638
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2639 2640
                      MaxPooling.
    :type pool_type: BasePoolingType
2641
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2642
    :type stride: int
2643
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2644
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2645 2646
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2647 2648 2649 2650
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2651 2652
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2663 2664 2665 2666
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2667
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2668
        if (
Y
Yu Yang 已提交
2669
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2670
        else pool_type.name
2671 2672 2673 2674
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2675
    l = Layer(
Z
zhangjinchao01 已提交
2676 2677
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2690
                    padding_y=padding_y))
Q
qijun 已提交
2691
        ],
2692
        ceil_mode=ceil_mode,
Q
qijun 已提交
2693 2694 2695 2696 2697 2698 2699
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2700 2701


C
chengduoZH 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2754
    :type padding: int | tuple | list
C
chengduoZH 已提交
2755 2756
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2757
    :param input: The input of this layer.
C
chengduoZH 已提交
2758 2759
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2760
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2761 2762 2763 2764 2765 2766
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2767
    :type stride: int | tuple | list
C
chengduoZH 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2842 2843
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2844 2845 2846 2847 2848 2849
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2850 2851 2852 2853 2854
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2855 2856 2857 2858
    The example usage is:

    ..  code-block:: python

2859 2860 2861
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2862 2863
                        pool_type=MaxPooling())

2864
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2865
    :type name: basestring
R
ranqiu 已提交
2866
    :param input: The input of this layer.
Q
qijun 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2892
    l = Layer(
Q
qijun 已提交
2893 2894
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2895 2896 2897 2898 2899
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2900
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2912 2913 2914 2915
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2916
    l = Layer(
Q
qijun 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2936 2937 2938 2939


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2940 2941 2942 2943 2944 2945
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2946
                      layer_attr=None):
Z
zhangjinchao01 已提交
2947
    """
2948
    Response normalization across feature maps.
D
dangqingqing 已提交
2949 2950
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2951

L
Luo Tao 已提交
2952 2953 2954
    The example usage is:

    ..  code-block:: python
2955

L
Luo Tao 已提交
2956 2957
        norm = img_cmrnorm_layer(input=net, size=5)

2958
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2959 2960
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2961
    :type input: LayerOutput
2962
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2963
    :type size: int
D
dangqingqing 已提交
2964
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2965
    :type scale: float
D
dangqingqing 已提交
2966
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2967 2968 2969 2970 2971
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2972
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2973 2974 2975
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2976
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2977 2978 2979


@wrap_bias_attr_default()
2980 2981
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2982 2983
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2984
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2985 2986 2987
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2988
                     img3D=False,
Q
qijun 已提交
2989 2990 2991 2992
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2993 2994
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2995 2996
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3015 3016 3017
    The example usage is:

    ..  code-block:: python
3018

L
Luo Tao 已提交
3019 3020
        norm = batch_norm_layer(input=net, act=ReluActivation())

3021
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3022 3023 3024 3025
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3036
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3037
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3038
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3048
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3060
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3061 3062 3063 3064 3065
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3066 3067
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3068
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3078
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3079
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3080
    l = Layer(
Z
zhangjinchao01 已提交
3081
        name=name,
C
chengduoZH 已提交
3082
        img3D=img3D,
Q
qijun 已提交
3083 3084
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3085 3086 3087 3088 3089 3090
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3091
        mean_var_names=mean_var_names,
Q
qijun 已提交
3092
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3093

Q
qijun 已提交
3094 3095 3096 3097 3098 3099 3100
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3122
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3123
    :type input: LayerOutput
3124
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3125 3126 3127
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3128
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3129 3130 3131 3132 3133 3134
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3135 3136 3137
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3138 3139


G
guosheng 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3158
    :param input: The input of this layer.
G
guosheng 已提交
3159
    :type input: LayerOutput
3160
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3176 3177 3178
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3179
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3180
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3203 3204 3205
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3206 3207

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3208 3209
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3210 3211
    Please refer to dropout_layer for details.

3212
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3213 3214 3215
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3216 3217
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3218
    :type act: BaseActivation
3219 3220 3221 3222
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3223
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3224 3225
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3226
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3227 3228 3229 3230 3231 3232
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3233
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3234 3235 3236 3237 3238 3239 3240
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3241
    l = Layer(
Q
qijun 已提交
3242 3243 3244
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3245 3246
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3247
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3248

Q
qijun 已提交
3249 3250 3251 3252 3253 3254 3255
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3256 3257 3258 3259


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3260
@layer_support(DROPOUT, ERROR_CLIPPING)
3261
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3262 3263 3264 3265
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3266 3267 3268 3269 3270 3271
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3272
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3273 3274
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3275 3276
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3277 3278 3279
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3280
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3281 3282 3283 3284 3285 3286 3287 3288
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3289
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3290 3291

    def __is_type__(o, tp):
3292
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3314 3315
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3316

Q
qijun 已提交
3317 3318
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3319

3320 3321
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3322

3323
    layer = Layer(
Q
qijun 已提交
3324 3325
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3326 3327
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3328
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3329
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3330

3331
    sz = layer.config.size
Z
zhangjinchao01 已提交
3332

Q
qijun 已提交
3333 3334 3335 3336 3337 3338 3339 3340
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3341 3342
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3343
@wrap_bias_attr_default(has_bias=False)
3344
@layer_support(DROPOUT, ERROR_CLIPPING)
3345 3346 3347 3348
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3349

3350
    Inputs:
X
xuwei06 已提交
3351
      - a = [a1, a2, ..., am]
3352
      - b = [b1, b2, ..., bn]
3353

X
xuwei06 已提交
3354 3355 3356 3357
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3358 3359 3360 3361 3362 3363 3364

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3365
    :param name: The name of this layer. It is optional.
3366 3367 3368 3369 3370
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3371
    :param act: Activation type. IdentityActivation is the default.
3372 3373 3374
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3375 3376 3377 3378
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3379
    :type bias_attr: ParameterAttribute | None | bool | Any
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3401
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3402 3403
def memory(name,
           size,
3404
           memory_name=None,
Q
qijun 已提交
3405 3406 3407 3408
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3429 3430 3431 3432 3433 3434 3435 3436 3437
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3438

3439 3440 3441 3442 3443 3444 3445
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3446 3447 3448
    :type name: basestring
    :param size: size of memory.
    :type size: int
3449 3450 3451
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3452
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3453 3454
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3455
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3456
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3457
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3458 3459 3460 3461
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3462
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3473 3474
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3484 3485

    lout = LayerOutput(
3486
        name=memory_name,
Q
qijun 已提交
3487 3488 3489
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3490 3491 3492 3493
    return lout


@wrap_bias_attr_default()
3494 3495
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3496 3497 3498
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3499 3500
def lstm_step_layer(input,
                    state,
3501
                    size=None,
Q
qijun 已提交
3502 3503 3504 3505 3506 3507
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3508
    """
3509 3510
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3511 3512 3513

    ..  math::

3514
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3515

3516
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3517

3518
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3519

3520
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3521

L
luotao02 已提交
3522
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3523 3524


L
luotao02 已提交
3525
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3526
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3527
    input vectors.
Z
zhangjinchao01 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3538 3539
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3540 3541
    :code:`get_output_layer` to extract this output.

3542
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3543
    :type name: basestring
3544 3545
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3546 3547 3548 3549 3550 3551
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3552
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3553
    :type act: BaseActivation
R
ranqiu 已提交
3554
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3555
    :type gate_act: BaseActivation
R
ranqiu 已提交
3556
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3557
    :type state_act: BaseActivation
3558 3559 3560 3561
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3562
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3563 3564
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3565
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3566 3567
    :rtype: LayerOutput
    """
3568 3569 3570

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3571 3572 3573 3574 3575 3576 3577
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3578
        size=state.size,
Q
qijun 已提交
3579 3580
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3581

Q
qijun 已提交
3582 3583 3584 3585 3586 3587 3588
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3589 3590 3591


@wrap_bias_attr_default()
W
wangyang59 已提交
3592
@wrap_param_attr_default()
Q
qijun 已提交
3593
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3594 3595 3596
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3597 3598 3599 3600 3601 3602 3603
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3604
                   param_attr=None,
Q
qijun 已提交
3605
                   layer_attr=None):
Z
zhangjinchao01 已提交
3606 3607 3608 3609 3610 3611 3612
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3613
    :type act: BaseActivation
3614
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3615 3616
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3617 3618 3619 3620
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3621
    :type bias_attr: ParameterAttribute | None | bool | Any
3622 3623
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3624
    :param layer_attr:
D
dangqingqing 已提交
3625
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3626 3627 3628 3629 3630 3631 3632 3633
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3634 3635 3636 3637
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3638
        # backward model compatibility.
3639
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3640 3641 3642 3643
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3644
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3645
    return LayerOutput(
Q
qijun 已提交
3646 3647
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3648
        parents=[input, output_mem],
Q
qijun 已提交
3649 3650
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3651 3652


Y
Yu Yang 已提交
3653 3654 3655 3656
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3657
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3675
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3676
    :param act:
R
ranqiu 已提交
3677 3678 3679
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3680 3681 3682 3683
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3684
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3685 3686 3687
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3688
    :rtype: LayerOutput
Y
Yu Yang 已提交
3689 3690 3691 3692 3693 3694
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3695
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3696 3697 3698 3699
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3700

Y
Yu Yang 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3738 3739 3740 3741
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3742 3743 3744 3745
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3746

3747
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3748 3749 3750 3751 3752 3753 3754
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3755
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3756 3757 3758 3759 3760 3761 3762
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3763 3764 3765 3766 3767 3768 3769
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3770

Q
qijun 已提交
3771 3772 3773 3774 3775
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3776 3777 3778 3779 3780 3781 3782


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3783 3784 3785 3786 3787 3788 3789
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3790
    """
3791 3792
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3793

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3809
    :param input: The input of this layer.
3810
    :type input: LayerOutput
R
ranqiu 已提交
3811
    :param act: Activation type. TanhActivation is the default.
3812
    :type act: BaseActivation
3813 3814 3815 3816
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3817
    :type bias_attr: ParameterAttribute | None | bool | Any
3818 3819
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3820
    :param name: The name of this layer. It is optional.
3821 3822 3823
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3824
    :return: LayerOutput object.
3825
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3826
    """
Q
qijun 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3842 3843 3844 3845 3846 3847


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3848 3849
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3850
    """
3851

Z
zhangjinchao01 已提交
3852 3853 3854
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3855
        assert input.size is not None
Z
zhangjinchao01 已提交
3856
        if size is not None:
3857
            assert input.size == size
Z
zhangjinchao01 已提交
3858 3859


3860
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3861
    """
3862
    DEPRECATED.
Z
zhangjinchao01 已提交
3863 3864 3865 3866 3867 3868 3869 3870
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3871
    return input
Z
zhangjinchao01 已提交
3872 3873 3874


@wrap_name_default("recurrent_group")
3875
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3876
    """
C
caoying03 已提交
3877 3878 3879 3880 3881
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3924
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3925

3926 3927
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3928
    :type reverse: bool
3929

3930 3931
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3932 3933 3934 3935 3936 3937 3938

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3939
    :type targetInlink: LayerOutput | SubsequenceInput
3940

D
dangqingqing 已提交
3941
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3942 3943 3944 3945
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3946
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3947
        input = [input]
3948
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3949 3950

    def is_in_links(x):
3951
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3952 3953 3954 3955

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3956
        name=name,
3957 3958
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3959 3960
    in_args = []
    for each_input in input:
3961
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3962
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3963
            mem = memory(
3964
                name=None,
Q
qijun 已提交
3965 3966
                size=each_input.input.size,
                boot_layer=each_input.input)
3967
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3968
            in_args.append(mem)
3969 3970
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3971

Z
zhangjinchao01 已提交
3972 3973 3974 3975 3976
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3977 3978 3979 3980 3981 3982
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3983 3984 3985

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3986
    for layer_out in layer_outs:
3987 3988
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3989 3990
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3991 3992 3993 3994 3995
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3996

Z
zhangjinchao01 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4025 4026

    def before_real_step(self):
Q
qijun 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4036 4037 4038
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4039
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4057
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4058
    :type input: LayerOutput
4059
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4060 4061 4062
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4063
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4064 4065 4066 4067
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4078

4079

H
Haonan 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4092
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4116

Z
zhangjinchao01 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4133
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4134
    :type name: basestring
R
ranqiu 已提交
4135
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4136 4137 4138 4139 4140
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4141
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4142 4143
    :rtype: LayerOutput
    """
Q
qijun 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4155 4156 4157


@wrap_name_default()
Q
qijun 已提交
4158 4159 4160 4161 4162 4163 4164
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4165
                num_results_per_sample=None):
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4177
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4178 4179 4180 4181
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4182 4183 4184 4185 4186
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4187 4188
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4189 4190
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4191 4192
                               bos_id=0,
                               eos_id=1,
4193
                               beam_size=5)
4194 4195 4196 4197 4198 4199 4200 4201 4202

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4203
                 step, and it is applied to sequences with arbitrary length by
4204 4205 4206 4207 4208
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4209 4210
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4211
                  In beam_search, none of the input's type should be LayerOutput.
4212
    :type input: list
4213 4214 4215
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4216
                   symbol is essential, since it is used to initialize the RNN
4217 4218 4219 4220 4221 4222 4223 4224
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4225 4226
    :param max_length: Max generated sequence length.
    :type max_length: int
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4237 4238
    :return: The generated word index.
    :rtype: LayerOutput
4239 4240
    """

Z
zhangjinchao01 已提交
4241 4242 4243 4244 4245
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4246
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4247 4248 4249 4250 4251 4252
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4253 4254 4255
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4256
        if isinstance(each_input, BaseGeneratedInput):
4257 4258
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4259
            generated_input_index = i
4260

Z
zhangjinchao01 已提交
4261 4262 4263
        else:
            real_input.append(each_input)

4264
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4265 4266 4267 4268 4269 4270 4271 4272

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4273 4274 4275 4276 4277 4278
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4279 4280 4281 4282 4283 4284

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4285
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4286 4287
        return predict

4288 4289
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4290

Q
qijun 已提交
4291

4292 4293
def __cost_input__(input, label, weight=None):
    """
4294
    inputs and parents for cost layers.
4295
    """
C
caoying03 已提交
4296 4297 4298 4299 4300 4301
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4302
    if weight is not None:
4303
        assert weight.size == 1
4304 4305 4306
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4307

Z
zhangjinchao01 已提交
4308 4309

@wrap_name_default()
L
luotao1 已提交
4310
@layer_support()
4311 4312 4313 4314 4315 4316
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4317
    """
4318
    sum of square error cost:
L
Luo Tao 已提交
4319 4320 4321

    ..  math::

4322
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4323

4324
    :param name: The name of this layer. It is optional.
4325
    :type name: basestring
Z
zhangjinchao01 已提交
4326
    :param input: Network prediction.
4327
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4328
    :param label: Data label.
4329 4330 4331 4332
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4333 4334
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4335 4336
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4337
    :return: LayerOutput object.
4338
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4339
    """
4340 4341
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4342 4343 4344 4345
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4346
        coeff=coeff,
Q
qijun 已提交
4347
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4348
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4349 4350


4351
regression_cost = square_error_cost
L
Luo Tao 已提交
4352 4353


Z
zhangjinchao01 已提交
4354
@wrap_name_default("cost")
4355
@layer_support()
Q
qijun 已提交
4356 4357 4358 4359
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4360
                        evaluator=classification_error_evaluator,
4361 4362
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4363 4364 4365
    """
    classification cost Layer.

4366
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4367 4368 4369 4370 4371
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4372 4373 4374
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4375
    :param evaluator: Evaluator method.
4376 4377
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4378 4379
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4380
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4381 4382 4383 4384 4385
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4386 4387 4388

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4389 4390 4391 4392
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4393
        coeff=coeff,
Q
qijun 已提交
4394
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4405
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4406

4407
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4408 4409 4410 4411 4412
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4413
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4414

4415

Q
qijun 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4425 4426
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4437 4438
       op = conv_operator(img=input1,
                          filter=input2,
4439
                          filter_size=3,
Z
zhangjinchao01 已提交
4440 4441 4442
                          num_filters=64,
                          num_channels=64)

4443 4444 4445 4446
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4447 4448
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4449 4450 4451
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4452
    :type filter_size_y: int
4453 4454
    :param num_filters: channel of output data.
    :type num_filters: int
4455 4456
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4457
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4458
    :type stride: int
Z
zhangjinchao01 已提交
4459
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4460
    :type stride_y: int
Z
zhangjinchao01 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4474

4475 4476
    if num_channels is None:
        num_channels = img.num_filters
4477 4478

    assert isinstance(filter, LayerOutput)
4479
    assert filter.size is not None
4480

4481 4482 4483
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4495

4496
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4497 4498
    return op

Q
qijun 已提交
4499

4500
@wrap_param_attr_default()
Q
qijun 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4511 4512
                    param_attr=None,
                    trans=False):
4513 4514 4515 4516 4517 4518 4519 4520 4521
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4522
       proj = conv_projection(input=input1,
4523 4524 4525 4526
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4527
    :param input: The input of this layer.
4528 4529 4530 4531 4532 4533 4534 4535 4536
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4537 4538
    :param num_channels: channel of input data.
    :type num_channels: int
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4551
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4552
    :type trans: bool
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4583
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4584 4585 4586 4587 4588
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4589 4590 4591
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4604 4605 4606 4607

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4608

D
dangqingqing 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4626

D
dangqingqing 已提交
4627
    For example,
4628

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4650 4651

    The simply usage is:
D
dangqingqing 已提交
4652 4653 4654 4655 4656 4657 4658 4659

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4660
    :param input: The input of this layer.
D
dangqingqing 已提交
4661 4662
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4663
    :type pad_c: list | None
D
dangqingqing 已提交
4664
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4665
    :type pad_h: list | None
D
dangqingqing 已提交
4666
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4667
    :type pad_w: list | None
D
dangqingqing 已提交
4668 4669
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4670
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4713
@wrap_name_default()
L
luotao1 已提交
4714 4715
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4727 4728 4729 4730
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4731 4732 4733 4734 4735

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4736
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4737

4738
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4739
    :type name: basestring
4740 4741
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4742
    :param b: input layer b.
4743
    :type b: LayerOutput
L
luotao1 已提交
4744 4745
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4746
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4747 4748
    :rtype: LayerOutput
    """
4749 4750
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4751 4752 4753
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4754
        inputs=[a.name, b.name],
Q
qijun 已提交
4755
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4756

Q
qijun 已提交
4757 4758
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4759 4760 4761 4762 4763


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4764
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4765
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4766 4767 4768 4769 4770 4771 4772 4773
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4774 4775 4776 4777 4778
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4779
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4780 4781

    In this formular:
4782 4783
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4784 4785
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4786
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4787 4788 4789 4790 4791

    The simple usage is:

    .. code-block:: python

4792
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4793

4794
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4795
    :type name: basestring
4796 4797 4798 4799
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4800
    :param size: the layer dimension.
L
luotao02 已提交
4801
    :type size: int.
R
ranqiu 已提交
4802
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4803 4804
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4805
    :type param_attr: ParameterAttribute
4806 4807 4808 4809
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4810
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4811
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4812
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4813
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4814 4815
    :rtype: LayerOutput
    """
4816
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4817 4818 4819 4820 4821 4822
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4823 4824 4825 4826
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4827 4828 4829 4830 4831 4832


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4833
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4834 4835
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4836
                       select=None,
Q
qijun 已提交
4837 4838
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4839 4840 4841
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4842 4843 4844
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4855
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4856

4857
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4858
    :type name: basestring
R
ranqiu 已提交
4859 4860
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4861 4862
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4863
                   If is None, acts exactly like fc_layer.
4864
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4865 4866
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4867
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4868 4869 4870
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4871 4872 4873 4874
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4875
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4876
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4877
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4878
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4879 4880 4881 4882
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4883
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4884 4885
        param_attr = [param_attr]
    else:
4886
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4887 4888
            assert len(input) == len(param_attr)
        else:
4889
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4890
                logger.fatal(
W
wangmeng28 已提交
4891 4892 4893 4894 4895
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4896 4897
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4898 4899 4900 4901
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4902
    Layer(
Q
qijun 已提交
4903 4904 4905
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4906 4907 4908
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4909
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4910 4911 4912 4913
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4914 4915 4916 4917 4918 4919 4920
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4921 4922 4923


@wrap_name_default()
L
luotao1 已提交
4924 4925
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4936
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4937
    :type input: LayerOutput
4938
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4939
    :type name: basestring
L
luotao1 已提交
4940
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4941
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4943 4944
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4945
    l = Layer(
Z
zhangjinchao01 已提交
4946 4947 4948
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4949 4950 4951
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4952 4953 4954


@wrap_name_default()
L
luotao1 已提交
4955
@layer_support()
Q
qijun 已提交
4956 4957 4958 4959
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4960
                          layer_attr=None):
Z
zhangjinchao01 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4974
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4975
    :type input: LayerOutput
4976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4977 4978 4979 4980 4981
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4982
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4983
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4984
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4985 4986 4987 4988 4989 4990 4991 4992
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4993 4994 4995
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4996 4997 4998


@wrap_name_default()
L
luotao1 已提交
4999
@layer_support()
Q
qijun 已提交
5000
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5001
    """
5002 5003 5004 5005
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5006 5007 5008

    .. math::

5009
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5010

5011 5012 5013 5014 5015
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5016

5017
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5018 5019

    In this formular:
5020 5021 5022 5023 5024 5025
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5026 5027 5028 5029 5030

    The simple usage is:

    .. code-block:: python

5031
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5032 5033
                                       size=elem_dim)

5034 5035 5036 5037
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5038 5039
    :param size: the dimension of this layer.
    :type size: int
5040
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5041
    :type name: basestring
L
luotao1 已提交
5042
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5043
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5044
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5045 5046
    :rtype: LayerOutput
    """
5047 5048 5049 5050
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5051
            size = vectors.size / weights.size
5052 5053
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5054 5055
    Layer(
        name=name,
5056
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5057
        size=size,
5058
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5059 5060 5061
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5062

5063

5064
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5065

5066

Z
zhangjinchao01 已提交
5067
@wrap_name_default()
L
luotao1 已提交
5068
@layer_support()
Z
zhangjinchao01 已提交
5069 5070 5071 5072 5073 5074 5075
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5076
                       num_channels=None,
L
luotao1 已提交
5077 5078
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5079 5080
    """
    Expand feature map to minibatch matrix.
5081
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5082
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5093
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5094 5095
    convolution neural network, and before recurrent neural network.

5096 5097 5098 5099
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5100
       block_expand = block_expand_layer(input=layer,
5101
                                         num_channels=128,
5102 5103 5104 5105 5106
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5107
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5108
    :type input: LayerOutput
5109
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5110
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5123
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5124
    :type name: None | basestring.
L
luotao1 已提交
5125
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5126
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5127
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5128 5129
    :rtype: LayerOutput
    """
5130 5131 5132
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5150 5151


5152 5153
@wrap_name_default()
@layer_support()
5154
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5155 5156 5157 5158 5159
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5160
    So groups should be larger than 1, and the num of channels should be able
5161 5162
    to devided by groups.

X
xuwei06 已提交
5163 5164 5165 5166 5167 5168 5169 5170
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5171
    Please refer to Paper:
5172 5173 5174 5175
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5176

5177 5178 5179 5180 5181 5182 5183 5184
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5185
    :param input: The input of this layer.
5186 5187 5188
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5189
    :type num_channels: int | None
5190 5191
    :param groups: The group number of input layer.
    :type groups: int
5192
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5193
    :type name: None | basestring.
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5214 5215


Z
zhangjinchao01 已提交
5216
@wrap_name_default()
L
luotao1 已提交
5217
@layer_support()
Q
qijun 已提交
5218 5219 5220 5221 5222
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5223
              layer_attr=None):
Z
zhangjinchao01 已提交
5224 5225 5226 5227 5228
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5229 5230
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5231 5232
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5233 5234 5235 5236 5237 5238 5239 5240

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5241
    The example usage is:
Z
zhangjinchao01 已提交
5242 5243 5244 5245 5246 5247 5248 5249

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5250
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5251 5252 5253
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5254
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5255
    :type size: int
5256
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5257
    :type name: basestring | None
Z
zhangjinchao01 已提交
5258 5259
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5260
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5261
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5262
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5263 5264 5265 5266
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5267 5268 5269 5270 5271
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5272
    Layer(
5273 5274 5275 5276
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5277
        inputs=[input.name, label.name],
Q
qijun 已提交
5278
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5279 5280
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5281

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5293
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5294
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5295 5296 5297 5298 5299 5300 5301
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5302 5303 5304
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5305
    icml2006_GravesFGS06.pdf>`_.
5306 5307 5308

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5309 5310 5311
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5312 5313
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5314
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5315
          'linear' activation is expected instead in the 'input' layer.
5316

C
caoying03 已提交
5317
    The example usage is:
5318 5319 5320 5321 5322 5323 5324 5325 5326

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5327
    :param input: The input of this layer.
5328 5329 5330 5331 5332
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5333
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5334
    :type name: basestring | None
5335 5336 5337 5338 5339
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5340
    :type layer_attr: ExtraLayerAttribute | None
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5363
@wrap_name_default()
5364
@wrap_param_attr_default()
L
luotao1 已提交
5365
@layer_support()
Q
qijun 已提交
5366 5367 5368 5369 5370 5371
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5372
              coeff=1.0,
L
luotao1 已提交
5373
              layer_attr=None):
Z
zhangjinchao01 已提交
5374 5375 5376 5377
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5378
    The example usage is:
Z
zhangjinchao01 已提交
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5389
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5390 5391 5392 5393 5394 5395 5396
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5397
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5398
    :type name: None | basestring
5399 5400
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5401
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5402
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5403
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5404 5405 5406 5407 5408
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5409 5410 5411 5412 5413 5414
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5415

Q
qijun 已提交
5416
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5417 5418 5419 5420
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5421 5422 5423 5424
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5425
        coeff=coeff,
Q
qijun 已提交
5426
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5427 5428 5429
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5430 5431 5432 5433
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5434

5435

Z
zhangjinchao01 已提交
5436
@wrap_name_default()
5437
@wrap_param_attr_default()
L
luotao1 已提交
5438
@layer_support()
Q
qijun 已提交
5439 5440 5441 5442 5443
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5444
                       layer_attr=None):
Z
zhangjinchao01 已提交
5445 5446 5447 5448 5449 5450 5451
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5452
    The example usage is:
L
Luo Tao 已提交
5453 5454 5455 5456 5457 5458

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5459 5460 5461 5462 5463 5464 5465 5466
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5467
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5468
    :type name: None | basestring
L
luotao1 已提交
5469
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5470
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5471
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5472 5473 5474 5475 5476 5477
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5478
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5479 5480 5481 5482
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5483 5484 5485 5486
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5487
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5488 5489 5490
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5491 5492 5493 5494
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5495

Q
qijun 已提交
5496

Y
Yu Yang 已提交
5497
@wrap_act_default(act=SigmoidActivation())
5498
@wrap_bias_attr_default(has_bias=True)
5499
@wrap_param_attr_default()
5500 5501
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5502 5503
def nce_layer(input,
              label,
C
caoying03 已提交
5504
              num_classes=None,
Y
Yu Yang 已提交
5505
              act=None,
5506
              param_attr=None,
Q
qijun 已提交
5507 5508 5509 5510 5511 5512
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5513 5514 5515 5516 5517 5518 5519 5520 5521
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5522 5523
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5524 5525
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5526
    :param name: The name of this layer. It is optional.
5527
    :type name: basestring
R
ranqiu 已提交
5528
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
R
ranqiu 已提交
5529
    :type input: LayerOutput | list | tuple | collections.Sequence
5530 5531 5532 5533 5534
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5535
    :type num_classes: int
R
ranqiu 已提交
5536
    :param act: Activation type. SigmoidActivation is the default.
Y
Yu Yang 已提交
5537
    :type act: BaseActivation
5538 5539
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5540
    :param num_neg_samples: number of negative samples. Default is 10.
5541
    :type num_neg_samples: int
5542 5543 5544
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
R
ranqiu 已提交
5545
    :type neg_distribution: list | tuple | collections.Sequence | None
5546 5547 5548 5549
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
5550
    :type bias_attr: ParameterAttribute | None | bool | Any
5551 5552 5553 5554 5555 5556 5557
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5558 5559 5560 5561 5562 5563 5564 5565
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5566
    assert isinstance(input, collections.Sequence)
5567

5568 5569
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5570 5571
    if num_classes is None:
        num_classes = label.size
5572 5573 5574
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5575
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5576 5577
    if not isinstance(act, BaseActivation):
        raise TypeError()
5578

5579 5580
    ipts_for_layer = []
    parents = []
5581
    for each_input, attr in zip(input, param_attr):
5582
        assert isinstance(each_input, LayerOutput)
5583
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5594
    l = Layer(
5595 5596 5597 5598
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5599
        active_type=act.name,
5600 5601 5602
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5603 5604
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5605 5606 5607 5608 5609
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5610

5611

Z
zhangjinchao01 已提交
5612 5613 5614
"""
following are cost Layers.
"""
5615 5616


Z
zhangjinchao01 已提交
5617
@wrap_name_default()
L
luotao1 已提交
5618
@layer_support()
Q
qijun 已提交
5619 5620 5621 5622 5623 5624 5625
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5626
    """
5627
    A cost Layer for learning to rank using gradient descent. Details can refer
5628 5629
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5630 5631 5632 5633 5634
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5635
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5636

L
luotao02 已提交
5637
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5638

L
luotao02 已提交
5639
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5640 5641 5642 5643 5644 5645 5646 5647

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5648
    The example usage is:
Z
zhangjinchao01 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5665
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5666
    :type name: None | basestring
Z
zhangjinchao01 已提交
5667 5668
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5669 5670
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5671
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5684 5685 5686 5687 5688 5689
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5690

X
xuwei06 已提交
5691
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5692

5693

Z
zhangjinchao01 已提交
5694
@wrap_name_default()
L
luotao1 已提交
5695
@layer_support()
Q
qijun 已提交
5696 5697 5698 5699 5700 5701
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5702 5703 5704
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5705
    The example usage is:
Z
zhangjinchao01 已提交
5706 5707 5708 5709 5710 5711 5712 5713

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5714
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5715 5716 5717 5718
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5719
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5720 5721 5722 5723 5724 5725
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5726 5727 5728
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5729
    :type max_sort_size: int
R
ranqiu 已提交
5730
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5731
    :type name: None | basestring
L
luotao1 已提交
5732 5733
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5734
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5735 5736
    :rtype: LayerOutput
    """
5737 5738 5739
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5740 5741 5742 5743 5744 5745 5746
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5747

Q
qijun 已提交
5748 5749
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5750

5751

Z
zhangjinchao01 已提交
5752
@wrap_name_default()
L
luotao1 已提交
5753
@layer_support()
5754 5755 5756 5757 5758 5759
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5760 5761 5762
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5763 5764
    The example usage is:

Z
zhangjinchao01 已提交
5765 5766
    .. code-block:: python

X
xuwei06 已提交
5767
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5768
                            label=label_layer)
Z
zhangjinchao01 已提交
5769 5770 5771 5772

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5773
    :type input: LayerOutput
R
ranqiu 已提交
5774
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5775 5776 5777 5778
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
5779 5780 5781 5782
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
R
ranqiu 已提交
5783 5784
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5785
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5786
    :return: LayerOutput object.
R
ranqiu 已提交
5787
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5788 5789
    """

5790
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5791 5792 5793
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5794
        inputs=ipts,
Q
qijun 已提交
5795 5796
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5797
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5798

5799

Z
zhangjinchao01 已提交
5800
@wrap_name_default()
L
luotao1 已提交
5801
@layer_support()
Q
qijun 已提交
5802 5803 5804 5805
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5806 5807
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5808 5809
    """
    A loss layer for multi class entropy with selfnorm.
5810
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5811

C
caoying03 已提交
5812 5813
    The example usage is:

Z
zhangjinchao01 已提交
5814 5815
    .. code-block:: python

X
xuwei06 已提交
5816
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5817
                                          label=label_layer)
Z
zhangjinchao01 已提交
5818 5819

    :param input: The first input layer.
R
ranqiu 已提交
5820
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5821
    :param label: The input label.
R
ranqiu 已提交
5822
    :type input: LayerOutput
R
ranqiu 已提交
5823
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5824 5825 5826 5827
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
Z
zhangjinchao01 已提交
5828
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5829 5830 5831
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5832
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5833
    :return: LayerOutput object.
R
ranqiu 已提交
5834
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5835
    """
Q
qijun 已提交
5836 5837 5838 5839 5840 5841 5842
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5843

Q
qijun 已提交
5844 5845 5846 5847 5848
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5849

5850

X
xuwei06 已提交
5851 5852 5853 5854
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
5855
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
5856

C
caoying03 已提交
5857 5858
    The example usage is:

X
xuwei06 已提交
5859 5860
    .. code-block:: python

L
Luo Tao 已提交
5861
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5862

R
ranqiu 已提交
5863
    :param input: The input of this layer.
R
ranqiu 已提交
5864
    :type input: LayerOutput
R
ranqiu 已提交
5865
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5866 5867 5868
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
5869 5870 5871 5872
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5873
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5874 5875 5876 5877 5878
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5879

Q
qijun 已提交
5880
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5881 5882


Z
zhangjinchao01 已提交
5883
@wrap_name_default()
L
luotao1 已提交
5884
@layer_support()
L
Luo Tao 已提交
5885 5886 5887 5888 5889 5890
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5891
    """
5892 5893 5894
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5895 5896 5897 5898 5899
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5900

C
caoying03 已提交
5901 5902
    The example usage is:

Z
zhangjinchao01 已提交
5903 5904
    .. code-block:: python

L
Luo Tao 已提交
5905 5906 5907
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
R
ranqiu 已提交
5908
    :type input: LayerOutput
L
Luo Tao 已提交
5909
    :param label: The input label.
R
ranqiu 已提交
5910
    :type input: LayerOutput
R
ranqiu 已提交
5911
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5912
    :type name: basestring
L
Luo Tao 已提交
5913
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
5914 5915 5916 5917 5918 5919
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
Luo Tao 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5936
@wrap_name_default()
L
luotao1 已提交
5937
@layer_support()
5938 5939 5940 5941 5942
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5943
    """
5944 5945 5946
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5947 5948 5949
    loss is defined as:

    .. math:
5950
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5951
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5952

C
caoying03 已提交
5953 5954
    The example usage is:

Z
zhangjinchao01 已提交
5955 5956
    .. code-block:: python

5957
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5958 5959

    :param input: The first input layer.
R
ranqiu 已提交
5960
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5961
    :param label: The input label.
R
ranqiu 已提交
5962
    :type input: LayerOutput
R
ranqiu 已提交
5963
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5964 5965 5966 5967 5968 5969
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5970
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5971
    :return: LayerOutput object.
R
ranqiu 已提交
5972
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5973
    """
5974 5975 5976
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5977 5978
    Layer(
        name=name,
5979
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5980 5981 5982
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5983 5984
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5985

5986

Z
zhangjinchao01 已提交
5987
@wrap_name_default()
L
luotao1 已提交
5988
@layer_support()
Q
qijun 已提交
5989 5990 5991 5992
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5993
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5994 5995 5996
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5997 5998
    The example usage is:

Z
zhangjinchao01 已提交
5999 6000
    .. code-block:: python

X
xuwei06 已提交
6001
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6002
                                               label=label_layer)
Z
zhangjinchao01 已提交
6003 6004 6005 6006 6007

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6008
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6009 6010 6011
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
Z
zhangjinchao01 已提交
6012
    :type coeff: float
R
ranqiu 已提交
6013 6014
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6015
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6016
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6017 6018 6019
    :rtype: LayerOutput
    """

6020 6021
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6022 6023 6024 6025
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6038 6039


C
caoying03 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6062 6063
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6064
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6065
    """
C
caoying03 已提交
6066 6067 6068
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6069

C
caoying03 已提交
6070 6071 6072 6073 6074
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6075

C
caoying03 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6094
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6115
    :param input: Input beams for this layer.
C
caoying03 已提交
6116
    :type input: BeamInput
R
ranqiu 已提交
6117
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6144 6145 6146
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6147 6148
@wrap_name_default()
@layer_support()
6149
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6150 6151
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6152
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6153 6154 6155 6156 6157 6158 6159 6160 6161

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6162
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6163

R
ranqiu 已提交
6164 6165 6166
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6167

C
caoying03 已提交
6168 6169
    The example usage is:

D
dangqingqing 已提交
6170 6171
    .. code-block:: python

6172 6173
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6174 6175 6176 6177 6178

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6179
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6180
    :type name: basestring
6181 6182
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
R
ranqiu 已提交
6183 6184
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6197
        coeff=coeff,
D
dangqingqing 已提交
6198 6199 6200
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6201 6202 6203 6204 6205


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6206 6207 6208
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6209
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6210 6211
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6212 6213 6214 6215 6216 6217 6218 6219

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6220 6221
    The example usage is:

W
wwhu 已提交
6222 6223 6224 6225 6226 6227
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6228
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6229
    :type name: basestring
R
ranqiu 已提交
6230 6231
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6255 6256


6257 6258 6259 6260
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6261 6262 6263 6264 6265 6266
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6267
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6268
    :type name: basestring
R
ranqiu 已提交
6269
    :param input: The input of this layer.
R
ranqiu 已提交
6270 6271 6272 6273 6274
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6275 6276 6277 6278 6279 6280 6281
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6282 6283


D
dangqingqing 已提交
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6297
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6298 6299 6300 6301 6302 6303 6304
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6305
    efficient manner to improve unidirectional RNNs.
6306

R
ranqiu 已提交
6307
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6308 6309 6310 6311
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6312

D
dangqingqing 已提交
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6328
    :param input: The input of this layer.
D
dangqingqing 已提交
6329 6330 6331 6332
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6333
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6334
    :type act: BaseActivation
R
ranqiu 已提交
6335 6336
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6337
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6338 6339
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6340
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6356 6357


6358 6359 6360 6361 6362 6363 6364 6365 6366
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6367
    The Parametric Relu activation that actives outputs with a learnable weight.
6368 6369 6370 6371 6372 6373 6374 6375 6376

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6377 6378 6379 6380 6381 6382
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6383
    :param name: The name of this layer. It is optional.
6384
    :type name: basestring
R
ranqiu 已提交
6385
    :param input: The input of this layer.
6386
    :type input: LayerOutput
R
ranqiu 已提交
6387
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6388 6389

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6390 6391
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6392 6393

    :type partial_sum: int
6394
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6395 6396 6397
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6398
    :type layer_attr: ExtraLayerAttribute | None
6399 6400 6401 6402
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6403
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6404
    assert isinstance(param_attr, ParameterAttribute)
6405 6406 6407

    l = Layer(
        name=name,
C
caoying03 已提交
6408
        type=LayerType.PRELU,
C
caoying03 已提交
6409
        inputs=Input(input.name, **param_attr.attr),
6410 6411 6412 6413 6414 6415 6416
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6417 6418


6419
@wrap_name_default()
C
caoying03 已提交
6420
@layer_support(ERROR_CLIPPING, DROPOUT)
6421 6422 6423 6424 6425 6426 6427
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6428 6429
                     gate_bias_attr=True,
                     inproj_attr=None,
6430 6431 6432 6433 6434 6435 6436
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6437
    product between :match:`X'` and :math:`\sigma` is finally returned.
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6451
    :param input: The input of this layer.
6452
    :type input: LayerOutput
R
ranqiu 已提交
6453
    :param size: The dimemsion of this layer's output.
6454
    :type size: int
R
ranqiu 已提交
6455
    :param act: Activation type of the projection. LinearActivation is the default.
6456
    :type act: BaseActivation
6457
    :param name: The name of this layer. It is optional.
6458
    :type name: basestring
R
ranqiu 已提交
6459 6460
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6461
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
    :param gate_bias_attr: The bias attribute of the gate. If the parameter is set to
                           False or something not type of ParameterAttribute, no bias is
                           defined. If the parameter is set to True, the bias is initialized
                           to zero.
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6472
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
    :param inproj_bias_attr: The bias attribute of the projection. If the parameter is set to
                             False or something not type of ParameterAttribute, no bias is
                             defined. If the parameter is set to True, the bias is initialized
                             to zero.
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6483
    :type layer_attr: ExtraLayerAttribute | None
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6496
        layer_attr=inproj_attr,
6497 6498 6499 6500 6501 6502 6503 6504 6505
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6506
        param_attr=gate_param_attr,
6507 6508 6509 6510 6511
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6512 6513


6514
@layer_support()
6515
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6516 6517
def switch_order_layer(input,
                       name=None,
6518
                       reshape_axis=None,
W
wanghaoshuang 已提交
6519 6520
                       act=None,
                       layer_attr=None):
6521
    """
6522
    This layer switch dimension order of image input.
6523 6524
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6525 6526 6527 6528

    The example usage is:

    .. code-block:: python
6529 6530
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6531
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6532

R
ranqiu 已提交
6533
    :param input: The input of this layer.
6534
    :type input: LayerOutput
6535
    :param name: The name of this layer. It is optional.
6536
    :type name: basestring
R
ranqiu 已提交
6537 6538
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6539 6540 6541
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6542
    assert isinstance(input, LayerOutput)
6543 6544 6545 6546 6547
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6548 6549
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6550
        inputs=input.name,
6551 6552
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6553
        active_type=act.name,
6554 6555 6556
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6557
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6558
        activation=act,
6559 6560
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6561 6562


6563 6564
@wrap_name_default()
@layer_support()
6565
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6566
    """
R
ranqiu 已提交
6567 6568 6569
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6570

6571 6572 6573
    The example usage is:

    .. code-block:: python
W
whs 已提交
6574
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6575

R
ranqiu 已提交
6576 6577
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6578 6579
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6580
    :type offset: Sequence
R
ranqiu 已提交
6581
    :param axis: The start axis to be cropped. For image input layer:
6582 6583 6584 6585
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6586 6587
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6588
    :type shape: Sequence | None
6589
    :param name: The name of this layer. It is optional.
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6611 6612


C
caoying03 已提交
6613 6614
@wrap_name_default()
@layer_support()
6615
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6616
    """
6617
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6618
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6619

C
caoying03 已提交
6620 6621 6622
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6623 6624 6625 6626

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6627

R
ranqiu 已提交
6628
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6629

C
caoying03 已提交
6630

R
ranqiu 已提交
6631
    :param input: The input of this layer. It is a nested sequence.
6632
    :type input: LayerOutput
R
ranqiu 已提交
6633
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6634
    :type input: LayerOutput
6635
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6636 6637 6638 6639
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6640

6641 6642 6643 6644 6645 6646 6647
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6648
    l = Layer(
6649 6650
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6651 6652 6653 6654 6655 6656 6657
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6658 6659


G
guosheng 已提交
6660
@wrap_name_default("clip")
6661
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6671
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6672

6673
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6674
    :type name: basestring
R
ranqiu 已提交
6675
    :param input: The input of this layer.
G
guosheng 已提交
6676
    :type input: LayerOutput.
6677
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6678
    :type min: float
6679
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6680
    :type max: float
6681 6682
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6683 6684 6685 6686 6687
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6688 6689
        min=min,
        max=max)
G
guosheng 已提交
6690 6691
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6692 6693


6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6718
    :param name: The name of this layer. It is optional.
6719
    :type name: basestring
R
ranqiu 已提交
6720
    :param input: The input of this layer, which should be a sequence.
6721
    :type input: LayerOutput
R
ranqiu 已提交
6722
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6723
    :type starts: LayerOutput | None
R
ranqiu 已提交
6724
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6725
    :type ends: LayerOutput | None
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6757 6758


6759 6760
@wrap_name_default()
@layer_support()
6761
def kmax_seq_score_layer(input, name=None, beam_size=1):
6762
    """
R
ranqiu 已提交
6763
    This layer accepts one input which is scores over a sequence or a nested
6764 6765 6766 6767
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6768
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6769 6770


6771
    :param name: The name of this layer. It is optional.
6772
    :type name: basestring
R
ranqiu 已提交
6773 6774
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6775
    :type input: LayerOutput
R
ranqiu 已提交
6776 6777
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6778 6779 6780
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6781
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6782
                                            "accepts only one input.")
6783
    assert input.size == 1, (
6784
        "input of kmax_seq_score_layer is a score "
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6795 6796


6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6823
        conv = img_conv3d_layer(input=data, filter_size=1,
6824 6825 6826 6827 6828
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6829
    :param name: The name of this layer. It is optional.
6830
    :type name: basestring
R
ranqiu 已提交
6831
    :param input: The input of this layer.
6832
    :type input: LayerOutput
R
ranqiu 已提交
6833 6834
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
6835
    :type filter_size: int | tuple | list
R
ranqiu 已提交
6836 6837
    :param num_filters: The number of filters in each group.
    :type num_filters: int
R
ranqiu 已提交
6838
    :param act: Activation type. ReluActivation is the default.
6839
    :type act: BaseActivation
R
ranqiu 已提交
6840
    :param groups: The number of the filter groups.
6841
    :type groups: int
R
ranqiu 已提交
6842 6843
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
6844
    :type stride: int | tuple | list
R
ranqiu 已提交
6845 6846
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
6847
    :type padding: int | tuple | list
R
ranqiu 已提交
6848
    :param bias_attr: The bias attribute. If the parameter is set to
R
ranqiu 已提交
6849 6850 6851
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
6852
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
6853 6854 6855
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None,  its actual value will be automatically set to
                         the channels number of the input .
6856
    :type num_channels: int
R
ranqiu 已提交
6857 6858
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
6859
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6860
    :param shared_biases: Whether biases will be shared between filters or not.
6861
    :type shared_biases: bool
R
ranqiu 已提交
6862 6863
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
6864
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
6865
    :param trans: True if it is a convTransLayer, False if it is a convLayer
6866
    :type trans: bool
R
ranqiu 已提交
6867 6868 6869 6870
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
6871 6872 6873 6874 6875 6876 6877
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6878 6879 6880 6881 6882 6883
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6884

C
chengduoZH 已提交
6885 6886 6887 6888 6889 6890
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6891

C
chengduoZH 已提交
6892 6893 6894 6895 6896 6897
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6944 6945


G
guosheng 已提交
6946 6947 6948 6949 6950
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6951
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
6952
    the input matrix. For each element, the layer first re-scales it and then
6953 6954
    adds a bias to it.

X
xuwei06 已提交
6955
    This layer is very like the SlopeInterceptLayer, except the scale and
6956 6957
    bias are trainable.

G
guosheng 已提交
6958 6959 6960 6961 6962 6963 6964 6965
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6966
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6967
    :type name: basestring
R
ranqiu 已提交
6968 6969
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
6970 6971
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
6972
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6973
    :param bias_attr: The bias attribute. If the parameter is set to
6974 6975 6976
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
6977
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6988 6989 6990 6991 6992 6993 6994 6995 6996


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6997
    :param input: The input of this layer.
6998 6999 7000
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7001
    :param size: The resized output dimension of this layer.
7002 7003 7004 7005 7006 7007
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7027 7028
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7029
    :type offsets: LayerOutput
R
ranqiu 已提交
7030
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7031
    :type sizes: LayerOutput
R
ranqiu 已提交
7032
    :param act: Activation type, LinearActivation is the default.
Y
yangyaming 已提交
7033
    :type act: BaseActivation.
R
ranqiu 已提交
7034
    :param bias_attr: The bias attribute. If the parameter is set to
Y
yangyaming 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)