conv_mkldnn_op.cc 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

72
template <typename T, typename K>
73
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
78 79 80 81 82 83 84 85
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
      ComputeINT8(ctx);
    }
  }
86

87
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
88 89
    const bool is_test = ctx.Attr<bool>("is_test");

90 91
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
92 93 94 95
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
96
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
97 98
    auto* output = ctx.Output<Tensor>("Output");

99 100 101 102 103 104
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
105
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
106
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
107 108
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
109 110 111 112 113 114 115
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
116 117 118 119

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
120
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
121
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
122 123
    bool fuse_brelu = false;
    float fuse_brelu_threshold = 6.0;
124
    int groups = ctx.Attr<int>("groups");
125
    bool is_conv3d = strides.size() == 3U;
126 127 128 129
    if (!is_conv3d) {
      fuse_brelu = ctx.Attr<bool>("fuse_brelu");
      fuse_brelu_threshold = ctx.Attr<float>("fuse_brelu_threshold");
    }
130
    // TODO(tpatejko): add support for dilation
131
    PADDLE_ENFORCE(
132 133 134 135
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
136 137 138 139 140 141 142 143
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
144
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
145
    GetWeightsTz(weights_tz, g, is_conv3d);
146 147
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

148
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
149
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
150 151
        src_tz, weights_tz, fuse_relu, fuse_brelu, strides, paddings, dilations,
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
152 153 154

    std::vector<primitive> pipeline;

155 156 157 158 159 160 161 162
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
163 164 165 166 167

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
168 169 170 171
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

172
    weights_format = mkldnn::memory::format::any;
173 174 175 176 177 178
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
179 180
    }

181
    auto src_md = platform::MKLDNNMemDesc(
182
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
183
    auto weights_md = platform::MKLDNNMemDesc(
184
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
185 186
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
187
    auto dst_md = platform::MKLDNNMemDesc(
188
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
189

190 191
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

192
    // create a conv primitive descriptor and save it for usage in backward
193
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
194 195
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
196 197 198 199
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
200
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
201
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
202 203
          fuse_relu, fuse_residual_conn, fuse_brelu, fuse_brelu_threshold,
          fwd_prop_kind);
204
    } else {
205 206
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
207 208
          mkldnn_engine, fuse_relu, fuse_residual_conn, fuse_brelu,
          fuse_brelu_threshold, fwd_prop_kind);
209
    }
210

211
    // create mkldnn memory from input tensors (data/weights)
212 213
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
214
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
215
        user_weights_md, to_void_cast<T>(filter_data));
216

217 218 219 220 221
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
222 223

    std::shared_ptr<mkldnn::memory> dst_memory_p;
224

225
    if (fuse_residual_conn) {
226 227
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
228

229 230 231 232 233 234
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
235

236
      if (residual_param->format() != handler.GetDstFormat()) {
237 238
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
239 240 241 242 243 244 245 246 247
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
248 249 250

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
251 252
      } else {
        output->ShareDataWith(*residual_param);
253 254 255
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
256
      }
257
    } else {
258 259
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
260 261
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
262
    }
263 264

    // create convolution op primitive
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
281 282

    // push primitive to stream and wait until it's executed
283
    pipeline.push_back(*conv_p);
284 285
    stream(stream::kind::eager).submit(pipeline).wait();

286 287
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
288
  }
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
X
xiaolil1 已提交
324
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
X
xiaolil1 已提交
325
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
326
    bool fuse_brelu = ctx.Attr<bool>("fuse_brelu");
327
    float fuse_brelu_threshold = ctx.Attr<float>("fuse_brelu_threshold");
328
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
329
    bool unsigned_output = fuse_relu || fuse_brelu;
X
xiaolil1 已提交
330 331 332 333
    if (fuse_residual_conn) {
      PADDLE_ENFORCE(force_fp32_output != true,
                     "residual fusion does not support force output with fp32");
    }
334 335 336 337 338 339 340 341
    bool is_conv3d = strides.size() == 3U;
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
342

343 344 345 346 347 348 349 350
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
351

352 353 354
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
355 356
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
357

358 359 360 361 362
    auto dst_dt = unsigned_output
                      ? paddle::framework::ToMKLDNNDataType(
                            framework::DataTypeTrait<uint8_t>::DataType)
                      : paddle::framework::ToMKLDNNDataType(
                            framework::DataTypeTrait<int8_t>::DataType);
X
xiaolil1 已提交
363 364 365 366 367 368

    if (force_fp32_output) {
      dst_dt = paddle::framework::ToMKLDNNDataType(
          framework::DataTypeTrait<float>::DataType);
    }

X
xiaolil1 已提交
369 370 371 372 373 374
    if (fuse_residual_conn) {
      auto residual = ctx.Input<Tensor>("ResidualData");
      auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }

375 376 377 378 379
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
380
        input->format(), fuse_relu, fuse_residual_conn, fuse_brelu,
381
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
382

383 384
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
385
    bool need_s8_to_u8 = false;
386 387 388 389 390 391 392 393 394 395 396 397 398 399
    std::shared_ptr<mkldnn::convolution_forward> conv_p = nullptr;
    std::shared_ptr<mkldnn::memory> src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> user_src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> dst_memory_p = nullptr;
    std::vector<primitive> pipeline;
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
        nullptr;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler = nullptr;

    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_preorder_p";
X
xiaolil1 已提交
400 401
    auto residual_reorder_key = key + "@residual_data_mem_preorder_p";

402 403
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
404

405 406 407
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
408
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
409 410 411
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
412 413
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
430 431 432
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? mkldnn::memory::format::oihw
                     : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
458

459
      // create a conv primitive descriptor and save it for usage in backward
460 461 462
      // TODO(lidanqing): We use relu post-op instead of brelu post-op cause
      // mkldnn v0.18 does not support INT8 brelu post-op. Use code in /**/ when
      // v0.20 is enabled
463 464 465 466
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               memory::format::x);
467 468 469

        conv_pd = ConvFwdPrimitiveDesc(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
470 471 472
            mkldnn_engine, fuse_relu || fuse_brelu /*fuse_relu*/,
            fuse_residual_conn, false /*fuse_brelu*/, fuse_brelu_threshold,
            output_shift_scale, sum_scale, is_test);
473

474
      } else {
475 476 477 478 479
        conv_pd = ConvFwdPrimitiveDesc(
            src_md, weights_md, dst_md, strides, paddings, mkldnn_engine,
            fuse_relu || fuse_brelu /*fuse_relu*/, fuse_residual_conn,
            false /*fuse_brelu*/, fuse_brelu_threshold, output_shift_scale,
            sum_scale, is_test);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
      handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                    mkldnn_engine, key));
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());

          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p = platform::SetDstMemory<uint8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          } else {
521
            need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
522 523 524 525 526 527 528 529 530 531
            dst_memory_p = platform::SetDstMemory<int8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          }
        } else {
          output->ShareDataWith(*residual_param);
          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p =
                platform::SetDstMemory<uint8_t>(ctx, output, handler);
          } else {
532
            need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
533 534 535 536
            dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
          }
        }
      } else if (!force_fp32_output) {
537
        if (unsigned_output) {
X
xiaolil1 已提交
538 539 540 541
          dst_memory_p = platform::SetDstMemory<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
        }
542 543 544 545 546 547 548
      } else {
        dst_memory_p = platform::SetDstMemory<float>(ctx, output, handler);
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
549
        const K* bias_data = bias->data<K>();
550
        auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
551
            {bias_tz}, platform::MKLDNNGetDataType<K>(), memory::format::x);
552
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
553
            user_bias_md, to_void_cast<K>(bias_data));
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
599 600 601 602 603 604 605 606 607 608

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        output->ShareDataWith(*residual_param);
        if (residual_dt == mkldnn::memory::data_type::u8) {
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
        } else {
609
          need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
610 611 612 613
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
        }
      } else if (!force_fp32_output) {
614
        if (unsigned_output) {
X
xiaolil1 已提交
615 616
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
X
xiaolil1 已提交
617
        } else {
X
xiaolil1 已提交
618 619
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
X
xiaolil1 已提交
620
        }
621
      } else {
X
xiaolil1 已提交
622 623
        platform::SetDstMemoryHandler<float>(ctx, output, handler,
                                             &dst_memory_p);
624
      }
X
xiaolil1 已提交
625

626 627 628
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
629 630 631 632 633 634 635

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }

636 637 638 639 640
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();

X
xiaolil1 已提交
641 642 643 644
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }

645 646 647
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
648

649
 private:
650
  mkldnn::primitive_attr CreatePostOps(
X
xiaolil1 已提交
651
      bool fuse_relu, bool fuse_residual_conn,
652 653
      const std::vector<float> output_shift_scale, float sum_scale,
      bool fuse_brelu, float fuse_brelu_threshold) const {
654 655 656 657
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
    conv_attr.set_output_scales(mask, output_shift_scale);
658

X
xiaolil1 已提交
659 660 661
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
X
xiaolil1 已提交
662 663 664 665 666 667 668
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
669 670 671 672 673 674 675
    if (fuse_brelu) {
      constexpr float scale = 1.0f;
      constexpr float placeholder = 0.0f;  // beta
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_brelu_threshold, placeholder);
    }
676 677 678 679 680 681 682 683
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
684
                       const mkldnn::engine& engine, const bool fuse_relu,
685 686
                       const bool fuse_residual_conn, const bool fuse_brelu,
                       const float fuse_brelu_threshold,
687
                       const std::vector<float> output_shift_scale,
X
xiaolil1 已提交
688
                       const float sum_scale, bool is_test) const {
689 690 691 692 693 694 695 696 697
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, dst, stride_dims,
        padding_dims, padding_dims, mkldnn::padding_kind::zero);
698 699 700
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale,
                      sum_scale, fuse_brelu, fuse_brelu_threshold);
701 702 703 704 705 706 707 708 709 710 711 712 713

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
714
                       const mkldnn::engine& engine, const bool fuse_relu,
715 716
                       const bool fuse_residual_conn, const bool fuse_brelu,
                       const float fuse_brelu_threshold,
717
                       const std::vector<float> output_shift_scale,
X
xiaolil1 已提交
718
                       const float sum_scale, bool is_test) const {
719 720 721 722 723 724 725 726 727 728
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

729 730 731
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale,
                      sum_scale, fuse_brelu, fuse_brelu_threshold);
732 733 734 735 736 737 738

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
739 740 741
};

template <typename T>
742
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
743 744 745 746 747
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

748 749
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
750 751 752 753 754 755 756 757 758
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

759 760 761 762 763 764 765 766 767 768
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

769 770 771 772
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

773 774 775 776
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
777 778
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
779

780
    bool is_conv3d = strides.size() == 3U;
781 782 783 784 785 786 787 788 789
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
790
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
791
    GetWeightsTz(weights_tz, g, is_conv3d);
792 793
    std::vector<int> dst_tz =
        paddle::framework::vectorize2int(output_grad->dims());
794 795 796 797 798
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_brelu = false;
    if (!is_conv3d) {
      fuse_brelu = ctx.Attr<bool>("fuse_brelu");
    }
799 800
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
801
        GetWeightsFormat(filter->format(), g, is_conv3d);
802

803
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
804
    // as well as attributes of primitive to be created
805
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
806
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
807 808
        src_tz, weights_tz, fuse_relu, fuse_brelu, strides, paddings, dilations,
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
809 810

    const std::string key_conv_pd = key + "@conv_pd";
811
    std::vector<primitive> pipeline;
812

813 814
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
815
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
816
    auto user_weights_md = platform::MKLDNNMemDesc(
817
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
818 819
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
820 821 822 823 824

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
825 826 827 828
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

829 830 831 832 833 834 835
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
836 837
    }

838
    auto src_md = platform::MKLDNNMemDesc(
839
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
840
    auto diff_src_md = platform::MKLDNNMemDesc(
841
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
842
    auto weights_md = platform::MKLDNNMemDesc(
843
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
844
    auto diff_weights_md = platform::MKLDNNMemDesc(
845
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
846
    auto diff_dst_md = platform::MKLDNNMemDesc(
847
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
848

849
    // Retrieve conv_pd from device context
850 851 852
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
853 854 855
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
872 873 874
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
875 876 877 878 879 880 881 882 883

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

884 885
    // create backward conv primitive for weights
    if (filter_grad) {
886 887
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
888

889 890 891 892
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

893
      const size_t size = handler.GetDiffWeightsMemorySize();
894
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
895

896 897 898 899 900 901 902 903 904
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
905

906 907
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
908 909 910
    }

    if (input_grad) {
911 912 913 914 915 916 917
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

918
      const size_t size = handler.GetDiffSourceMemorySize();
919
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
920

921 922 923 924 925 926 927
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
928

929 930
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
931
    }
932
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
933
  }
934 935 936 937 938 939 940
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
941 942 943
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
944 945 946 947
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
948
                                    ops::kConvMKLDNNINT8,
949 950 951 952
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
953
                                    ops::kConvMKLDNNINT8,
954
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
955 956 957 958 959

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
960 961 962 963

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
964
                                    ops::ConvMKLDNNOpKernel<float, float>);
965 966 967 968 969

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);