engine.h 28.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
W
wanghuancoder 已提交
27

28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
N
nhzlx 已提交
30
#include "paddle/fluid/framework/tensor.h"
31
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
32
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
33 34
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
35
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
41 42 43 44 45

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
46 47 48 49
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

50 51 52 53 54 55 56 57 58 59 60
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
61 62
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
63 64 65 66 67 68 69 70 71 72
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
73 74
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
75
                            bool with_dynamic_shape = false) {
76 77
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
78
                    platform::errors::InvalidArgument(
79
                        "TensorRT's tensor input requires at least 1 "
80
                        "dimensions, but input %s has %d dims.",
81 82
                        input,
                        shape.size()));
W
wenbin 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
97 98
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
99 100 101 102
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
103 104
            input,
            ShapeStr(shape)));
105
      }
106
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
107 108 109 110 111
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
112 113
            input,
            ShapeStr(shape)));
W
wenbin 已提交
114 115
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
116
    } else if (shape.size() == 3UL) {
117 118 119 120
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
121 122
            input,
            ShapeStr(shape)));
123
      }
124
      return nvinfer1::Dims2(shape[1], shape[2]);
125 126 127 128 129
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
130 131
            input,
            ShapeStr(shape)));
132 133 134 135 136
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
137
    }
138
    // static shape doesn't support 1D op so far.
139 140
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
141 142 143
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
144 145
                          input,
                          ShapeStr(shape)));
146 147 148 149 150 151 152

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
153 154
  } else {
    if (shape.size() == 4UL) {
155
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
156 157 158
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
159 160 161 162 163 164
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
165 166
  }
}
167
}  // namespace
168

N
nhzlx 已提交
169
class TRTInt8Calibrator;
W
wanghuancoder 已提交
170

Y
Yan Chunwei 已提交
171 172 173 174
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
175
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
176
 */
177 178
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
179
  using ShapeMapType = std::map<std::string, std::vector<int>>;
180

Y
Yan Chunwei 已提交
181 182 183 184
 public:
  // Weight is model parameter.
  class Weight {
   public:
185
    Weight() = default;
186
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
187 188 189 190
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
191
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
192

193 194 195 196 197 198 199 200
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

201 202
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
203 204 205 206
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
207
  TensorRTEngine(
208 209
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
210
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
211 212
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
213 214 215
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
216
      bool disable_trt_plugin_fp16 = false,
217
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
218
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
219 220
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
221
        precision_(precision),
N
nhzlx 已提交
222
        calibrator_(calibrator),
N
nhzlx 已提交
223
        device_id_(device_id),
224 225 226
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
227
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
228
        model_precision_(model_precision),
229 230 231 232
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
233 234
          min_input_shape_.size(),
          max_input_shape_.size(),
235 236 237
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
238 239
              min_input_shape_.size(),
              max_input_shape_.size()));
240
      PADDLE_ENFORCE_EQ(
241 242
          min_input_shape_.size(),
          optim_input_shape_.size(),
243 244 245
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
246 247
              min_input_shape_.size(),
              optim_input_shape_.size()));
248 249 250 251 252 253 254
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
255
    dy::initLibNvInferPlugins(&logger, "");
256
  }
Y
Yan Chunwei 已提交
257

258 259 260 261 262 263 264 265 266
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
267

268
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
269 270 271 272 273
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
274 275
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
276
                     const std::string& name);
L
Luo Tao 已提交
277 278
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
279
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
280

L
Luo Tao 已提交
281 282 283
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
284
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
285 286

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
287 288 289 290 291 292 293 294
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
295 296 297
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
298
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
W
wenbin 已提交
299 300 301 302 303 304 305 306
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
          infer_context_[tid]->setOptimizationProfile(cur_profile_num_);
        }
        profile_index_[tid] = cur_profile_num_;
        ++cur_profile_num_;
      }
307 308 309
    }
    return infer_context_[tid].get();
  }
W
wenbin 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
      const std::thread::id tid = std::this_thread::get_id();
      return profile_index_[tid];
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

327 328 329 330 331 332 333 334 335 336
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
337 338

  nvinfer1::IHostMemory* Serialize() {
339 340 341 342
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
343
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
344
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
345 346 347 348 349 350
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
351 352 353 354
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
355
    freshDeviceId();
N
nhzlx 已提交
356
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

380 381
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
382

383 384 385 386 387 388 389 390
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
391

W
wenbin 已提交
392
    binding_num_ = infer_engine_->getNbBindings();
393
    GetEngineInfo();
N
nhzlx 已提交
394 395
  }

396 397
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
398 399 400 401 402 403 404

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
405
  int GetDeviceId() { return device_id_; }
406

407
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
408 409
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
410 411 412 413 414

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

415 416 417 418
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

419 420 421
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
422

423 424 425 426 427 428 429 430
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
                      const framework::Tensor& weight_tensor);

431 432 433 434 435 436 437 438
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
439 440 441 442 443 444 445
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
446

447 448 449 450 451 452
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
453
    std::string splitter = "__";
454 455 456 457 458 459 460 461
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
462 463 464
    suffix_counter += 1;
  }

465
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
466 467
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
468
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
469 470 471
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
472 473 474 475 476 477
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
478 479 480 481 482 483
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

484 485 486 487 488 489 490
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
491 492
  void Execute(int batch_size,
               std::vector<void*>* buffers,
493 494
               cudaStream_t stream = nullptr);

495
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
496 497 498 499

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
500 501 502 503 504 505 506 507 508

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
509 510
          min_input_shape_.count(name),
          true,
511 512
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
513 514
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
515 516 517 518
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
519 520 521 522
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

554
  bool use_varseqlen() { return use_varseqlen_; }
555
  bool with_ernie() { return with_ernie_; }
556
  bool with_interleaved() { return with_interleaved_; }
557 558 559 560 561 562
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
563
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
564
  bool with_dynamic_shape() { return with_dynamic_shape_; }
565
  AnalysisConfig::Precision precision() { return precision_; }
566

567
#if IS_TRT_VERSION_GE(6000)
568
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
569 570
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
571
      plugin::DynamicPluginTensorRT* plugin) {
572 573 574 575 576
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
597 598
          attrs_.count(attr_name),
          0,
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
617 618
        attrs_.count(attr_name),
        0,
619 620 621 622 623 624 625 626
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
627 628
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
629 630 631
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
632 633
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
650 651
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
652 653 654 655 656
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
657
  void SetProfileNum(int num) { max_profile_num_ = num; }
658 659 660 661

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
662

Y
Yan Chunwei 已提交
663
 private:
N
nhzlx 已提交
664 665 666 667 668
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
669 670
  // the max batch size
  int max_batch_;
671 672
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
673 674
  // the max memory size the engine uses
  int max_workspace_;
675

Z
Zhaolong Xing 已提交
676
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
677 678 679
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
680

N
nhzlx 已提交
681
  int device_id_;
W
wenbin 已提交
682 683 684
  int max_profile_num_{1};
  int cur_profile_num_{0};
  std::unordered_map<std::thread::id, int> profile_index_;
685 686 687
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
688
  bool disable_trt_plugin_fp16_{false};
689
  phi::DataType model_precision_{phi::DataType::FLOAT32};
690
  bool use_varseqlen_{false};
691 692
  bool use_dla_{false};
  int dla_core_{0};
693
  bool with_ernie_{false};
694
  bool with_interleaved_{false};
695 696
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
697 698 699
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
700 701
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
702

703
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
704
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
705
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
706 707 708 709

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
710 711 712 713 714
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
715 716 717 718 719 720
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
721 722
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
723
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
724
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
725

726
  std::unordered_map<std::string, paddle::any> attrs_;
727 728
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

729 730 731
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
732
  int binding_num_;
733
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
734
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
735
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
736
#endif
737
  std::mutex mutex_;
738
  bool use_inspector_;
Y
Yan Chunwei 已提交
739 740
};  // class TensorRTEngine

741
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
742 743 744 745 746 747 748 749 750
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
751
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
752
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
753

754 755 756 757 758 759 760 761 762 763 764 765
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
766
  TensorRTEngine* Create(
767 768 769
      std::string name,
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
770
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
771 772
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
773 774 775
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
776
      bool disable_trt_plugin_fp16 = false,
777
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
778
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
779 780 781 782 783 784 785 786 787
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
788
                                 model_precision,
789
                                 logger);
790 791 792 793 794 795 796 797 798 799
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
800 801 802 803 804 805 806 807
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

808 809 810 811
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
812 813 814
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle