engine.h 26.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
W
wanghuancoder 已提交
27

N
nhzlx 已提交
28
#include "paddle/fluid/framework/tensor.h"
29
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
30
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
31 32
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
33
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
34
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/platform/enforce.h"
37
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
43 44 45 46
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

47 48 49 50 51 52 53 54 55 56 57
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
58 59
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
60 61 62 63 64 65 66 67 68 69
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
70 71
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
72
                            bool with_dynamic_shape = false) {
73 74
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
75
                    platform::errors::InvalidArgument(
76
                        "TensorRT's tensor input requires at least 1 "
77
                        "dimensions, but input %s has %d dims.",
78 79
                        input,
                        shape.size()));
W
wenbin 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
94 95
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
96 97 98 99
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
100 101
            input,
            ShapeStr(shape)));
102
      }
103
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
104 105 106 107 108
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
109 110
            input,
            ShapeStr(shape)));
W
wenbin 已提交
111 112
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
113
    } else if (shape.size() == 3UL) {
114 115 116 117
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
118 119
            input,
            ShapeStr(shape)));
120
      }
121
      return nvinfer1::Dims2(shape[1], shape[2]);
122 123 124 125 126
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
127 128
            input,
            ShapeStr(shape)));
129 130 131 132 133
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
134
    }
135
    // static shape doesn't support 1D op so far.
136 137
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
138 139 140
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
141 142
                          input,
                          ShapeStr(shape)));
143 144 145 146 147 148 149

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
150 151
  } else {
    if (shape.size() == 4UL) {
152
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
153 154 155
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
156 157 158 159 160 161
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
162 163
  }
}
164
}  // namespace
165

N
nhzlx 已提交
166
class TRTInt8Calibrator;
W
wanghuancoder 已提交
167

Y
Yan Chunwei 已提交
168 169 170 171
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
172
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
173
 */
174 175
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
176
  using ShapeMapType = std::map<std::string, std::vector<int>>;
177

Y
Yan Chunwei 已提交
178 179 180 181
 public:
  // Weight is model parameter.
  class Weight {
   public:
182
    Weight() = default;
183
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
184 185 186 187
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
188
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
189

190 191
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
192 193 194 195
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
196
  TensorRTEngine(
197 198
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
199
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
200 201
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
202 203 204
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
205
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
206
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
207 208
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
209
        precision_(precision),
N
nhzlx 已提交
210
        calibrator_(calibrator),
N
nhzlx 已提交
211
        device_id_(device_id),
212 213 214
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
215
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
216 217 218 219
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
220 221
          min_input_shape_.size(),
          max_input_shape_.size(),
222 223 224
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
225 226
              min_input_shape_.size(),
              max_input_shape_.size()));
227
      PADDLE_ENFORCE_EQ(
228 229
          min_input_shape_.size(),
          optim_input_shape_.size(),
230 231 232
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
233 234
              min_input_shape_.size(),
              optim_input_shape_.size()));
235 236 237 238 239 240 241
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
242
    dy::initLibNvInferPlugins(&logger, "");
243
  }
Y
Yan Chunwei 已提交
244

245 246 247 248 249 250 251 252 253
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
254

255
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
256 257 258 259 260
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
261 262
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
263
                     const std::string& name);
L
Luo Tao 已提交
264 265
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
266
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
267

L
Luo Tao 已提交
268 269 270
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
271 272

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
273 274 275 276 277 278 279 280
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
281 282 283
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
284
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
W
wenbin 已提交
285 286 287 288 289 290 291 292
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
          infer_context_[tid]->setOptimizationProfile(cur_profile_num_);
        }
        profile_index_[tid] = cur_profile_num_;
        ++cur_profile_num_;
      }
293 294 295
    }
    return infer_context_[tid].get();
  }
W
wenbin 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
      const std::thread::id tid = std::this_thread::get_id();
      return profile_index_[tid];
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

313 314 315 316 317 318 319 320 321 322
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
323 324

  nvinfer1::IHostMemory* Serialize() {
325 326 327 328
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
329
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
330
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
331 332 333 334 335 336
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
337 338 339 340
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
341
    freshDeviceId();
N
nhzlx 已提交
342
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

366 367
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
368

369 370 371 372 373 374 375 376
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
377

W
wenbin 已提交
378
    binding_num_ = infer_engine_->getNbBindings();
379
    GetEngineInfo();
N
nhzlx 已提交
380 381
  }

382 383
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
384 385 386 387 388 389 390

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
391
  int GetDeviceId() { return device_id_; }
392

393
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
394 395
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
396 397 398 399 400

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

401 402 403 404
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

405 406 407 408 409
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
410
                          framework::Tensor* weight_tensor);
N
nhzlx 已提交
411 412 413 414 415 416 417 418

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
419

420 421 422 423 424 425
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
426 427
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
428 429 430
    suffix_counter += 1;
  }

431
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
432 433
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
434
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
435 436 437
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
438 439 440 441 442 443
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
444 445 446 447 448 449
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

450 451 452 453 454 455 456
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
457 458
  void Execute(int batch_size,
               std::vector<void*>* buffers,
459 460
               cudaStream_t stream = nullptr);

461
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
462 463 464 465

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
466 467 468 469 470 471 472 473 474

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
475 476
          min_input_shape_.count(name),
          true,
477 478
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
479 480
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
481 482 483 484
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
485 486 487 488
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

520
  bool use_varseqlen() { return use_varseqlen_; }
521
  bool with_ernie() { return with_ernie_; }
522
  bool with_interleaved() { return with_interleaved_; }
523 524 525 526 527 528
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
529
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
530
  bool with_dynamic_shape() { return with_dynamic_shape_; }
531
  AnalysisConfig::Precision precision() { return precision_; }
532

533
#if IS_TRT_VERSION_GE(6000)
534
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
535 536
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
537
      plugin::DynamicPluginTensorRT* plugin) {
538 539 540 541 542
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
563 564
          attrs_.count(attr_name),
          0,
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
583 584
        attrs_.count(attr_name),
        0,
585 586 587 588 589 590 591 592
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
593 594
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
595 596 597
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
598 599
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
616 617
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
618 619 620 621 622
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
623
  void SetProfileNum(int num) { max_profile_num_ = num; }
624 625 626 627

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
628

Y
Yan Chunwei 已提交
629
 private:
N
nhzlx 已提交
630 631 632 633 634
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
635 636
  // the max batch size
  int max_batch_;
637 638
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
639 640
  // the max memory size the engine uses
  int max_workspace_;
641

Z
Zhaolong Xing 已提交
642
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
643 644 645
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
646

N
nhzlx 已提交
647
  int device_id_;
W
wenbin 已提交
648 649 650
  int max_profile_num_{1};
  int cur_profile_num_{0};
  std::unordered_map<std::thread::id, int> profile_index_;
651 652 653
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
654
  bool disable_trt_plugin_fp16_{false};
655
  bool use_varseqlen_{false};
656 657
  bool use_dla_{false};
  int dla_core_{0};
658
  bool with_ernie_{false};
659
  bool with_interleaved_{false};
660 661
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
662 663 664
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
665 666
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
667

668
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
669
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
670
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
671 672 673 674

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
675 676 677 678 679
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
680 681 682 683 684 685
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
686 687
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
688
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
689
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
690

691
  std::unordered_map<std::string, paddle::any> attrs_;
692 693
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

694 695 696
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
697
  int binding_num_;
698
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
699
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
700
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
701
#endif
702
  std::mutex mutex_;
703
  bool use_inspector_;
Y
Yan Chunwei 已提交
704 705
};  // class TensorRTEngine

706
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
707 708 709 710 711 712 713 714 715
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
716
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
717
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
718

719 720 721 722 723 724 725 726 727 728 729 730
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
731
  TensorRTEngine* Create(
732 733 734
      std::string name,
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
735
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
736 737
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
738 739 740
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
741
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
742
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
743 744 745 746 747 748 749 750 751 752
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
                                 logger);
753 754 755 756 757 758 759 760 761 762
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
763 764 765 766 767 768 769 770
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

771 772 773 774
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
775 776 777
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle