engine.h 27.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
W
wanghuancoder 已提交
27

N
nhzlx 已提交
28
#include "paddle/fluid/framework/tensor.h"
29
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
30
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
31 32
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
33
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
34
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/platform/enforce.h"
37
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
43 44 45 46
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

47 48 49 50 51 52 53 54 55 56 57
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
58 59
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
60 61 62 63 64 65 66 67 68 69
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
70 71
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
72
                            bool with_dynamic_shape = false) {
73 74
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
75
                    platform::errors::InvalidArgument(
76
                        "TensorRT's tensor input requires at least 1 "
77
                        "dimensions, but input %s has %d dims.",
78 79
                        input,
                        shape.size()));
W
wenbin 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
94 95
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
96 97 98 99
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
100 101
            input,
            ShapeStr(shape)));
102
      }
103
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
104 105 106 107 108
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
109 110
            input,
            ShapeStr(shape)));
W
wenbin 已提交
111 112
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
113
    } else if (shape.size() == 3UL) {
114 115 116 117
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
118 119
            input,
            ShapeStr(shape)));
120
      }
121
      return nvinfer1::Dims2(shape[1], shape[2]);
122 123 124 125 126
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
127 128
            input,
            ShapeStr(shape)));
129 130 131 132 133
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
134
    }
135
    // static shape doesn't support 1D op so far.
136 137
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
138 139 140
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
141 142
                          input,
                          ShapeStr(shape)));
143 144 145 146 147 148 149

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
150 151
  } else {
    if (shape.size() == 4UL) {
152
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
153 154 155
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
156 157 158 159 160 161
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
162 163
  }
}
164
}  // namespace
165

N
nhzlx 已提交
166
class TRTInt8Calibrator;
W
wanghuancoder 已提交
167

Y
Yan Chunwei 已提交
168 169 170 171
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
172
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
173
 */
174 175
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
176
  using ShapeMapType = std::map<std::string, std::vector<int>>;
177

Y
Yan Chunwei 已提交
178 179 180 181
 public:
  // Weight is model parameter.
  class Weight {
   public:
182
    Weight() = default;
183
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
184 185 186 187
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
188
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
189

190 191
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
192 193 194 195
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
196
  TensorRTEngine(
197 198
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
199
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
200 201
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
202 203 204
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
205
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
206
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
207 208
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
209
        precision_(precision),
N
nhzlx 已提交
210
        calibrator_(calibrator),
N
nhzlx 已提交
211
        device_id_(device_id),
212 213 214
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
215
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
216 217 218 219
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
220 221
          min_input_shape_.size(),
          max_input_shape_.size(),
222 223 224
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
225 226
              min_input_shape_.size(),
              max_input_shape_.size()));
227
      PADDLE_ENFORCE_EQ(
228 229
          min_input_shape_.size(),
          optim_input_shape_.size(),
230 231 232
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
233 234
              min_input_shape_.size(),
              optim_input_shape_.size()));
235 236 237 238 239 240 241
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
242
    dy::initLibNvInferPlugins(&logger, "");
243
  }
Y
Yan Chunwei 已提交
244

245 246 247 248 249 250 251 252 253
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
254

255
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
256 257 258 259 260
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
261 262
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
263
                     const std::string& name);
L
Luo Tao 已提交
264 265
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
266
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
267

L
Luo Tao 已提交
268 269 270
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
271
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
272 273

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
274 275 276 277 278 279 280 281
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
282 283 284
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
285
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
W
wenbin 已提交
286 287 288 289 290 291 292 293
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
          infer_context_[tid]->setOptimizationProfile(cur_profile_num_);
        }
        profile_index_[tid] = cur_profile_num_;
        ++cur_profile_num_;
      }
294 295 296
    }
    return infer_context_[tid].get();
  }
W
wenbin 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
      const std::thread::id tid = std::this_thread::get_id();
      return profile_index_[tid];
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

314 315 316 317 318 319 320 321 322 323
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
324 325

  nvinfer1::IHostMemory* Serialize() {
326 327 328 329
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
330
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
331
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
332 333 334 335 336 337
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
338 339 340 341
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
342
    freshDeviceId();
N
nhzlx 已提交
343
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

367 368
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
369

370 371 372 373 374 375 376 377
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
378

W
wenbin 已提交
379
    binding_num_ = infer_engine_->getNbBindings();
380
    GetEngineInfo();
N
nhzlx 已提交
381 382
  }

383 384
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
385 386 387 388 389 390 391

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
392
  int GetDeviceId() { return device_id_; }
393

394
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
395 396
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
397 398 399 400 401

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

402 403 404 405
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

406 407 408
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
409 410 411
  template <typename T = float>
  T* GetWeightCPUData(const std::string& name,
                      framework::Tensor* weight_tensor);
N
nhzlx 已提交
412 413 414 415 416 417 418 419

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
420

421 422 423 424 425 426
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
427
    std::string splitter = "__";
428 429 430 431 432 433 434 435
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
436 437 438
    suffix_counter += 1;
  }

439
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
440 441
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
442
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
443 444 445
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
446 447 448 449 450 451
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
452 453 454 455 456 457
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

458 459 460 461 462 463 464
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
465 466
  void Execute(int batch_size,
               std::vector<void*>* buffers,
467 468
               cudaStream_t stream = nullptr);

469
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
470 471 472 473

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
474 475 476 477 478 479 480 481 482

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
483 484
          min_input_shape_.count(name),
          true,
485 486
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
487 488
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
489 490 491 492
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
493 494 495 496
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

528
  bool use_varseqlen() { return use_varseqlen_; }
529
  bool with_ernie() { return with_ernie_; }
530
  bool with_interleaved() { return with_interleaved_; }
531 532 533 534 535 536
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
537
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
538
  bool with_dynamic_shape() { return with_dynamic_shape_; }
539
  AnalysisConfig::Precision precision() { return precision_; }
540

541
#if IS_TRT_VERSION_GE(6000)
542
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
543 544
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
545
      plugin::DynamicPluginTensorRT* plugin) {
546 547 548 549 550
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
571 572
          attrs_.count(attr_name),
          0,
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
591 592
        attrs_.count(attr_name),
        0,
593 594 595 596 597 598 599 600
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
601 602
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
603 604 605
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
606 607
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
624 625
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
626 627 628 629 630
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
631
  void SetProfileNum(int num) { max_profile_num_ = num; }
632 633 634 635

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
636

Y
Yan Chunwei 已提交
637
 private:
N
nhzlx 已提交
638 639 640 641 642
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
643 644
  // the max batch size
  int max_batch_;
645 646
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
647 648
  // the max memory size the engine uses
  int max_workspace_;
649

Z
Zhaolong Xing 已提交
650
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
651 652 653
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
654

N
nhzlx 已提交
655
  int device_id_;
W
wenbin 已提交
656 657 658
  int max_profile_num_{1};
  int cur_profile_num_{0};
  std::unordered_map<std::thread::id, int> profile_index_;
659 660 661
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
662
  bool disable_trt_plugin_fp16_{false};
663
  bool use_varseqlen_{false};
664 665
  bool use_dla_{false};
  int dla_core_{0};
666
  bool with_ernie_{false};
667
  bool with_interleaved_{false};
668 669
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
670 671 672
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
673 674
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
675

676
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
677
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
678
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
679 680 681 682

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
683 684 685 686 687
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
688 689 690 691 692 693
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
694 695
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
696
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
697
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
698

699
  std::unordered_map<std::string, paddle::any> attrs_;
700 701
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

702 703 704
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
705
  int binding_num_;
706
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
707
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
708
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
709
#endif
710
  std::mutex mutex_;
711
  bool use_inspector_;
Y
Yan Chunwei 已提交
712 713
};  // class TensorRTEngine

714
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
715 716 717 718 719 720 721 722 723
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
724
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
725
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
726

727 728 729 730 731 732 733 734 735 736 737 738
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
739
  TensorRTEngine* Create(
740 741 742
      std::string name,
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
743
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
744 745
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
746 747 748
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
749
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
750
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
751 752 753 754 755 756 757 758 759 760
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
                                 logger);
761 762 763 764 765 766 767 768 769 770
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
771 772 773 774 775 776 777 778
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

779 780 781 782
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
783 784 785
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle