engine.h 7.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
26
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
27
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
28
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
29 30 31 32 33

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
34
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
35 36 37 38 39 40
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
41 42 43
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;

Y
Yan Chunwei 已提交
44 45 46 47
 public:
  // Weight is model parameter.
  class Weight {
   public:
48
    Weight() = default;
49
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
50 51 52 53
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
54
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
55

56 57
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
58 59 60 61
   private:
    nvinfer1::Weights w_;
  };

62
  TensorRTEngine(int max_batch, int max_workspace, bool enable_int8 = false,
N
nhzlx 已提交
63
                 TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
Y
Yan Chunwei 已提交
64 65 66
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
N
nhzlx 已提交
67
        enable_int8_(enable_int8),
N
nhzlx 已提交
68
        calibrator_(calibrator),
N
nhzlx 已提交
69
        device_id_(device_id),
70
        logger_(logger) {}
Y
Yan Chunwei 已提交
71

72
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
73 74

  // TODO(Superjomn) implement it later when graph segmentation is supported.
75
  void Build(const DescType& paddle_model);
Y
Yan Chunwei 已提交
76

77 78
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream);
Y
Yan Chunwei 已提交
79 80 81 82

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
N
nhzlx 已提交
83
    freshDeviceId();
84
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
99 100
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
101 102
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
103

L
Luo Tao 已提交
104 105 106
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
107 108 109

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
N
nhzlx 已提交
110 111 112 113 114 115 116 117 118

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
119
    freshDeviceId();
N
nhzlx 已提交
120 121
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(runtime->deserializeCudaEngine(
N
nhzlx 已提交
122 123
        engine_serialized_data.c_str(), engine_serialized_data.size(),
        &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
N
nhzlx 已提交
124 125 126 127 128
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
    infer_context_.reset(infer_engine_->createExecutionContext());
  }

129 130
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
131
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
132
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
133
                                    int num_inputs, plugin::PluginTensorRT*);
N
nhzlx 已提交
134 135 136 137 138 139 140 141

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
142 143

 private:
N
nhzlx 已提交
144 145 146 147 148
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
149 150
  // the max batch size
  int max_batch_;
151 152
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
153 154
  // the max memory size the engine uses
  int max_workspace_;
155

N
nhzlx 已提交
156
  bool enable_int8_;
N
nhzlx 已提交
157 158 159
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
160

N
nhzlx 已提交
161
  int device_id_;
Y
Yan Chunwei 已提交
162 163 164 165
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
166 167
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
168

169
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
170 171 172 173

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
174 175 176 177 178
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
179 180 181 182 183 184 185
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
186
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle