engine.h 20.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
36

W
wanghuancoder 已提交
37 38 39 40 41 42
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

Y
Yan Chunwei 已提交
43 44 45 46
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
47 48 49 50
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
74
  PADDLE_ENFORCE_GT(shape.size(), 0UL,
75
                    platform::errors::InvalidArgument(
76
                        "TensorRT's tensor input requires at least 1 "
77 78
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
W
wenbin 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
93 94
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
95 96 97 98 99 100
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
101
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
102 103 104 105 106 107 108 109
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
110
    } else if (shape.size() == 3UL) {
111 112 113 114 115 116
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
117 118
      return nvinfer1::Dims2(shape[1], shape[2]);
    }
119
    return nvinfer1::Dims3(shape[1], 1, 1);
120 121
  } else {
    if (shape.size() == 4UL) {
122
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
123 124 125
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
126 127 128 129 130 131
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
132 133 134 135
  }
}
}  // NOLINT

N
nhzlx 已提交
136
class TRTInt8Calibrator;
W
wanghuancoder 已提交
137

Y
Yan Chunwei 已提交
138 139 140 141
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
142
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
143
 */
144 145
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
146
  using ShapeMapType = std::map<std::string, std::vector<int>>;
147

Y
Yan Chunwei 已提交
148 149 150 151
 public:
  // Weight is model parameter.
  class Weight {
   public:
152
    Weight() = default;
153
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
154 155 156 157
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
158
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
159

160 161
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
162 163 164 165
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
166 167 168 169
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
170 171 172
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
173
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
174
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
175 176
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
177
        precision_(precision),
N
nhzlx 已提交
178
        calibrator_(calibrator),
N
nhzlx 已提交
179
        device_id_(device_id),
180 181 182
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
183
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
206
    dy::initLibNvInferPlugins(&logger, "");
207
  }
Y
Yan Chunwei 已提交
208

209 210 211 212 213 214 215 216 217
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
218

219
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
220 221 222 223 224 225 226
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
227 228
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
229

L
Luo Tao 已提交
230 231 232
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
233 234

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
235 236 237 238 239 240 241 242 243 244 245 246
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
N
nhzlx 已提交
247 248

  nvinfer1::IHostMemory* Serialize() {
249 250 251 252
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
N
nhzlx 已提交
253 254 255 256 257
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
258
    freshDeviceId();
N
nhzlx 已提交
259
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

283 284
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
285

286 287 288 289 290 291 292 293
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
N
nhzlx 已提交
294 295
  }

296 297
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
298 299 300 301 302 303 304

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
305
  int GetDeviceId() { return device_id_; }
306

307 308
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
                                      int num_inputs, plugin::PluginTensorRT*);
309 310 311 312 313

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

314 315 316 317 318 319 320
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
321 322 323 324 325 326 327 328

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
329

330 331 332 333 334 335
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
336 337
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
338 339 340
    suffix_counter += 1;
  }

341
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
342 343
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
344 345
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }

346 347 348 349 350 351
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

352 353 354 355 356 357 358 359 360 361
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

362
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
363 364 365 366

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
367 368
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
369
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
370 371
  bool with_dynamic_shape() { return with_dynamic_shape_; }

372
#if IS_TRT_VERSION_GE(6000)
373 374 375
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
      nvinfer1::ITensor* const* inputs, int num_inputs,
      plugin::DynamicPluginTensorRT* plugin) {
376 377 378 379 380
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
          attrs_.count(attr_name), 0,
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
        attrs_.count(attr_name), 0,
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
    PADDLE_ENFORCE_NE(attrs_.find(attr_name), attrs_.end(),
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
433 434
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
          "Invalid type for attritube %s, expected: %s, actual: %s.", attr_name,
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

Y
Yan Chunwei 已提交
457
 private:
N
nhzlx 已提交
458 459 460 461 462
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
463 464
  // the max batch size
  int max_batch_;
465 466
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
467 468
  // the max memory size the engine uses
  int max_workspace_;
469

Z
Zhaolong Xing 已提交
470
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
471 472 473
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
474

N
nhzlx 已提交
475
  int device_id_;
476 477 478
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
479
  bool disable_trt_plugin_fp16_{false};
480
  bool use_oss_{false};
481 482
  bool use_dla_{false};
  int dla_core_{0};
483
  bool with_ernie_{false};
Y
Yan Chunwei 已提交
484 485 486
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
487 488
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
489

490
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
491
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
Y
Yan Chunwei 已提交
492 493 494 495

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
496 497 498 499 500
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
501 502 503 504 505 506
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
507 508
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
509
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
510
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
511

512
  std::unordered_map<std::string, paddle::any> attrs_;
513 514
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

515 516 517 518
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
519
  nvinfer1::IOptimizationProfile* optim_profile_;
520
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
521
#endif
522
  std::mutex mutex_;
Y
Yan Chunwei 已提交
523 524
};  // class TensorRTEngine

525
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
526 527 528 529 530 531 532 533 534
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
535 536
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
537

538 539 540 541 542 543 544 545 546 547 548 549
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
550 551 552 553
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
554 555 556
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
557
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
558
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
559 560 561 562
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
563 564 565 566 567 568 569 570 571 572 573 574 575 576
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
577 578 579
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle