engine.h 20.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
35

W
wanghuancoder 已提交
36 37 38 39 40 41
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

Y
Yan Chunwei 已提交
42 43 44 45
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
46 47 48 49
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
73
  PADDLE_ENFORCE_GT(shape.size(), 0UL,
74
                    platform::errors::InvalidArgument(
75
                        "TensorRT's tensor input requires at least 1 "
76 77 78 79 80 81 82
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at most 4 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
83 84 85 86 87 88 89 90 91 92 93 94 95
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
96 97
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
98 99 100 101 102 103
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
104
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
105
    } else if (shape.size() == 3UL) {
106 107 108 109 110 111
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
112 113
      return nvinfer1::Dims2(shape[1], shape[2]);
    }
114
    return nvinfer1::Dims3(shape[1], 1, 1);
115 116
  } else {
    if (shape.size() == 4UL) {
117
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
118 119 120
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
121 122 123 124 125 126
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
127 128 129 130
  }
}
}  // NOLINT

N
nhzlx 已提交
131
class TRTInt8Calibrator;
W
wanghuancoder 已提交
132

Y
Yan Chunwei 已提交
133 134 135 136
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
137
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
138
 */
139 140
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
141
  using ShapeMapType = std::map<std::string, std::vector<int>>;
142

Y
Yan Chunwei 已提交
143 144 145 146
 public:
  // Weight is model parameter.
  class Weight {
   public:
147
    Weight() = default;
148
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
149 150 151 152
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
153
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
154

155 156
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
157 158 159 160
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
161 162 163 164
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
165 166 167
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
168
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
169
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
170 171
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
172
        precision_(precision),
N
nhzlx 已提交
173
        calibrator_(calibrator),
N
nhzlx 已提交
174
        device_id_(device_id),
175 176 177
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
178
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
201
    dy::initLibNvInferPlugins(&logger, "");
202
  }
Y
Yan Chunwei 已提交
203

204 205 206 207 208 209 210 211 212
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
213

214
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
215 216 217 218 219 220 221
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
222 223
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
224

L
Luo Tao 已提交
225 226 227
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
228 229

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
230 231 232 233 234 235 236 237 238 239 240 241
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
N
nhzlx 已提交
242 243

  nvinfer1::IHostMemory* Serialize() {
244 245 246 247
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
N
nhzlx 已提交
248 249 250 251 252
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
253
    freshDeviceId();
N
nhzlx 已提交
254
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

278 279
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
280

281 282 283 284 285 286 287 288
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
N
nhzlx 已提交
289 290
  }

291 292
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
293 294 295 296 297 298 299

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
300
  int GetDeviceId() { return device_id_; }
301

302 303
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
                                      int num_inputs, plugin::PluginTensorRT*);
304 305 306 307 308

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

309 310 311 312 313 314 315
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
316 317 318 319 320 321 322 323

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
324

325 326 327 328 329 330
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
331 332
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
333 334 335
    suffix_counter += 1;
  }

336
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
337 338
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
339 340
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }

341 342 343 344 345 346
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

347 348 349 350 351 352 353 354 355 356
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

357
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
358 359 360 361

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
362 363
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
364
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
365 366
  bool with_dynamic_shape() { return with_dynamic_shape_; }

367
#if IS_TRT_VERSION_GE(6000)
368 369 370
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
      nvinfer1::ITensor* const* inputs, int num_inputs,
      plugin::DynamicPluginTensorRT* plugin) {
371 372 373 374 375
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
          attrs_.count(attr_name), 0,
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
        attrs_.count(attr_name), 0,
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
    PADDLE_ENFORCE_NE(attrs_.find(attr_name), attrs_.end(),
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
      return *boost::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (boost::bad_any_cast&) {
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
          "Invalid type for attritube %s, expected: %s, actual: %s.", attr_name,
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

Y
Yan Chunwei 已提交
452
 private:
N
nhzlx 已提交
453 454 455 456 457
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
458 459
  // the max batch size
  int max_batch_;
460 461
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
462 463
  // the max memory size the engine uses
  int max_workspace_;
464

Z
Zhaolong Xing 已提交
465
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
466 467 468
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
469

N
nhzlx 已提交
470
  int device_id_;
471 472 473
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
474
  bool disable_trt_plugin_fp16_{false};
475
  bool use_oss_{false};
476 477
  bool use_dla_{false};
  int dla_core_{0};
478
  bool with_ernie_{false};
Y
Yan Chunwei 已提交
479 480 481
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
482 483
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
484

485
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
486
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
Y
Yan Chunwei 已提交
487 488 489 490

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
491 492 493 494 495
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
496 497 498 499 500 501
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
502 503
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
504
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
505
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
506

507 508 509
  std::unordered_map<std::string, boost::any> attrs_;
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

510 511 512 513
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
514
  nvinfer1::IOptimizationProfile* optim_profile_;
515
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
516
#endif
517
  std::mutex mutex_;
Y
Yan Chunwei 已提交
518 519
};  // class TensorRTEngine

520
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
521 522 523 524 525 526 527 528 529
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
530 531
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
532

533 534 535 536 537 538 539 540 541 542 543 544
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
545 546 547 548
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
549 550 551
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
552
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
553
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
554 555 556 557
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
558 559 560 561 562 563 564 565 566 567 568 569 570 571
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
572 573 574
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle