engine.h 25.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
37

W
wanghuancoder 已提交
38 39 40 41 42 43
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

Y
Yan Chunwei 已提交
44 45 46 47
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
48 49 50 51
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
75
  PADDLE_ENFORCE_GT(shape.size(), 0UL,
76
                    platform::errors::InvalidArgument(
77
                        "TensorRT's tensor input requires at least 1 "
78 79
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
W
wenbin 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
94 95
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
96 97 98 99 100 101
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
102
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
103 104 105 106 107 108 109 110
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
111
    } else if (shape.size() == 3UL) {
112 113 114 115 116 117
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
118
      return nvinfer1::Dims2(shape[1], shape[2]);
119 120 121 122 123 124 125 126 127 128 129
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
130
    }
131
    return nvinfer1::Dims3(shape[1], 1, 1);
132 133
  } else {
    if (shape.size() == 4UL) {
134
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
135 136 137
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
138 139 140 141 142 143
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
144 145 146 147
  }
}
}  // NOLINT

N
nhzlx 已提交
148
class TRTInt8Calibrator;
W
wanghuancoder 已提交
149

Y
Yan Chunwei 已提交
150 151 152 153
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
154
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
155
 */
156 157
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
158
  using ShapeMapType = std::map<std::string, std::vector<int>>;
159

Y
Yan Chunwei 已提交
160 161 162 163
 public:
  // Weight is model parameter.
  class Weight {
   public:
164
    Weight() = default;
165
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
166 167 168 169
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
170
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
171

172 173
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
174 175 176 177
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
178 179 180 181
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
182 183 184
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
185
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
186
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
187 188
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
189
        precision_(precision),
N
nhzlx 已提交
190
        calibrator_(calibrator),
N
nhzlx 已提交
191
        device_id_(device_id),
192 193 194
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
195
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
218
    dy::initLibNvInferPlugins(&logger, "");
219
  }
Y
Yan Chunwei 已提交
220

221 222 223 224 225 226 227 228 229
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
230

231
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
232 233 234 235 236 237 238
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
239 240
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
241
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
242

L
Luo Tao 已提交
243 244 245
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
246 247

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
248 249 250 251 252 253 254 255
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
256 257 258
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
259
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
W
wenbin 已提交
260 261 262 263 264 265 266 267
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
          infer_context_[tid]->setOptimizationProfile(cur_profile_num_);
        }
        profile_index_[tid] = cur_profile_num_;
        ++cur_profile_num_;
      }
268 269 270
    }
    return infer_context_[tid].get();
  }
W
wenbin 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
      const std::thread::id tid = std::this_thread::get_id();
      return profile_index_[tid];
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

288 289 290 291 292 293 294 295 296 297
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
298 299

  nvinfer1::IHostMemory* Serialize() {
300 301 302 303
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
304
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
305
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
306 307 308 309 310 311
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
312 313 314 315
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
316
    freshDeviceId();
N
nhzlx 已提交
317
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

341 342
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
343

344 345 346 347 348 349 350 351
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
352

W
wenbin 已提交
353
    binding_num_ = infer_engine_->getNbBindings();
354
    GetEngineInfo();
N
nhzlx 已提交
355 356
  }

357 358
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
359 360 361 362 363 364 365

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
366
  int GetDeviceId() { return device_id_; }
367

368 369
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
                                      int num_inputs, plugin::PluginTensorRT*);
370 371 372 373 374

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

375 376 377 378
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

379 380 381 382 383 384 385
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
386 387 388 389 390 391 392 393

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
394

395 396 397 398 399 400
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
401 402
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
403 404 405
    suffix_counter += 1;
  }

406
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
407 408
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
409
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
410 411 412
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
413

414 415 416 417 418 419
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

420 421 422 423 424 425 426 427 428 429
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

430
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
431 432 433 434

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
          min_input_shape_.count(name), true,
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(), input_shape.size(),
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
                            name, name, min_input_shape_[name].size(), name,
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

484 485
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
486
  bool with_interleaved() { return with_interleaved_; }
487
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
488
  bool with_dynamic_shape() { return with_dynamic_shape_; }
489
  AnalysisConfig::Precision precision() { return precision_; }
490

491
#if IS_TRT_VERSION_GE(6000)
492 493 494
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
      nvinfer1::ITensor* const* inputs, int num_inputs,
      plugin::DynamicPluginTensorRT* plugin) {
495 496 497 498 499
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
          attrs_.count(attr_name), 0,
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
        attrs_.count(attr_name), 0,
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
    PADDLE_ENFORCE_NE(attrs_.find(attr_name), attrs_.end(),
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
552 553
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
          "Invalid type for attritube %s, expected: %s, actual: %s.", attr_name,
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
576
  void SetProfileNum(int num) { max_profile_num_ = num; }
577 578 579 580 581 582 583 584 585 586 587 588
  void GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
    std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
        infer_engine_->createEngineInspector());
    infer_inspector->setExecutionContext(context());
    VLOG(3) << infer_inspector->getEngineInformation(
        nvinfer1::LayerInformationFormat::kJSON);
#else
    VLOG(3) << "Inspector needs TensorRT version 8.2 and after.";
#endif
  }

Y
Yan Chunwei 已提交
589
 private:
N
nhzlx 已提交
590 591 592 593 594
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
595 596
  // the max batch size
  int max_batch_;
597 598
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
599 600
  // the max memory size the engine uses
  int max_workspace_;
601

Z
Zhaolong Xing 已提交
602
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
603 604 605
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
606

N
nhzlx 已提交
607
  int device_id_;
W
wenbin 已提交
608 609 610
  int max_profile_num_{1};
  int cur_profile_num_{0};
  std::unordered_map<std::thread::id, int> profile_index_;
611 612 613
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
614
  bool disable_trt_plugin_fp16_{false};
615
  bool use_oss_{false};
616 617
  bool use_dla_{false};
  int dla_core_{0};
618
  bool with_ernie_{false};
619
  bool with_interleaved_{false};
Y
Yan Chunwei 已提交
620 621 622
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
623 624
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
625

626
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
627
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
628
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
629 630 631 632

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
633 634 635 636 637
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
638 639 640 641 642 643
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
644 645
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
646
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
647
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
648

649
  std::unordered_map<std::string, paddle::any> attrs_;
650 651
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

652 653 654
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
655
  int binding_num_;
656
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
657
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
658
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
659
#endif
660
  std::mutex mutex_;
Y
Yan Chunwei 已提交
661 662
};  // class TensorRTEngine

663
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
664 665 666 667 668 669 670 671 672
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
673 674
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
675

676 677 678 679 680 681 682 683 684 685 686 687
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
688 689 690 691
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
692 693 694
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
695
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
696
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
697 698 699 700
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
701 702 703 704 705 706 707 708 709 710
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
711 712 713 714 715 716 717 718
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

719 720 721 722
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
723 724 725
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle