engine.h 14.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
N
nhzlx 已提交
26
#include "paddle/fluid/framework/tensor.h"
27
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
28
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
29 30
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
31
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
35 36 37 38 39

namespace paddle {
namespace inference {
namespace tensorrt {

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at least 2 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at most 4 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims2(shape[1], shape[2]);
    }
    return nvinfer1::DimsCHW(shape[1], 1, 1);
  } else {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsNCHW(shape[0], shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
86 87 88 89 90 91
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
92 93 94 95
  }
}
}  // NOLINT

N
nhzlx 已提交
96
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
97 98 99 100
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
101
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
102
 */
103 104
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
105
  using ShapeMapType = std::map<std::string, std::vector<int>>;
106

Y
Yan Chunwei 已提交
107 108 109 110
 public:
  // Weight is model parameter.
  class Weight {
   public:
111
    Weight() = default;
112
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
113 114 115 116
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
117
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
118

119 120
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
121 122 123 124
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
125 126 127 128
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
129 130 131
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
132
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
133
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
134 135
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
136
        precision_(precision),
N
nhzlx 已提交
137
        calibrator_(calibrator),
N
nhzlx 已提交
138
        device_id_(device_id),
139 140 141
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
142
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
  }
Y
Yan Chunwei 已提交
166

167
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
168

169
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
170 171 172 173 174 175 176
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
177 178
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
179

L
Luo Tao 已提交
180 181 182
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
183 184

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
185 186 187 188 189 190 191 192 193 194 195 196
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
N
nhzlx 已提交
197 198 199 200 201 202 203 204 205

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
206
    freshDeviceId();
N
nhzlx 已提交
207
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
P
Pei Yang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          nullptr));
#else

      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "To enable dynamic shape support, the TensorRT version should be "
          "greater than 6.0.0"));

#endif
    } else {
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
    }
N
nhzlx 已提交
225 226 227 228
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
  }

229 230
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
231 232 233 234 235 236 237

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
238
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
239
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
240
                                    int num_inputs, plugin::PluginTensorRT*);
241 242 243 244 245 246 247
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
248 249 250 251 252 253 254 255

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
256

257 258 259 260 261 262
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
263 264
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
265 266 267
    suffix_counter += 1;
  }

268 269 270 271 272 273
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

  nvinfer1::INetworkDefinition* network() {
    if (with_dynamic_shape_) {
      return infer_networkv2_.get();
    } else {
      return infer_network_.get();
    }
  }

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
295
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
296 297
  bool with_dynamic_shape() { return with_dynamic_shape_; }

298 299 300 301 302 303 304 305 306
#if IS_TRT_VERSION_GE(6000)
  nvinfer1::IPluginV2Layer* AddPluginV2(nvinfer1::ITensor* const* inputs,
                                        int num_inputs,
                                        plugin::DynamicPluginTensorRT* plugin) {
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

Y
Yan Chunwei 已提交
307
 private:
N
nhzlx 已提交
308 309 310 311 312
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
313 314
  // the max batch size
  int max_batch_;
315 316
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
317 318
  // the max memory size the engine uses
  int max_workspace_;
319

Z
Zhaolong Xing 已提交
320
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
321 322 323
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
324

N
nhzlx 已提交
325
  int device_id_;
326 327 328
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
329
  bool disable_trt_plugin_fp16_{false};
Y
Yan Chunwei 已提交
330 331 332
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
333 334
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
335

336
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
337 338 339 340

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
341 342 343 344 345
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
346 347 348 349 350 351
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
352 353
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
354
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
355
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
356 357 358 359 360 361

  // For dynamic shape
  bool with_dynamic_shape_{false};
  infer_ptr<nvinfer1::INetworkDefinition> infer_networkv2_;
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
362
  nvinfer1::IOptimizationProfile* optim_profile_;
363
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
364
#endif
365
  std::mutex mutex_;
Y
Yan Chunwei 已提交
366 367
};  // class TensorRTEngine

368
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
369 370 371 372 373 374 375 376 377
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
378 379
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
380

381 382 383 384 385 386 387 388 389 390 391 392
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
393 394 395 396
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
397 398 399
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
400
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
401
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
402 403 404 405
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
406 407 408 409 410 411 412 413 414 415 416 417 418 419
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
420 421 422
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle