nn.py 250.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
112
    'margin_rank_loss',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
165
       is_test=False,
166
       name=None):
Y
Yu Yang 已提交
167
    """
168
    **Fully Connected Layer**
Y
Yu Yang 已提交
169

170 171 172 173 174 175 176 177
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
178
    to the output as well.
C
caoying03 已提交
179

C
caoying03 已提交
180
    This process can be formulated as follows:
181 182 183

    .. math::

184
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
185 186 187

    In the above equation:

C
caoying03 已提交
188 189 190 191
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
192
    * :math:`Act`: The activation function.
C
caoying03 已提交
193
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
194 195

    Args:
R
ranqiu 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
211 212
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
213
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
214
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
215
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
216

217
    Returns:
F
fengjiayi 已提交
218
        Variable: The transformation result.
219 220

    Raises:
C
caoying03 已提交
221
        ValueError: If rank of the input tensor is less than 2.
222 223 224 225

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
226
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
227
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
228
    """
C
caoying03 已提交
229

C
caoying03 已提交
230
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
231 232 233 234

    dtype = helper.input_dtype()

    mul_results = []
235 236
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
237 238 239
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
240

Y
Yu Yang 已提交
241
        w = helper.create_parameter(
242 243
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
244
        helper.append_op(
245 246 247
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
248
            outputs={"Out": tmp},
M
mozga-intel 已提交
249 250
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
251 252 253 254
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
255
    else:
256 257
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
258 259 260
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
261
            attrs={"use_mkldnn": False})
262 263 264 265
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
266 267


268 269 270
def embedding(input,
              size,
              is_sparse=False,
271
              is_distributed=False,
272 273 274
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
275
    """
276 277
    **Embedding Layer**

278
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
279 280
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
281 282 283

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
284 285

    Args:
286 287 288 289 290
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
291
        is_distributed(bool): Whether to run lookup table from remote parameter server.
292 293
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
294
            with zeros whenever lookup encounters it in :attr:`input`. If
295
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
296 297
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
298
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
299

300 301 302
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
303

304 305
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
306

C
chengduoZH 已提交
307
          dict_size = len(dataset.ids)
308
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
309
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
310 311 312 313 314 315
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
316 317
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
318 319 320 321 322
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
323 324 325 326 327
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
328 329 330
    return tmp


Y
yi.wu 已提交
331
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
332 333
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
334 335
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
336 337 338 339 340 341 342
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
343 344
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
345
    """
Y
yi.wu 已提交
346
    ${comment}
Y
Yibing Liu 已提交
347 348

    Args:
Y
yi.wu 已提交
349 350
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
351 352 353 354 355 356 357
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

358
        param_attr(ParamAttr|None): The parameter attribute for the learnable
359
                               hidden-hidden weights.
Y
Yibing Liu 已提交
360 361 362

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
363 364
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
365
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
366 367 368
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
369

370
                              1. `use_peepholes = False`
Y
yi.wu 已提交
371 372
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
373
                              2. `use_peepholes = True`
Y
yi.wu 已提交
374
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
375
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
376
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
377 378 379 380 381 382 383 384
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
385 386

    Returns:
Y
Yibing Liu 已提交
387 388
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
389

Y
Yibing Liu 已提交
390
    Examples:
Y
Yibing Liu 已提交
391 392
        .. code-block:: python

Y
Yibing Liu 已提交
393 394
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
395
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
396 397
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
398
    """
399

Y
Yu Yang 已提交
400
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
401
    size = size // 4
Y
Yu Yang 已提交
402 403 404 405 406 407 408 409 410 411 412 413
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
414 415 416 417 418 419 420 421 422 423
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
424 425 426

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
427
        inputs=inputs,
Y
Yu Yang 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
444 445 446 447 448 449 450 451 452 453 454
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
455 456
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
457 458 459
    """
    **Dynamic LSTMP Layer**

460 461 462 463 464 465
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
466 467 468 469 470

    The formula is as follows:

    .. math::

471
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
472

473
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
474

475
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
476

477
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
478

479
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
480

481
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
482

483
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
484

Y
Yibing Liu 已提交
485 486 487 488 489 490
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
491
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
492
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
493
          bias vector).
Y
Yibing Liu 已提交
494 495 496
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
497
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
498
    * :math:`h`: The hidden state.
499
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
500 501
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
502
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
503
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
504
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
505 506
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
507 508 509 510

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
511

Y
Yibing Liu 已提交
512 513 514 515 516 517 518 519 520 521 522 523
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
524
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
525 526
                               hidden-hidden weight and projection weight.

527 528
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
529 530
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
531 532
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
533 534
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
535 536 537 538 539 540
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
541
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
542 543 544
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
545
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
546 547 548 549 550 551 552 553 554
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
555
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
556 557
                              default "tanh".
        proj_activation(str): The activation for projection output.
558
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
559 560
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
561 562
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
563 564

    Returns:
565 566 567 568
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
569 570

    Examples:
571

Y
Yibing Liu 已提交
572 573
        .. code-block:: python

574 575 576 577
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
578
            hidden_dim, proj_dim = 512, 256
579
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
580
                                     act=None, bias_attr=None)
581 582 583
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
584 585 586 587
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
588
    """
589

Y
Yibing Liu 已提交
590
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
591
    size = size // 4
Y
Yibing Liu 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
636 637 638 639 640 641 642 643 644
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
645
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
646

647
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
648
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
649

G
guosheng 已提交
650 651 652 653 654 655 656 657 658
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
659

G
guosheng 已提交
660
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
661

G
guosheng 已提交
662
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
663 664
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
665 666 667 668
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
669
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
670 671

    Args:
672 673
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
674
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
675
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
676 677
            is the hidden size.
        size(int): The dimension of the gru cell.
678
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
679 680
            hidden-hidden weight matrix. Note:

681
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
682
              :math:`D` is the hidden size.
683
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
684
              The first part are weights of the update gate and reset gate with
685
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
686
              candidate hidden state with shape :math:`(D \\times D)`.
687
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
688
            hidden-hidden bias.
689
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
690 691 692
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
693
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
694
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
695 696 697 698
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
699 700

    Returns:
G
guosheng 已提交
701
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
702
            and sequence length is the same with the input.
703

G
guosheng 已提交
704
    Examples:
705

G
guosheng 已提交
706 707
        .. code-block:: python

708 709 710 711
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
712
            hidden_dim = 512
713
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
714 715 716 717 718 719 720 721 722 723
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
724
    batch_size = input.shape[0]
G
guosheng 已提交
725 726 727
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
728 729 730
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
754 755 756
def gru_unit(input,
             hidden,
             size,
757 758
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
759
             activation='tanh',
760
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
761
    """
762
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
763

764 765
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
766

767
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
768

769
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
770

771
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
772 773

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
774 775 776
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
777 778
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

779 780
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
781 782 783
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
784 785 786 787 788

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
789 790
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
791 792 793 794
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
795

796 797 798 799 800 801
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
802

803
             # assuming we have x_t_data and prev_hidden of size=10
804
             x_t = fluid.layers.fc(input=x_t_data, size=30)
805 806
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
807 808 809 810 811 812 813 814 815 816 817 818

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
819
    size = size // 3
Y
Yu Yang 已提交
820 821

    # create weight
822 823
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
824

825 826 827 828
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
829
    # create bias
830
    if helper.bias_attr:
Y
Yu Yang 已提交
831 832 833
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
834
        inputs['Bias'] = bias
Y
Yu Yang 已提交
835 836 837

    helper.append_op(
        type='gru_unit',
838
        inputs=inputs,
Y
Yu Yang 已提交
839 840 841 842 843 844
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
845 846
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
847 848 849 850 851
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
852
@templatedoc()
853
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
854 855 856 857 858 859 860
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
861
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
862 863 864 865
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
866 867 868
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
869 870

    """
Y
Yu Yang 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
896
@templatedoc()
897
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
898 899 900 901 902
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
903

Y
yuyang18 已提交
904
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
905

Y
yuyang18 已提交
906 907 908
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
909
        Variable: ${viterbi_path_comment}
910

Y
yi.wu 已提交
911 912 913 914 915
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
916
    """
Y
Yu Yang 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
930
@templatedoc()
F
fengjiayi 已提交
931
def cos_sim(X, Y):
Y
Yu Yang 已提交
932
    """
Y
yi.wu 已提交
933 934 935
    ${comment}

    Args:
936 937
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
938

Y
yi.wu 已提交
939
    Returns:
940
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
941
    """
F
fengjiayi 已提交
942
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


956
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
957 958 959 960 961
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
962
    training. The dropout operator randomly sets (according to the given dropout
963 964 965 966
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
967 968
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
969 970 971 972 973 974 975
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
976 977

    Returns:
978
        Variable: A tensor variable is the shape with `x`.
979 980

    Examples:
981

982 983
        .. code-block:: python

984 985
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
986 987
    """

F
fengjiayi 已提交
988
    helper = LayerHelper('dropout', **locals())
989 990
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
991 992 993 994

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

995 996 997 998 999
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1000 1001 1002 1003 1004 1005
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1006 1007 1008
    return out


1009
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1010
    """
Y
Yibing Liu 已提交
1011 1012
    **Cross Entropy Layer**

1013 1014 1015
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1016 1017

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1018
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1019

Y
Yibing Liu 已提交
1020
        .. math::
Y
yangyaming 已提交
1021

Y
Yibing Liu 已提交
1022 1023 1024
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1025 1026
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1027 1028 1029 1030 1031

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1032
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1033 1034 1035
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1036 1037
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1038
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1039

Y
Yibing Liu 已提交
1040
    Args:
Y
yangyaming 已提交
1041
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1042 1043 1044 1045
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1046
        label (Variable|list): the ground truth which is a 2-D tensor. When
1047 1048 1049 1050
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1051
        soft_label (bool): a flag indicating whether to
1052
                                           interpretate the given labels as soft
1053
                                           labels. Default: `False`.
M
minqiyang 已提交
1054 1055
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1056
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1057 1058 1059 1060 1061

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1062 1063 1064 1065 1066
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1067 1068 1069 1070 1071 1072

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1073
    """
F
fengjiayi 已提交
1074
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1075 1076 1077 1078 1079 1080
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1081 1082
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1083 1084 1085
    return out


F
fengjiayi 已提交
1086
def square_error_cost(input, label):
Y
Yu Yang 已提交
1087
    """
1088 1089
    **Square error cost layer**

1090 1091
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1106 1107
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1108 1109

    Returns:
G
guosheng 已提交
1110
        Variable: The tensor variable storing the element-wise squared error \
1111
                  difference of input and label.
1112 1113 1114 1115 1116 1117 1118 1119

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1120
    """
F
fengjiayi 已提交
1121
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1131 1132
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1133 1134 1135
    return square_out


Y
yi.wu 已提交
1136
@templatedoc()
Y
Yu Yang 已提交
1137 1138 1139 1140
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1141
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1142
    """
Y
yi.wu 已提交
1143
    **Chunk Evaluator**
Y
yi.wu 已提交
1144

Y
yangyaming 已提交
1145
    This function computes and outputs the precision, recall and
1146
    F1-score of chunk detection.
Y
yi.wu 已提交
1147

Y
yi.wu 已提交
1148 1149 1150 1151 1152 1153 1154 1155
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1156

Y
yi.wu 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1182

Y
yi.wu 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1207
    Args:
1208 1209 1210 1211 1212
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1213

Y
yi.wu 已提交
1214
    Returns:
Y
update  
yi.wu 已提交
1215 1216 1217
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1218

Y
yi.wu 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1231
    """
F
fengjiayi 已提交
1232
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1233 1234 1235 1236 1237

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1238 1239 1240
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1249 1250 1251 1252
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1253 1254 1255
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1256 1257
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1258
        })
1259 1260
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1261 1262


1263
@templatedoc()
Y
Yu Yang 已提交
1264 1265 1266 1267 1268 1269 1270
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1271
                  act=None):
Y
Yu Yang 已提交
1272 1273 1274 1275
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1286

1287 1288
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1307
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1308 1309 1310 1311 1312 1313
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1314
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1315 1316 1317
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1318
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1337
        library is installed. Default: False
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1361
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1362
    """
1363
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1364
    has the same shape as the input.
Q
qiaolongfei 已提交
1365

1366 1367 1368 1369 1370 1371
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1372
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1373 1374 1375 1376 1377 1378 1379

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1380
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1415 1416 1417
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1418 1419
           stride=1,
           padding=0,
1420
           dilation=1,
Y
Yu Yang 已提交
1421 1422 1423
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1424
           use_cudnn=True,
1425 1426
           act=None,
           name=None):
Y
Yu Yang 已提交
1427
    """
C
chengduoZH 已提交
1428
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1429 1430
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1431
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1432 1433 1434 1435 1436 1437 1438
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1439 1440 1441
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1442

1443
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1444

C
chengduoZH 已提交
1445 1446
    .. math::

C
refine  
chengduoZH 已提交
1447
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1448

T
tensor-tang 已提交
1449
    Where:
C
chengduoZH 已提交
1450

1451 1452 1453 1454 1455
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1456
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1457 1458 1459

    Example:

1460 1461
        - Input:

W
weixing02 已提交
1462
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1463

W
weixing02 已提交
1464
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1465

1466
        - Output:
T
tensor-tang 已提交
1467

W
weixing02 已提交
1468
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1469

C
chengduoZH 已提交
1470
        Where
1471 1472

        .. math::
C
chengduoZH 已提交
1473

W
weixing02 已提交
1474 1475
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1476 1477

    Args:
1478
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1479
        num_filters(int): The number of filter. It is as same as the output
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1505 1506

    Returns:
G
guosheng 已提交
1507
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1508 1509
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1510
    Raises:
1511 1512
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1513

C
chengduoZH 已提交
1514 1515 1516
    Examples:
        .. code-block:: python

1517 1518
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1519 1520 1521
    """

    num_channels = input.shape[1]
1522 1523

    l_type = 'conv2d'
X
xzl 已提交
1524 1525
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1526
        l_type = 'depthwise_conv2d'
1527 1528 1529 1530

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1531 1532 1533 1534 1535
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1536
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1537

C
chengduoZH 已提交
1538 1539 1540
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1541
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1542

C
chengduoZH 已提交
1543 1544
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1545 1546

    input_shape = input.shape
M
minqiyang 已提交
1547
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1562
        type=l_type,
Y
Yu Yang 已提交
1563 1564 1565 1566 1567
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1568 1569 1570
        attrs={
            'strides': stride,
            'paddings': padding,
1571
            'dilations': dilation,
C
chengduoZH 已提交
1572
            'groups': groups,
1573
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1574
            'use_mkldnn': False
C
chengduoZH 已提交
1575
        })
Y
Yu Yang 已提交
1576 1577 1578 1579 1580 1581

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1599 1600 1601 1602 1603 1604
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1614 1615
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1616 1617 1618
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1619
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1645
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1646 1647
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1648
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1649 1650
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1651
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1652 1653
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1654
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1680 1681
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1696
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1734
            'use_mkldnn': False
C
chengduoZH 已提交
1735 1736
        })

1737
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1738 1739 1740 1741

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1742
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1743
    """
Y
yangyaming 已提交
1744 1745 1746
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1758
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1759 1760 1761 1762 1763
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1764
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1765 1766 1767 1768 1769 1770 1771

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1772 1773
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1774

L
Luo Tao 已提交
1775 1776
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1777
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1778 1779 1780 1781 1782 1783 1784 1785
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1786

Y
yangyaming 已提交
1787
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1788 1789 1790 1791 1792
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1793 1794
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1795
    """
F
fengjiayi 已提交
1796
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1808 1809 1810 1811 1812
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1813 1814 1815
    return pool_out


C
add doc  
chengduoZH 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1841
def sequence_first_step(input):
L
Luo Tao 已提交
1842
    """
L
Luo Tao 已提交
1843
    This function gets the first step of sequence.
L
Luo Tao 已提交
1844 1845 1846 1847

    .. code-block:: text

       x is a 1-level LoDTensor:
1848
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1849 1850 1851 1852 1853
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1854
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1855
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1856

L
Luo Tao 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1866

Y
yangyaming 已提交
1867
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1868 1869 1870
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1871 1872 1873
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1874
def sequence_last_step(input):
L
Luo Tao 已提交
1875
    """
L
Luo Tao 已提交
1876
    This function gets the last step of sequence.
L
Luo Tao 已提交
1877 1878 1879 1880

    .. code-block:: text

       x is a 1-level LoDTensor:
1881
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1882 1883 1884 1885 1886
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1887
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1888
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1889

L
Luo Tao 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1899

Y
yangyaming 已提交
1900
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1901 1902 1903
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1904 1905 1906
    return sequence_pool(input=input, pool_type="last")


1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),

            with offset.data = [[0], [1]] and length.data = [[2], [1]],

            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
	
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
    
    Args:
        input(Variable): The input Variable which consists of the complete 
                         sequences.
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The output subsequences.

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
1977
@templatedoc()
Y
Yu Yang 已提交
1978
def pool2d(input,
C
chengduoZH 已提交
1979 1980
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1981 1982
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1983
           global_pooling=False,
C
chengduoZH 已提交
1984
           use_cudnn=True,
1985
           ceil_mode=False,
C
caoying03 已提交
1986
           name=None):
Y
Yu Yang 已提交
1987
    """
F
fengjiayi 已提交
1988
    ${comment}
1989 1990

    Args:
1991 1992 1993
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1994
                          feature, and W is the width of the feature.
1995
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1996
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1997
        pool_type: ${pooling_type_comment}
1998 1999
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2000 2001 2002
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2003
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2004 2005
                        layer will be named automatically.

2006
    Returns:
F
fengjiayi 已提交
2007
        Variable: The pooling result.
F
fengjiayi 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2021 2022 2023 2024
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2025
                            global_pooling=False)
Y
Yu Yang 已提交
2026 2027 2028 2029 2030
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2031

C
chengduoZH 已提交
2032 2033 2034 2035 2036
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2037 2038 2039 2040
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2041 2042
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2043

C
Add doc  
chengduoZH 已提交
2044
    l_type = 'pool2d'
2045 2046

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2047 2048 2049 2050
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2062
            "use_mkldnn": False
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2079
    pooling configurations mentioned in input parameters.
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2092

2093
    Returns:
2094
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2095 2096 2097 2098 2099
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2100

C
chengduoZH 已提交
2101 2102 2103 2104 2105
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2106 2107 2108
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2109

C
chengduoZH 已提交
2110 2111
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2112

2113 2114
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2115 2116 2117 2118
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2119
        type=l_type,
Y
Yu Yang 已提交
2120 2121 2122 2123 2124 2125 2126
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2127
            "paddings": pool_padding,
2128
            "use_cudnn": use_cudnn,
2129
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2130
            "use_mkldnn": False
Y
Yu Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2143
               data_layout='NCHW',
Y
Yang Yang 已提交
2144
               in_place=False,
2145 2146
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2147
               moving_variance_name=None,
2148 2149
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2150
    """
Q
qiaolongfei 已提交
2151 2152 2153 2154
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2155

Q
qiaolongfei 已提交
2156
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2157

Q
qiaolongfei 已提交
2158 2159
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2160 2161 2162
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2175 2176

    Args:
Q
qiaolongfei 已提交
2177
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2178 2179 2180 2181
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2182 2183 2184
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2185
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2186 2187 2188 2189
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2190
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2191
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2192 2193

    Returns:
Q
qiaolongfei 已提交
2194
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2195 2196 2197 2198 2199 2200 2201

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2225
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2226

2227 2228
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2229 2230 2231
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2232
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2233
        shape=param_shape,
2234 2235 2236 2237 2238 2239 2240
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2241
            trainable=False,
W
wanghaoshuang 已提交
2242
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2243
        shape=param_shape,
2244 2245
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2252 2253
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2254

2255
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2273 2274 2275 2276
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2277
            "use_mkldnn": False,
2278
            "fuse_with_relu": fuse_with_relu
2279
        })
Y
Yu Yang 已提交
2280 2281 2282 2283

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2284
@templatedoc()
G
guosheng 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2295
    ${comment}
G
guosheng 已提交
2296 2297 2298

    The formula is as follows:

Y
yuyang18 已提交
2299
    ..  math::
G
guosheng 已提交
2300 2301 2302 2303 2304 2305 2306

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2307 2308 2309 2310 2311 2312 2313 2314
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2315

G
guosheng 已提交
2316 2317
    Args:
        input(Variable): The input tensor variable.
2318
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2319
            normalization.
2320
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2321
            normalization.
2322
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2323
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2324
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2325 2326 2327 2328 2329 2330
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2331
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2332 2333

    Returns:
Y
yuyang18 已提交
2334
        ${y_comment}
G
guosheng 已提交
2335 2336 2337

    Examples:

Y
yuyang18 已提交
2338 2339 2340
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2356
    if shift:
G
guosheng 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2381 2382 2383 2384
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2385 2386 2387
                     padding=0,
                     stride=1,
                     dilation=1,
2388
                     groups=None,
C
caoying03 已提交
2389
                     param_attr=None,
2390
                     bias_attr=None,
C
chengduoZH 已提交
2391
                     use_cudnn=True,
2392
                     act=None,
C
caoying03 已提交
2393
                     name=None):
Y
Yu Yang 已提交
2394
    """
2395 2396 2397 2398 2399 2400 2401 2402
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2403 2404
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2405 2406 2407
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2408 2409 2410 2411 2412

    For each input :math:`X`, the equation is:

    .. math::

2413
        Out = \sigma (W \\ast X + b)
2414

2415
    Where:
2416 2417 2418

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2419 2420 2421 2422
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2423

2424 2425 2426 2427
    Example:

        - Input:

2428
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2429

2430
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2431 2432 2433

        - Output:

2434
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2435 2436

        Where
Y
Yu Yang 已提交
2437

2438 2439
        .. math::

2440 2441 2442 2443
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2444 2445

    Args:
2446 2447 2448 2449
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2450 2451 2452 2453
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2481 2482

    Returns:
2483
        Variable: The tensor variable storing the convolution transpose result.
2484 2485

    Raises:
2486 2487
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2488 2489 2490 2491

    Examples:
       .. code-block:: python

2492 2493
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2494
    """
2495 2496 2497 2498 2499 2500 2501 2502 2503

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2504 2505 2506
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2507 2508 2509
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2510

C
chengduoZH 已提交
2511 2512
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2513

Y
Yu Yang 已提交
2514 2515 2516 2517 2518
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2519

Y
Yu Yang 已提交
2520 2521
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2522

C
chengduoZH 已提交
2523
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2524
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2525
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2526
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2527
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2528 2529 2530
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2531 2532 2533 2534 2535 2536 2537
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2538
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2539
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2540 2541 2542
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2543
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2544
    helper.append_op(
2545
        type=op_type,
Y
Yu Yang 已提交
2546 2547
        inputs={'Input': [input],
                'Filter': [img_filter]},
2548
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2549
        attrs={
2550
            'output_size': output_size,
2551 2552 2553 2554 2555
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2556 2557
        })

2558 2559 2560
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2561 2562


2563
def conv3d_transpose(input,
Y
Yu Yang 已提交
2564 2565 2566
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2567 2568 2569
                     padding=0,
                     stride=1,
                     dilation=1,
2570
                     groups=None,
C
caoying03 已提交
2571
                     param_attr=None,
2572
                     bias_attr=None,
C
chengduoZH 已提交
2573
                     use_cudnn=True,
2574
                     act=None,
C
caoying03 已提交
2575
                     name=None):
Y
Yu Yang 已提交
2576
    """
2577
    **Convlution3D transpose layer**
2578

2579
    The convolution3D transpose layer calculates the output based on the input,
2580
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2581 2582 2583 2584 2585 2586
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2587 2588 2589
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2590 2591 2592 2593 2594

    For each input :math:`X`, the equation is:

    .. math::

2595
        Out = \sigma (W \\ast X + b)
2596 2597 2598

    In the above equation:

2599 2600
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2601 2602 2603 2604
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2605

2606 2607 2608 2609
    Example:

        - Input:

2610
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2611

2612
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2613 2614 2615

        - Output:

2616
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2617 2618

        Where
Y
Yu Yang 已提交
2619

2620 2621
        .. math::

2622 2623 2624
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2625 2626

    Args:
2627
        input(Variable): The input image with [N, C, D, H, W] format.
2628 2629 2630
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2631
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2632 2633
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2634
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2635 2636 2637
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2638 2639
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2640
        stride(int|tuple): The stride size. If stride is a tuple, it must
2641 2642
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2643
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2644 2645 2646
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2647 2648 2649 2650 2651
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2652 2653 2654
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2655 2656 2657 2658 2659
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2660 2661

    Returns:
2662
        Variable: The tensor variable storing the convolution transpose result.
2663 2664

    Raises:
2665 2666
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2667 2668 2669 2670

    Examples:
       .. code-block:: python

2671 2672
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2673
    """
2674 2675
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2676
    if not isinstance(input, Variable):
2677
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2678 2679
    input_channel = input.shape[1]

2680 2681 2682
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2683

C
chengduoZH 已提交
2684 2685 2686
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2687 2688 2689 2690 2691 2692
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2693 2694 2695
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2696

2697
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2698
                         padding[0] - 1) // dilation[0] + 1
2699
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2700
                         padding[1] - 1) // dilation[1] + 1
2701
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2702
                         padding[2] - 1) // dilation[2] + 1
2703
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2704
    else:
2705 2706
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2707

2708
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2709
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2710 2711 2712
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2713
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2714
    helper.append_op(
2715
        type=l_type,
Y
Yu Yang 已提交
2716 2717
        inputs={'Input': [input],
                'Filter': [img_filter]},
2718
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2719 2720 2721 2722
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2723
            'groups': groups,
C
chengduoZH 已提交
2724 2725
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2726

2727 2728
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2729
    return out
Y
yangyaming 已提交
2730 2731


Y
yangyaming 已提交
2732
def sequence_expand(x, y, ref_level=-1, name=None):
2733
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2734 2735 2736 2737
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2738 2739 2740 2741 2742

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2743
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2744
                x.data = [[a], [b], [c], [d]]
2745 2746 2747
                x.dims = [4, 1]

            y is a LoDTensor:
2748 2749
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2750

Y
yangyaming 已提交
2751
            ref_level: 0
2752

Y
yangyaming 已提交
2753
            then output is a 1-level LoDTensor:
2754
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2755
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2756 2757 2758 2759
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2760
                x.data = [[a], [b], [c]]
2761 2762 2763
                x.dims = [3, 1]

            y is a LoDTensor:
2764
                y.lod = [[2, 0, 3]]
2765

Y
yangyaming 已提交
2766
            ref_level: -1
2767

Y
yangyaming 已提交
2768 2769 2770
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2771 2772 2773
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2774 2775
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2776
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2777
                        will be named automatically.
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2788
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2789
    """
Y
yangyaming 已提交
2790
    helper = LayerHelper('sequence_expand', input=x, **locals())
2791 2792 2793
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2794 2795 2796 2797 2798
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2799
    return tmp
2800 2801


C
chengduo 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2867
@templatedoc()
2868
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2869 2870 2871 2872 2873
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2874 2875 2876
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2877
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2878 2879 2880 2881
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2882 2883 2884
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2885

F
fengjiayi 已提交
2886
    Returns:
M
minqiyang 已提交
2887
        Variable: The padded sequence batch and the original lengths before
2888
                  padding. All sequences has the same length.
M
minqiyang 已提交
2889

F
fengjiayi 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2904 2905 2906 2907 2908
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2909 2910 2911 2912 2913 2914
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2915 2916
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2917
        attrs={'padded_length': maxlen})
2918
    return out, length
F
fengjiayi 已提交
2919 2920


2921
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
2922
    """
2923
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
2939
	specified by input Variable **length**:
Y
Yibing Liu 已提交
2940 2941 2942 2943 2944 2945

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
2946
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
2947 2948 2949 2950 2951 2952

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
2953 2954
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


2981 2982 2983 2984 2985 2986 2987 2988 2989
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2990 2991
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2992 2993 2994

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2995 2996

    This layer does the search in beams for one time step. Specifically, it
2997 2998 2999 3000 3001 3002
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3003

3004 3005 3006 3007 3008 3009 3010 3011
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3012

3013
    Args:
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3039

3040
    Returns:
3041 3042
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3043 3044 3045 3046

    Examples:
        .. code-block:: python

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3075
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3093 3094 3095 3096 3097 3098 3099
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3110

3111 3112 3113 3114 3115 3116
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3143 3144 3145 3146
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3147
              param_attr=None,
C
caoying03 已提交
3148 3149
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3150 3151 3152 3153
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3154
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3155

3156
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3157

3158
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3159

3160
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3161 3162 3163

            h_t & = o_t tanh(c_t)

3164 3165 3166 3167 3168 3169
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3170 3171 3172

        .. math::

3173
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3174 3175 3176 3177 3178 3179 3180 3181

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3182
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3183 3184

    Args:
Y
yangyaming 已提交
3185 3186 3187 3188 3189 3190
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3191
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3192 3193
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3194 3195
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3196 3197
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3198 3199

    Returns:
Y
yangyaming 已提交
3200
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3201 3202

    Raises:
3203 3204 3205 3206
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3207 3208 3209 3210 3211 3212

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3213
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3214
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3215
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3232
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3233 3234 3235 3236
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3237 3238
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3239 3240 3241
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3242
    size = cell_t_prev.shape[1]
3243
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3244 3245
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3246
                param_attr=param_attr,
3247
                bias_attr=bias_attr)
Y
yangyaming 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3260
    return h, c
G
guosheng 已提交
3261 3262


C
caoying03 已提交
3263
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3264
    """
Y
yangyaming 已提交
3265
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3266 3267 3268

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3269
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3270 3271
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3272 3273
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3274
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3275
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3276
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3277 3278
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3279 3280 3281

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3282

G
guosheng 已提交
3283 3284 3285 3286 3287 3288
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3289
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3290 3291 3292 3293
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3294 3295 3296 3297

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3298
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3299 3300 3301
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3302 3303 3304
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3305 3306
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3307 3308 3309 3310 3311
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3312
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3313 3314 3315 3316
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3317 3318


C
caoying03 已提交
3319
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3320
    """
Y
Yibing Liu 已提交
3321
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3322 3323 3324

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3325 3326 3327
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3328
            must be in the range :math:`[-rank(input), rank(input))`. If
3329
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3330
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3331 3332
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3333
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3334
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3335
                       will be named automatically.
G
guosheng 已提交
3336 3337

    Returns:
Y
Yibing Liu 已提交
3338
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3339

G
guosheng 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3350 3351
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3352 3353 3354 3355 3356 3357 3358

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3359 3360 3361
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3362 3363
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3364 3365 3366 3367 3368
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3369
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3370 3371 3372 3373
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3374 3375


C
caoying03 已提交
3376
def reduce_max(input, dim=None, keep_dim=False, name=None):
3377
    """
Y
yangyaming 已提交
3378
    Computes the maximum of tensor elements over the given dimension.
3379 3380 3381

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3382
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3383 3384 3385
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3386
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3387 3388
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3389
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3390 3391
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3392 3393 3394

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3395

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3407 3408 3409 3410 3411 3412 3413

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3414 3415 3416
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3417 3418
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3419 3420 3421 3422 3423
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3424
            'dim': dim if dim != None else [0],
3425 3426 3427 3428 3429 3430
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3431
def reduce_min(input, dim=None, keep_dim=False, name=None):
3432
    """
Y
yangyaming 已提交
3433
    Computes the minimum of tensor elements over the given dimension.
3434 3435 3436

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3437
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3438 3439 3440
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3441
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3442 3443
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3444
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3445 3446
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3447 3448 3449

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3462 3463 3464 3465 3466 3467 3468

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3469 3470 3471
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3472 3473
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3474 3475 3476 3477 3478
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3479
            'dim': dim if dim != None else [0],
3480 3481 3482 3483
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3484 3485


3486 3487 3488 3489 3490 3491
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3492
        dim (list|int|None): The dimensions along which the product is performed. If
3493 3494
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3495 3496
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3497 3498 3499
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3500
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3501
            layer will be named automatically.
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3516
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3517
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3518 3519 3520 3521 3522 3523 3524

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3525 3526 3527
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3528 3529
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3530 3531 3532 3533 3534
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3535
            'dim': dim if dim != None else [0],
3536 3537 3538 3539 3540 3541
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3542
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3543
    """
C
caoying03 已提交
3544
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3545 3546 3547

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3548 3549 3550 3551 3552
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3553
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3554
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3555
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3556 3557
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3558 3559

    Returns:
D
dzhwinter 已提交
3560
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3570 3571
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3610
    .. math::
3611 3612

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3613 3614 3615 3616 3617

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3618
        x(Variable|list): The input tensor to l2_normalize layer.
3619
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3620 3621
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3622
        epsilon(float): The epsilon value is used to avoid division by zero, \
3623
            the defalut value is 1e-10.
3624
        name(str|None): A name for this layer(optional). If set None, the layer \
3625
            will be named automatically.
C
caoying03 已提交
3626 3627

    Returns:
3628
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3629 3630

    Examples:
3631

C
caoying03 已提交
3632 3633
        .. code-block:: python

3634 3635 3636 3637
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3638 3639
    """

F
fengjiayi 已提交
3640 3641
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3642 3643
    helper = LayerHelper("l2_normalize", **locals())

3644 3645
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3646
    helper.append_op(
3647 3648 3649 3650
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3651
        attrs={
3652 3653
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3654 3655
        })
    return out
3656 3657


S
sneaxiy 已提交
3658
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3659
    """
Y
ying 已提交
3660 3661 3662 3663
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3664

C
chengduoZH 已提交
3665
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3666
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3667

3668 3669 3670 3671 3672
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3673
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3674

C
chengduoZH 已提交
3675
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3676
      performs in the following way.
G
guosheng 已提交
3677

3678
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3679
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3680
        last two dimensions and a batched matrix multiply supporting broadcast
3681
        applies on the two tensors.
G
guosheng 已提交
3682

Y
ying 已提交
3683 3684
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3685
    removed after matrix multiplication.
G
guosheng 已提交
3686 3687 3688

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3689 3690 3691
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3692
        alpha (float): The scale of output. Default 1.0.
3693
        name(str|None): A name for this layer(optional). If set None, the layer
3694
            will be named automatically.
G
guosheng 已提交
3695 3696

    Returns:
3697
        Variable: The product Tensor variable.
G
guosheng 已提交
3698

G
guosheng 已提交
3699 3700 3701
    Examples:
        .. code-block:: python

3702
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3703 3704
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3705

3706 3707
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3708

3709 3710
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3711

3712 3713
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3714 3715 3716 3717

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3718 3719
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3720

Y
ying 已提交
3721
            # x: [M], y: [N]
3722
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3723
    """
Y
ying 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3736
            y_shape = y_shape + [1]
Y
ying 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3753
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3754
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3755
    helper.append_op(
3756 3757 3758 3759
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3760 3761 3762
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3763
            'alpha': float(alpha),
S
sneaxiy 已提交
3764
        })
3765
    return out
3766 3767


3768
def topk(input, k, name=None):
Q
qingqing01 已提交
3769 3770 3771 3772
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3773
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3774 3775 3776 3777 3778 3779
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3801 3802 3803
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3804
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3805
                 of input.
3806
        name(str|None): A name for this layer(optional). If set None, the layer
3807
                       will be named automatically.
F
fengjiayi 已提交
3808
                       Default: None
Q
qingqing01 已提交
3809 3810

    Returns:
3811 3812 3813
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3814
        within the last dimension of input.
Q
qingqing01 已提交
3815

F
fengjiayi 已提交
3816 3817
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3838
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3839
    """
Y
ying 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3849

Y
ying 已提交
3850
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3851

3852
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3853 3854
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3855
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3856

3857
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3858 3859
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3860

3861 3862 3863
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3864
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3865
                          the length of reference string.
3866
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3867
                                     calculating edit distance.
3868
        name (str): The name of this layer. It is optional.
3869

W
wanghaoshuang 已提交
3870
    Returns:
W
wanghaoshuang 已提交
3871
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3872 3873 3874 3875 3876

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3877
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3878
            cost = fluid.layers.edit_distance(input=x,label=y)
3879
    """
3880
    helper = LayerHelper("edit_distance", **locals())
3881

3882
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3883
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3884 3885 3886 3887 3888 3889 3890
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3891
            attrs={"tokens": ignored_tokens})
3892 3893 3894 3895 3896
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3897
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3898
            attrs={"tokens": ignored_tokens})
3899 3900
        label = erased_label

3901 3902
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3903
    sequence_num = helper.create_tmp_variable(dtype="int64")
3904 3905 3906 3907
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3908 3909
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3910 3911
        attrs={"normalized": normalized})

3912
    return edit_distance_out, sequence_num
3913 3914 3915 3916 3917


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3918

Y
ying 已提交
3919 3920 3921 3922
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3940
        input.lod = [[4, 4]]
3941 3942 3943 3944 3945 3946 3947

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3948
        output.lod = [[2, 1]]
3949 3950 3951

    Args:

Y
ying 已提交
3952 3953 3954 3955 3956 3957 3958 3959 3960
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3961
        name (str): The name of this layer. It is optional.
3962 3963

    Returns:
3964
        Variable: CTC greedy decode result. If all the sequences in result were
3965
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3966 3967 3968 3969 3970

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3971

3972
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3973
    """
3974
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3975
    _, topk_indices = topk(input, k=1)
3976 3977 3978 3979 3980 3981

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3982
        outputs={"Output": [ctc_out]},
3983 3984
        attrs={"merge_repeated": True,
               "blank": blank})
3985
    return ctc_out
3986 3987


F
fengjiayi 已提交
3988
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3989
    """
3990 3991
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3992
    to compute Connectionist Temporal Classification (CTC) loss.
3993 3994
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3995 3996 3997
    input tensor.

    Args:
3998
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3999 4000 4001 4002
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4003
       label (Variable): The ground truth of variable-length sequence,
4004 4005 4006
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4007 4008
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4009 4010 4011
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4012
         follewed by a mean_op.
W
wanghaoshuang 已提交
4013 4014

    Returns:
4015 4016
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4017 4018

    Examples:
4019

W
wanghaoshuang 已提交
4020
        .. code-block:: python
4021

4022 4023 4024
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4025 4026

    """
F
fengjiayi 已提交
4027
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4054 4055 4056
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4057 4058 4059 4060 4061
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4062

4063
            out.lod  = [[0, 1, 3]]
4064 4065 4066 4067

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4068 4069 4070 4071 4072 4073 4074
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4075 4076 4077

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4078 4079

    Returns:
4080

4081 4082 4083 4084 4085
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4086
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4087
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4088 4089 4090 4091 4092 4093 4094 4095 4096
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4097 4098


4099 4100 4101 4102
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4103 4104 4105 4106 4107 4108 4109
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4110 4111 4112 4113 4114 4115 4116
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4117 4118
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4119
            sample is 1.0.
4120 4121 4122
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4123

4124
    Returns:
Y
Yibing Liu 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4152
    """
Y
Yang Yu 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4172 4173 4174 4175 4176 4177 4178 4179 4180
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4197
    return cost / (num_neg_samples + 1)
4198 4199


G
guosheng 已提交
4200
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4201 4202
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4203
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4204 4205 4206 4207 4208 4209 4210 4211 4212
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4213

W
weixing02 已提交
4214
    Args:
M
minqiyang 已提交
4215
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4216 4217 4218 4219 4220
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4221 4222
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4223
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4224 4225
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4226 4227 4228 4229 4230 4231 4232 4233

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4234 4235 4236
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4237 4238 4239 4240 4241 4242 4243 4244
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4245
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4246 4247 4248 4249 4250
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4251 4252 4253 4254 4255 4256 4257 4258
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4259 4260
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4261
        inputs=inputs,
W
weixing02 已提交
4262 4263 4264 4265 4266 4267
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4268
def transpose(x, perm, name=None):
Y
ying 已提交
4269 4270 4271 4272 4273 4274 4275
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4276 4277 4278
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4279 4280 4281 4282 4283 4284 4285 4286

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4287
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4288 4289
    """

Y
fix ci.  
ying 已提交
4290
    if len(perm) != len(x.shape):
Y
ying 已提交
4291 4292 4293
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4294 4295 4296 4297 4298 4299
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4300 4301

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4302
    out = helper.create_tmp_variable(x.dtype)
4303
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4304
    helper.append_op(
4305
        type='transpose2',
Y
fix ci.  
ying 已提交
4306
        inputs={'X': [x]},
4307 4308
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4309 4310
        attrs={'axis': perm})
    return out
4311 4312


4313 4314 4315 4316 4317 4318 4319
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4320
    """
4321 4322 4323 4324 4325 4326 4327
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4356 4357 4358 4359 4360 4361 4362 4363 4364
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4365 4366 4367
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4368 4369 4370 4371 4372
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4400 4401 4402
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4415
            output.dims = {8, 8}
4416

4417
            output.lod = [[4, 4]]
4418

D
dzhwinter 已提交
4419
     Examples:
4420 4421 4422

        .. code-block:: python

4423 4424
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4425 4426

    """
W
wanghaoshuang 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4437 4438 4439 4440 4441 4442 4443
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4444
    helper = LayerHelper('im2sequence', **locals())
4445 4446
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4447
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4448
    return out
4449 4450


Y
yuyang18 已提交
4451
@templatedoc()
4452
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4453 4454
    """
    ${comment}
4455 4456

    Args:
Y
yuyang18 已提交
4457
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4458 4459
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4460 4461 4462 4463 4464
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4465
        ${out_comment}.
4466 4467

    Examples:
Y
yuyang18 已提交
4468 4469 4470 4471
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4484
    return helper.append_activation(out)
4485 4486


Y
yuyang18 已提交
4487
@templatedoc()
4488 4489
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4490 4491 4492 4493 4494 4495 4496
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4497 4498

    Args:
Y
yuyang18 已提交
4499 4500
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4501 4502

    Returns:
Y
yuyang18 已提交
4503
        ${out_comment}.
4504 4505
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4506 4507 4508 4509 4510 4511

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4512 4513 4514 4515 4516 4517
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4518 4519


4520 4521 4522 4523
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4524 4525
    """
    **Softmax With Cross Entropy Operator.**
4526

4527 4528 4529 4530
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4531

4532 4533 4534
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4535

4536 4537 4538
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4539

4540
    The equation is as follows:
4541

4542
    1) Hard label (one-hot label, so every sample has exactly one class)
4543

4544 4545 4546 4547
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4548

4549 4550 4551
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4552

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4565 4566
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4567 4568
                            if soft_label is set to False. Default: -100

4569 4570 4571 4572 4573 4574 4575 4576 4577
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4578 4579
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4590 4591
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4592 4593 4594 4595 4596
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4597 4598
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4599
    For each instance, it computes the smooth L1 loss element by element first
4600
    and then sums all the losses. So the shape of ouput Variable is
4601
    [batch_size, 1].
4602

4603 4604
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4605
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4606
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4607
            L1 loss op with same shape as :attr:`x`.
4608
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4609 4610
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4611
            by this tensor element by element.
4612
        outside_weight (Variable|None): A tensor with rank at least 2. This
4613 4614
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4615
            element by element.
4616
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4617 4618
           scalar with default value 1.0.

4619
    Returns:
4620
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4621 4622 4623 4624 4625

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4626 4627
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4628
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4629
            out = fluid.layers.smooth_l1(x=fc, y=label)
4630
    """
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4647 4648 4649 4650


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4651
    This layer creates the one-hot representations for input indices.
4652 4653

    Args:
Y
Yibing Liu 已提交
4654 4655
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4656 4657

    Returns:
Y
Yibing Liu 已提交
4658
        Variable: The one-hot representations of input.
4659 4660

    Examples:
C
caoying03 已提交
4661
        .. code-block:: python
4662

Y
Yibing Liu 已提交
4663 4664
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4665 4666 4667 4668 4669 4670 4671 4672 4673
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4674 4675


Y
Yu Yang 已提交
4676
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4677
    """
Y
yi.wu 已提交
4678 4679 4680
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4681 4682 4683 4684 4685 4686

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4687 4688
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4689 4690 4691 4692 4693 4694

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4695 4696
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4697 4698
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4699 4700 4701 4702 4703
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4704
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4705
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4706 4707
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4708 4709
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4710 4711 4712
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4713 4714


4715
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4716
    """
C
caoying03 已提交
4717 4718
    Gives a new shape to the input Tensor without changing its data.

4719 4720 4721 4722 4723
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4724

4725
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4726

4727 4728 4729 4730
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4731
    2. 0 means the actual dimension value is going to be copied from the
4732 4733 4734 4735
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4736 4737

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4738
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4739
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4740

4741
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4742 4743
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4744 4745
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4746
    dimensions.
C
caoying03 已提交
4747

4748
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4749 4750 4751 4752
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4753 4754

    Args:
4755
        x(variable): The input tensor.
C
caoying03 已提交
4756 4757
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4758 4759 4760 4761 4762
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4763
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4764 4765 4766 4767
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4768
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4769

4770 4771
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4772

X
Xin Pan 已提交
4773 4774 4775
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4776 4777
    Examples:
        .. code-block:: python
G
guosheng 已提交
4778

4779
            data = fluid.layers.data(
4780
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4781
            reshaped = fluid.layers.reshape(
4782
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4783 4784 4785
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4786
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4787 4788 4789 4790 4791
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4792

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4808
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4809
    out = helper.create_tmp_variable(dtype=x.dtype)
4810
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4811
    helper.append_op(
4812
        type="reshape2",
X
Xin Pan 已提交
4813
        inputs=inputs,
D
dzhwinter 已提交
4814
        attrs={"shape": shape},
4815 4816
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4817

D
dzhwinter 已提交
4818
    return helper.append_activation(out)
4819

4820

4821
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4822
    """
M
minqiyang 已提交
4823 4824 4825
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4826
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4827

Y
Yibing Liu 已提交
4828 4829
    Examples:
    Case 1:
M
minqiyang 已提交
4830
      Given
Y
Yibing Liu 已提交
4831 4832 4833 4834 4835 4836 4837 4838
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4839
        and
Y
Yibing Liu 已提交
4840 4841 4842
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4843

Y
Yibing Liu 已提交
4844
    Args:
4845
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4846
        axes (list): List of integers, indicating the dimensions to be squeezed.
4847
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4848 4849 4850 4851 4852 4853 4854 4855

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4856
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4857 4858
    """
    helper = LayerHelper("squeeze", **locals())
4859
    out = helper.create_tmp_variable(dtype=input.dtype)
4860
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4861
    helper.append_op(
4862
        type="squeeze2",
4863
        inputs={"X": input},
Y
Yibing Liu 已提交
4864
        attrs={"axes": axes},
4865 4866
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4867

4868 4869 4870
    return out


4871
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4872
    """
M
minqiyang 已提交
4873 4874 4875
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4876

M
minqiyang 已提交
4877 4878
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4879
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4880

Y
Yibing Liu 已提交
4881
    Args:
4882
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4883
        axes (list): List of integers, indicating the dimensions to be inserted.
4884
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4885 4886 4887 4888 4889 4890 4891 4892

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4893
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4894 4895
    """
    helper = LayerHelper("unsqueeze", **locals())
4896
    out = helper.create_tmp_variable(dtype=input.dtype)
4897
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4898
    helper.append_op(
4899
        type="unsqueeze2",
4900
        inputs={"X": input},
Y
Yibing Liu 已提交
4901
        attrs={"axes": axes},
4902 4903
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4904

4905 4906
    return out

4907

Y
yangyaming 已提交
4908
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4909
    """
Y
Yibing Liu 已提交
4910
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4911 4912 4913 4914
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4915
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4916 4917 4918 4919 4920 4921

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4922
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4923 4924 4925
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4926
            target_lod: [4, 2]
Y
yangyaming 已提交
4927 4928

            then we get a 1-level LoDTensor:
4929
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4930 4931 4932 4933 4934 4935
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4936
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4937 4938 4939 4940
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4941
                y.data = [[2, 4]]
Y
yangyaming 已提交
4942 4943 4944
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4945
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4946 4947 4948 4949 4950 4951
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4952
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4953 4954 4955 4956
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4957
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4958 4959 4960 4961
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4962
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4963 4964 4965 4966 4967
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4968
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4969
                           from :attr:`y`.
Y
yangyaming 已提交
4970
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4971
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4972 4973

    Returns:
Y
Yibing Liu 已提交
4974
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4975 4976

    Raises:
Y
Yibing Liu 已提交
4977
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5013
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5042 5043
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5071 5072 5073 5074


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5075
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5076
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5077

G
guosheng 已提交
5078 5079 5080 5081
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5104
                         The length of :attr:paddings must be
G
guosheng 已提交
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5115

G
guosheng 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5130 5131


C
chengduo 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5212 5213 5214 5215 5216 5217 5218
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5219 5220
    called label-smoothing regularization (LSR).

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5244
                              be :math:`(1, class\_num)`.
5245 5246
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5247
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5275 5276


Y
yi.wu 已提交
5277
@templatedoc()
5278 5279
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5280
    ${comment}
5281 5282

    Args:
Y
yi.wu 已提交
5283 5284
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5285 5286 5287
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5288 5289

    Returns:
Y
update  
yi.wu 已提交
5290
        Variable: ${out_comment}.
5291 5292

    Examples:
5293 5294
        .. code-block:: python

5295
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5341 5342
        .. code-block:: python

W
whs 已提交
5343 5344 5345 5346
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5347
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5348 5349 5350 5351 5352 5353
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5354 5355


5356 5357 5358 5359 5360
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5361
    """
Q
qiaolongfei 已提交
5362
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5363

5364
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5365 5366 5367
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5368

5369
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5370

5371
    Args:
5372
        input (Variable): The input tensor of image resize layer,
5373 5374
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5375
        out_shape(list|tuple|Variable|None): Output shape of image resize
5376 5377
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5378
        scale(float|None): The multiplier for the input height or width.
5379 5380 5381
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5382 5383
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5384 5385
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5386 5387

    Returns:
Q
update  
qiaolongfei 已提交
5388 5389
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5390

5391 5392 5393
    Examples:
        .. code-block:: python

5394
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5395
    """
5396 5397 5398 5399
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5400 5401
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5402 5403
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5404 5405 5406 5407

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5408 5409 5410
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5411
    if out_shape is not None:
B
baiyf 已提交
5412 5413 5414
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5415 5416 5417 5418 5419 5420
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5421 5422 5423 5424
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5425 5426
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5427
        type=resample_methods[resample],
5428
        inputs=inputs,
5429 5430 5431 5432
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5433 5434


Y
yuyang18 已提交
5435
@templatedoc(op_type="bilinear_interp")
5436 5437
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5438 5439 5440 5441 5442 5443
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5444

Y
yuyang18 已提交
5445 5446 5447 5448 5449 5450 5451 5452
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5453 5454 5455 5456 5457 5458 5459
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5460 5461 5462
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5463 5464 5465 5466 5467 5468 5469
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5470
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5471

5472
    Returns:
Q
update  
qiaolongfei 已提交
5473
        Variable: The output is a 4-D tensor of the shape
5474
        (num_batches, channls, out_h, out_w).
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5485 5486 5487
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5488 5489 5490
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5491 5492
def gather(input, index):
    """
Q
qiaolongfei 已提交
5493 5494
    **Gather Layer**

5495
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5496 5497 5498 5499
    of X indexed by `index` and concatenate them together.

    .. math::

5500
        Out = X[Index]
W
whs 已提交
5501 5502 5503 5504 5505 5506 5507


    .. code-block:: text


                Given:

5508 5509
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5520
        input (Variable): The source input with rank>=1.
W
whs 已提交
5521 5522 5523 5524 5525 5526
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5527

W
whs 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5657

5658 5659 5660
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5661
    """
F
stash  
fengjiayi 已提交
5662
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5663
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5664
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5665
    if seed is None:
5666
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5667
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5668
    if isinstance(seed, int):
F
fengjiayi 已提交
5669 5670 5671 5672 5673
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5674 5675 5676 5677
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5678
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5679 5680
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5681 5682
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5683
    return out
W
whs 已提交
5684 5685


5686
def log(x, name=None):
W
wanghaoshuang 已提交
5687 5688 5689 5690 5691
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5692
        Out = \\ln(x)
W
wanghaoshuang 已提交
5693 5694

    Args:
5695
        x (Variable): Input tensor.
5696 5697
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5698 5699 5700 5701 5702 5703 5704 5705

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5706
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5707 5708
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5709
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5710
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5711
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5712 5713 5714
    return out


5715
def relu(x, name=None):
W
wanghaoshuang 已提交
5716 5717
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5718
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5719 5720 5721 5722
    the tensor elementwise.

    .. math::

5723
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5724 5725

    Args:
5726
        x (Variable): The input tensor.
5727 5728
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5729 5730 5731 5732 5733 5734 5735 5736

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5737
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5738 5739
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5740
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5741
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5742
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5743
    return out
5744 5745


W
whs 已提交
5746 5747 5748
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5749 5750 5751 5752
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5753
    .. math::
5754 5755

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5756

5757
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5758 5759 5760 5761 5762
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5763
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5764
                           Its shape should be the same as input.
5765
        num_classes (int): The possible number of labels.
W
whs 已提交
5766 5767 5768 5769

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5770
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5771 5772 5773 5774

    Examples:

        .. code-block:: python
5775

W
whs 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5785 5786
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5787
        outputs={
W
whs 已提交
5788 5789 5790
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5791 5792 5793
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5868
                    isinstance(shape, Variable)):
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5902

5903 5904
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5905

5906 5907 5908 5909
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5910

5911 5912 5913 5914 5915
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5916 5917 5918

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5963 5964


M
minqiyang 已提交
5965 5966
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
5967
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
5968
    which compares left score and right score passed in.
M
minqiyang 已提交
5969
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
5970 5971 5972 5973 5974 5975

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
5976
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
5977 5978
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
5979
       margin (float): Indicates the given margin.
M
minqiyang 已提交
5980 5981 5982
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
5983
       Variable: The ranking loss.
M
minqiyang 已提交
5984
    Raises:
M
minqiyang 已提交
5985
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
5986 5987 5988 5989 5990 5991 5992
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
5993
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
5994 5995 5996 5997 5998 5999
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
6000 6001
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6027

W
whs 已提交
6028 6029
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6030

W
whs 已提交
6031
      Case 0:
M
minqiyang 已提交
6032

W
whs 已提交
6033 6034 6035
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6036

W
whs 已提交
6037 6038 6039
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6040

W
whs 已提交
6041
      Case 1:
M
minqiyang 已提交
6042

W
whs 已提交
6043 6044
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6045

W
whs 已提交
6046 6047 6048
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6049

W
whs 已提交
6050
      Case 2:
M
minqiyang 已提交
6051

W
whs 已提交
6052 6053
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6054

W
whs 已提交
6055 6056 6057
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6058 6059


W
whs 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6257
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6258
                        will be named automatically.
J
jerrywgz 已提交
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6377

6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6388 6389
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6405
        ValueError: If axis is not in range [0, rank(x)].
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6423
    x_shape = helper.create_tmp_variable(x.dtype)
6424
    helper.append_op(
6425
        type='flatten2',
6426
        inputs={"X": x},
6427 6428
        outputs={'Out': out,
                 'XShape': x_shape},
6429 6430
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6431 6432


C
chenweihang 已提交
6433
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6434
    """
C
chenweihang 已提交
6435
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6436
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6437 6438
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6439

C
chenweihang 已提交
6440 6441 6442 6443
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6444
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6445 6446 6447 6448 6449 6450
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6451
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6452 6453 6454
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6455 6456 6457
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6469
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6470 6471 6472 6473 6474 6475
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6476
    return out
6477

6478

S
sneaxiy 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6488

S
sneaxiy 已提交
6489
    .. math::
6490

S
sneaxiy 已提交
6491 6492 6493
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6494
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6495 6496 6497 6498
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6499 6500 6501
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6502 6503
    Returns:
        Variable: The output sequence mask.
6504

S
sneaxiy 已提交
6505 6506
    """

Q
qingqing01 已提交
6507
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6508 6509 6510 6511 6512
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6513 6514 6515
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6516 6517
        outputs={'Y': out},
        attrs={
6518
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6519 6520 6521
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6522 6523


X
Xin Pan 已提交
6524
def stack(x, axis=0):
S
sneaxiy 已提交
6525 6526 6527 6528
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6529 6530 6531 6532 6533 6534 6535

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6536
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6537
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6538 6539

    Args:
6540
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6541
        axis (int|None): The axis along which all inputs are stacked.
6542

S
sneaxiy 已提交
6543 6544
    Returns:
        Variable: The stacked variable.
6545

S
sneaxiy 已提交
6546 6547
    """

X
Xin Pan 已提交
6548 6549 6550 6551 6552 6553 6554 6555
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6556 6557
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6558

X
Xin Pan 已提交
6559
    return out
D
dzhwinter 已提交
6560 6561 6562 6563 6564 6565 6566


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6567

D
dzhwinter 已提交
6568 6569 6570
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6571
    raised.
D
dzhwinter 已提交
6572 6573

    Args:
M
minqiyang 已提交
6574
        x (Variable): Input variable.
D
dzhwinter 已提交
6575 6576
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6577

D
dzhwinter 已提交
6578 6579
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6580

D
dzhwinter 已提交
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6613

W
whs 已提交
6614 6615 6616 6617
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6618

W
whs 已提交
6619
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6620

W
whs 已提交
6621
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6622

W
whs 已提交
6623 6624 6625 6626
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6627

W
whs 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6651 6652


G
fix  
gongweibao 已提交
6653 6654 6655
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6656
@templatedoc()
G
fix  
gongweibao 已提交
6657 6658 6659 6660 6661 6662 6663 6664 6665
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6666
    ${comment}
G
fix  
gongweibao 已提交
6667 6668

    Args:
G
gongweibao 已提交
6669 6670 6671
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6672
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6673 6674 6675
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6676 6677
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6678
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6700 6701


G
gongweibao 已提交
6702
@templatedoc()
X
Xin Pan 已提交
6703
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6704
    """
G
gongweibao 已提交
6705
    ${comment}
G
fix  
gongweibao 已提交
6706 6707

    Args:
G
gongweibao 已提交
6708 6709 6710 6711
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6712 6713 6714
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6715
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6731
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6732 6733 6734 6735 6736
        })

    return out


G
gongweibao 已提交
6737
@templatedoc()
G
fix  
gongweibao 已提交
6738
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6739
    """
G
gongweibao 已提交
6740
    ${comment}
G
fix  
gongweibao 已提交
6741 6742

    Args:
G
gongweibao 已提交
6743 6744 6745 6746
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6747
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6748 6749

    Returns:
G
gongweibao 已提交
6750
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6751 6752 6753 6754

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6755
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6767
@templatedoc()
G
fix  
gongweibao 已提交
6768 6769 6770 6771 6772 6773 6774 6775 6776
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6777
    ${comment}
G
fix  
gongweibao 已提交
6778 6779

    Args:
G
gongweibao 已提交
6780 6781
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6782
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6783 6784 6785 6786
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6787
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6788 6789

    Returns:
G
gongweibao 已提交
6790
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6813
@templatedoc()
X
Xin Pan 已提交
6814
def sum(x):
G
fix  
gongweibao 已提交
6815
    """
G
gongweibao 已提交
6816
    ${comment}
G
fix  
gongweibao 已提交
6817 6818

    Args:
G
gongweibao 已提交
6819
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6820 6821

    Returns:
G
gongweibao 已提交
6822
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6823 6824 6825
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6826
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6827 6828 6829 6830
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6831
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6832 6833 6834 6835

    return out


G
gongweibao 已提交
6836
@templatedoc()
G
fix  
gongweibao 已提交
6837 6838
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6839
    ${comment}
G
fix  
gongweibao 已提交
6840 6841

    Args:
G
gongweibao 已提交
6842 6843 6844 6845
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6846 6847

    Returns:
G
gongweibao 已提交
6848
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6849 6850 6851 6852

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6853
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6865
@templatedoc()
G
fix  
gongweibao 已提交
6866 6867
def shape(input):
    """
G
gongweibao 已提交
6868
    ${comment}
G
fix  
gongweibao 已提交
6869 6870

    Args:
G
gongweibao 已提交
6871
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6872 6873

    Returns:
G
gongweibao 已提交
6874
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6875 6876 6877 6878

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6879
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6880
    helper.append_op(
G
fix  
gongweibao 已提交
6881
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6882 6883

    return out
G
merge  
gongweibao 已提交
6884 6885


S
sneaxiy 已提交
6886 6887 6888 6889 6890 6891 6892 6893
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6894 6895 6896 6897 6898 6899
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6900

S
sneaxiy 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6912
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6913 6914 6915 6916 6917 6918 6919 6920
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6921
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6922
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6923 6924 6925 6926 6927 6928

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6929 6930 6931 6932 6933
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6944
    return helper.append_activation(out)
S
sneaxiy 已提交
6945 6946


X
Xin Pan 已提交
6947
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6948 6949 6950
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6951
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6952 6953 6954
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6955
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6956 6957 6958
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6959
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6960 6961 6962
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6963
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6964 6965 6966
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6967
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6968 6969 6970
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
6971
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6983 6984
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6985
        ])
M
minqiyang 已提交
6986 6987


6988
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
6989 6990
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
6991 6992
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7012
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7031
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7050
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7069
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7206 7207
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out