executor.py 114.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from .trainer_factory import TrainerFactory
30
from .trainer_factory import FetchHandlerMonitor
31
import copy
32
from . import framework
33
from .incubate.checkpoint import auto_checkpoint as acp
34
from .compiler import _prune_feed_ops
35

R
Ruibiao Chen 已提交
36 37
from functools import lru_cache

T
Tink_Y 已提交
38
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40
g_scope = core.Scope()
F
flame 已提交
41 42
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
43

Y
Yu Yang 已提交
44

Y
Yang Yu 已提交
45
def global_scope():
Y
yuyang18 已提交
46
    """
47 48
    :api_attr: Static Graph

Y
yuyang18 已提交
49 50 51
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
52 53 54
    Returns:
        Scope: The global/default scope instance.

55 56 57
    Examples:
        .. code-block:: python

58
          import paddle
59 60
          import numpy

61 62
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
63
    """
Y
Yang Yu 已提交
64 65 66
    return g_scope


67
def _switch_scope(scope):
Y
Yang Yu 已提交
68 69 70 71 72 73
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
74
@signature_safe_contextmanager
Y
Yang Yu 已提交
75
def scope_guard(scope):
Y
yuyang18 已提交
76
    """
77

78 79 80 81 82 83 84 85 86 87 88 89
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
90

91 92
    Returns:
        None
L
lujun 已提交
93

Y
yuyang18 已提交
94
    Examples:
95

96 97
        .. code-block:: python

98
            import paddle
L
lujun 已提交
99
            import numpy
100
            paddle.enable_static()
Y
yuyang18 已提交
101

102 103 104
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
105
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
106
    """
L
lujun 已提交
107

108
    ex = _switch_scope(scope)
109 110 111 112
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
113 114


115
def as_numpy(tensor, copy=False):
116 117 118
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
119

120
    Examples:
121 122 123 124 125 126 127 128 129 130
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
131 132 133

    Args:
       tensor(Variable): a instance of Tensor
134
       copy(bool, optional): Whether to use deep copy.
135 136 137 138

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
139
    if isinstance(tensor, core.LoDTensorArray):
140
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
141
    if isinstance(tensor, list):
142
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
143 144
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
145
    if len(lod) > 0:
146 147
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
148 149
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
150 151
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
152
    if tensor._is_initialized():
153 154 155 156
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
157 158
    else:
        return None
D
dzhwinter 已提交
159 160


H
Huihuang Zheng 已提交
161 162 163 164
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
165

H
Huihuang Zheng 已提交
166 167
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
168

H
Huihuang Zheng 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
185 186
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


214
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
215 216
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
217
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
218 219 220

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
221 222
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
223
       is compatible with any number.
224

H
Huihuang Zheng 已提交
225 226
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
227
        feed (LoDTensor): the fed value, which must be a LoDTensor
228 229
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
230 231 232 233 234 235 236
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
237 238
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
239
            raise ValueError(
T
tianshuo78520a 已提交
240
                'The fed Variable %r should have dimensions = %d, shape = '
241 242 243
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
244
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
245 246 247 248 249 250 251 252 253 254
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
255
            raise ValueError(
256 257 258
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
259 260 261
    return True


262
def has_feed_operators(block, feed_targets, feed_holder_name):
263
    """Check whether the block already has feed operators.
264 265 266 267 268 269 270 271 272 273

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
274 275
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
276 277 278
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
279
        A boolean value that indicates whether a block has feed operators
280 281 282 283 284 285 286 287 288 289
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
290 291
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
292 293 294
                        feed_target_name
                    )
                )
295 296 297 298
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
299 300
            "Feed operators in program desc do not match 'feed_targets'"
        )
301 302 303
    return feed_count > 0


304 305 306 307
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
308

309 310 311 312 313 314 315 316 317
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
318 319 320
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
321
        fetch_op: the operator name of fetch
322

X
xuwei06 已提交
323 324 325
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
326 327 328 329
    """

    fetch_count = 0
    for op in block.ops:
330
        if op.desc.type() == fetch_op:
331 332 333 334
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
335
                var.desc.name() for var in fetch_targets
336
            ]:
337 338
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
339 340 341
                        fetch_target_name
                    )
                )
342 343 344 345
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
346 347
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
348 349 350
    return fetch_count > 0


351 352 353
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
354 355 356 357 358 359 360 361 362 363
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
364 365
            persistable=True,
        )
R
Ruibiao Chen 已提交
366 367 368 369 370 371 372

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
373 374
            persistable=True,
        )
R
Ruibiao Chen 已提交
375 376 377 378 379 380

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
381 382 383 384 385 386
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
387 388 389
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
390 391
                    % name
                )
R
Ruibiao Chen 已提交
392 393 394 395 396 397 398

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
399 400 401
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
402 403
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
404 405 406 407 408 409 410 411
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
412 413 414 415

    return tmp_program


416 417 418
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
419 420 421 422 423 424 425 426
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
427 428 429
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
430 431
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
432 433 434
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
435 436


W
Wu Yi 已提交
437
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
438
    """
C
chengduoZH 已提交
439 440 441
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
442
    Args:
443 444 445 446
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
447 448 449 450
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
451 452 453
    Returns:
       LodTensor|numpy.ndarray
    """
454
    assert isinstance(name, str)
X
xuwei06 已提交
455 456
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
457
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
458

459
    var = scope.find_var(_to_name_str(name))
460 461 462
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
463 464
        " program."
    )
X
xuwei06 已提交
465 466
    tensor = var.get_tensor()
    if return_numpy:
467
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
468 469 470
    return tensor


X
polish  
Xin Pan 已提交
471
def _to_name_str(var):
472 473 474 475 476
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
477
        elif isinstance(var, str):
478 479
            return str(var)
        elif isinstance(var, Operator):
480
            return str(id(var))
481 482 483 484 485 486 487 488 489 490
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
491
    else:
492
        return _to_str(var)
Q
qiaolongfei 已提交
493 494


495
def _is_enable_standalone_executor():
496 497 498 499 500
    return (
        framework._enable_standalone_executor_ is None
        or framework._enable_standalone_executor_
        in [1, '1', True, 'True', 'true']
    )
501 502


503 504
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
505 506 507 508 509
        1,
        '1',
        True,
        'True',
        'true',
510 511 512
    ]


513 514
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
531 532
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
533 534
        feed, fetch_list
    )
L
Leo Chen 已提交
535 536


537
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
538
    # TODO(zhiqiu): use hash_str to generate cache key as above
539 540 541 542 543 544
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

545 546 547 548 549 550 551 552 553 554
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
555 556


X
polish  
Xin Pan 已提交
557
def _get_program_cache_key(feed, fetch_list):
558 559 560 561 562 563
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
564
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
565 566 567
    return str(feed_var_names + fetch_var_names)


568
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
569
    """
570 571
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
572

573 574 575 576 577 578 579
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
580

581 582 583 584
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
585

586 587 588 589
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
590
    if not isinstance(data, np.ndarray):
591 592 593 594 595 596 597 598
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
599 600
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
601 602
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
603
            if data.dtype == np.object_:
604 605 606 607 608 609 610 611 612
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
613 614 615
                    type(data)
                )
            )
616

617
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
618 619 620 621 622
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


623
class FetchHandler(object):
D
Dong Daxiang 已提交
624
    def __init__(self, var_dict=None, period_secs=60):
625
        assert var_dict is not None
D
Dong Daxiang 已提交
626
        self.var_dict = var_dict
627 628
        self.period_secs = period_secs

D
Dong Daxiang 已提交
629 630 631 632 633
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
634 635 636

    @staticmethod
    def help():
637 638
        print(
            """
D
Dong Daxiang 已提交
639 640 641 642 643 644 645 646
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
647 648
"""
        )
649 650


651
class _StandaloneExecutor(object):
652
    def __init__(self, place, main_program, scope):
653 654 655
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
656
        self._scope = scope
657 658
        self._new_exe = self._create_new_executor()

659
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
660 661
        """
        Args:
662
            feed_names(list): This parameter represents the input names of the model.
663
            fetch_list(list): This parameter represents the Tensors that need to be returned
664
                after the model runs. The default is None.
665 666 667 668 669 670
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

671 672 673
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
674 675 676 677 678 679
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
680
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
681 682 683 684 685

        return new_exe

    def _update_feed(self, feed):
        """
686
        Update the feed dict, remove the feed item which is pruned in program.
687 688

        Notes: This is a very low level API. Users should not use this API
689
        directly.
690 691 692 693 694 695 696 697 698

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
699 700 701 702 703 704
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
705 706 707
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
708 709 710 711 712 713 714

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
715 716
                    % feed_name
                )
717 718 719 720 721 722 723 724 725 726 727 728 729

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
730 731 732 733
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
734 735 736 737 738 739

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
R
Ruibiao Chen 已提交
740
    class _CachedData(object):
741 742 743 744 745 746 747 748 749 750
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
751 752 753 754 755 756 757 758 759 760 761
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
762 763 764 765
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
766 767
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
768 769
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
770 771 772
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
773 774 775
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
776 777 778
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
779 780

        def __eq__(self, other):
781 782 783 784
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
785 786 787 788 789 790 791 792 793

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
794 795
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
796 797 798 799

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

800 801 802 803 804 805 806 807 808 809
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
810
        return self._get_cached_program_and_executor(
811 812 813 814 815 816 817 818 819 820
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
821 822 823

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
824 825 826 827 828
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
829 830 831 832 833 834 835 836 837
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
838 839 840 841 842 843 844
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
            compiled_program._compile(scope, place)
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
859

R
Ruibiao Chen 已提交
860 861 862 863 864
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

865 866 867 868 869 870 871 872
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
873

874 875 876 877 878
        if (
            os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None)
            in [1, '1', True, 'True', 'true']
            and not program._is_start_up_program_
        ):
879 880 881 882 883 884 885
            if program.num_blocks > 1:
                # If there are multiple blocks in the program, subblock will not be executed with the new executor in temporary
                logging.warning("There are more than 1 block in program.")
            elif program.num_blocks == 1:
                logging.warning("There are 1 block in program.")
            else:
                logging.warning("There are no block in program.")
R
Ruibiao Chen 已提交
886 887 888

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
889 890 891 892 893 894 895 896 897 898
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
899 900 901
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
902 903 904
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
905 906 907 908

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
909 910


Y
Yu Yang 已提交
911
class Executor(object):
912
    """
913 914
    :api_attr: Static Graph

915
    An Executor in Python, supports single/multiple-GPU running,
916
    and single/multiple-CPU running.
C
chengduo 已提交
917 918

    Args:
919
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
920 921 922 923
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
924
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
925 926
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
927
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
928 929 930

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
931

932
    Examples:
S
Fix doc  
sneaxiy 已提交
933 934
        .. code-block:: python

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

986 987
    """

988 989
    def __init__(self, place=None):
        if place is None:
990 991
            expected_place = framework._current_expected_place()
            self.place = expected_place
992
        else:
993
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
994
        self.program_caches = dict()
995
        self.ctx_caches = dict()
996
        self.trainer_caches = dict()
997 998
        self.scope_caches = dict()
        self.var_caches = dict()
999
        self.pruned_program_caches = dict()
1000 1001 1002
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
1003
        self._closed = False
1004
        self.pruned_program_scope_caches = dict()
1005
        self._prepare_to_run_called = False
D
dzhwinter 已提交
1006

1007
        self._auto_checkpoint_name = unique_name.generate(
1008 1009
            "__auto_checkpoint_executor__"
        )
1010

1011 1012
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
1013
        self._executor_cache = _ExecutorCache()
1014

1015
        self._fleet_executor = None
1016 1017 1018
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
1019

R
Ruibiao Chen 已提交
1020 1021 1022 1023 1024 1025
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1026 1027 1028
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1029 1030 1031
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1032 1033 1034
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1035 1036 1037 1038 1039 1040
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1053 1054 1055
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1056 1057 1058
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1059 1060 1061
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1062 1063 1064 1065 1066 1067 1068
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1069 1070
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1071 1072
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1073 1074 1075
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1076
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1077 1078
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1079 1080 1081
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1082
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1083 1084 1085 1086 1087 1088 1089 1090
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1091
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1092 1093 1094
        ]
        return outs

1095 1096
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1108
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1119 1120 1121 1122 1123 1124 1125
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1126 1127 1128
                _fetch_list.append(item)
            else:
                raise TypeError(
1129
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1130 1131
                    type(item),
                )
1132

1133
        for index, item in enumerate(fetch_list):
1134 1135 1136 1137 1138 1139 1140
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1141 1142
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1143 1144 1145 1146
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1147 1148 1149 1150 1151 1152 1153
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1154
    @classmethod
1155 1156 1157
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1158 1159
        """
        Prune operators and variables which are not needed to generate
1160 1161 1162
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1163 1164

        Notes: This is a very low level API. Users should not use this API
1165
        directly.
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1216 1217
    @classmethod
    def _update_feed(cls, program, feed):
1218
        """
1219
        Update the feed dict, remove the feed item which is pruned in program.
1220 1221

        Notes: This is a very low level API. Users should not use this API
1222
        directly.
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1239
                return feed
1240 1241 1242 1243 1244 1245 1246 1247 1248
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1249 1250
                        % feed_name
                    )
1251 1252 1253 1254 1255 1256 1257 1258

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1259 1260
                            % feed_name
                        )
1261 1262
        return feed

S
Fix doc  
sneaxiy 已提交
1263 1264 1265 1266 1267 1268
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1269 1270
    def close(self):
        """
C
chengduo 已提交
1271 1272 1273
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1274

C
chengduo 已提交
1275 1276
        Returns:
            None
1277 1278 1279 1280

        Examples:
            .. code-block:: python

1281
              import paddle
1282

1283 1284
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1285 1286
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1287
        """
1288
        if not self._closed:
Y
Yancey1989 已提交
1289
            self._closed = True
1290 1291 1292 1293
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    def _run_parallel(
        self,
        program,
        scope,
        feed,
        fetch_list,
        fetch_var_name,
        return_numpy,
        return_merged,
    ):
1305
        from paddle.optimizer.lr import LRScheduler
1306

1307
        exe = program._executor
H
Huihuang Zheng 已提交
1308 1309 1310 1311 1312
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1313 1314 1315 1316
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1317
                var = global_block.var(feed_name) if need_check_feed else None
1318
                if not isinstance(feed_tensor, core.LoDTensor):
1319
                    # always set to CPU place, since the tensor need to be split
1320
                    # it is fast in CPU
1321 1322 1323 1324 1325
                    feed_tensor = _as_lodtensor(
                        feed[feed_name],
                        core.CPUPlace(),
                        var.dtype if var else None,
                    )
H
Huihuang Zheng 已提交
1326
                if need_check_feed:
1327
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1328
                feed_tensor_dict[feed_name] = feed_tensor
1329
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1330 1331 1332 1333 1334 1335

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
1336 1337
                        "Each element of feed list should be a dict"
                    )
1338 1339 1340
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1341 1342 1343
                    var = (
                        global_block.var(feed_name) if need_check_feed else None
                    )
1344
                    if not isinstance(tensor, core.LoDTensor):
1345 1346 1347 1348 1349
                        tensor = _as_lodtensor(
                            each[feed_name],
                            program._places[i],
                            var.dtype if var else None,
                        )
H
Huihuang Zheng 已提交
1350 1351
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1352 1353
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1354

1355
            exe.feed_tensors_into_local_scopes(res)
1356

1357 1358
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1359
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1360 1361 1362
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1363 1364 1365 1366 1367 1368
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1369
                exe.feed_and_split_tensor_into_local_scopes(
1370 1371
                    {lr_sheduler._var_name: lr_tensor}
                )
1372

X
polish  
Xin Pan 已提交
1373
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1374
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1375
        return as_numpy(tensors) if return_numpy else tensors
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        return_merged=True,
        use_prune=False,
    ):
1390
        """
C
chengduo 已提交
1391 1392 1393
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1394 1395
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1396

C
chengduo 已提交
1397 1398 1399
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1400
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1401
                The default is None.
1402
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1403
                If it is single card training, the feed is dict type, and if it is multi-card
1404
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1405 1406 1407 1408 1409 1410 1411
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1412
            fetch_list(list): This parameter represents the Tensors that need to be returned
1413
                after the model runs. The default is None.
1414
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1415
                the feed operator. The default is "feed".
1416
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1417
                the fetch operator. The default is "fetch".
1418
            scope(Scope): the scope used to run this program, you can switch
1419 1420 1421
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1422 1423 1424
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1425 1426
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1427
                The default is False.
1428
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1429 1430
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1431 1432 1433 1434 1435 1436 1437 1438
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1439
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1440
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1441 1442
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1443
                program will not pruned and all the operators and variables will be executed during running.
1444
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1445
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1446

C
chengduo 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1462 1463
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1464

1465
        Examples:
1466
            .. code-block:: python
1467
                :name: code-example-1
1468

1469 1470
                import paddle
                import numpy
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1484

1485 1486
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1487

1488 1489 1490 1491 1492
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1493 1494

            .. code-block:: python
1495
                :name: code-example-2
Z
Zhen Wang 已提交
1496

1497
                # required: gpu
1498
                import paddle
Z
Zhen Wang 已提交
1499 1500 1501
                import numpy as np

                # First create the Executor.
1502 1503 1504
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1505

1506
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1507
                class_dim = 2
1508 1509 1510
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1511 1512 1513
                adam.minimize(loss)

                # Run the startup program once and only once.
1514 1515 1516 1517 1518
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1519 1520 1521 1522
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1523 1524 1525 1526
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1527 1528 1529 1530
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1531 1532
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1533 1534 1535
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1536 1537 1538 1539
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1540 1541
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1542 1543
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1544
                print(merged_prediction)
1545

Z
Zhen Wang 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1560

1561
        """
1562 1563
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1564 1565
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1566 1567
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1568 1569 1570 1571 1572
                1,
                '1',
                True,
                'True',
                'true',
1573
            ]
1574
            self._log_force_set_program_cache(use_program_cache)
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
            return_merged=return_merged,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        return_merged,
        use_prune,
    ):
Y
Yancey1989 已提交
1604 1605 1606
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1607
        use_default_main_program = program is None
1608 1609
        if program is None:
            program = default_main_program()
1610

1611
        fetch_list = self._check_fetch_list(fetch_list)
1612 1613

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1614
            if "fleet_opt" in program._pipeline_opt:
1615 1616 1617
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1618 1619 1620 1621
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1622 1623
                    with_standalone_executor=self._fleet_executor_with_standalone,
                )
1624 1625 1626
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1627 1628 1629 1630 1631
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1632 1633

        if isinstance(program, Program) and program._heter_pipeline_opt:
1634
            # print("program._heter_pipeline_opt: {}".format(
1635
            #    program._heter_pipeline_opt))
1636
            ## change default executor
1637 1638 1639 1640 1641 1642
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1643
            if "startup_program" in program._heter_pipeline_opt:
1644
                # print("get startup_program from _pipeline_opt")
1645 1646
                program = program._heter_pipeline_opt["startup_program"]

1647 1648 1649 1650
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1651
            if use_default_main_program:
1652 1653 1654 1655
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1656
                    "the Program or the CompiledProgram manually."
1657
                )
1658
            else:
1659 1660 1661
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1662
                    "to ensure the current Program is being used."
1663
                )
C
chengduo 已提交
1664
            warnings.warn(error_info)
1665

1666 1667
        if scope is None:
            scope = global_scope()
1668

1669 1670 1671 1672
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1673 1674
            fetch_list
        )
1675 1676 1677
        if optimize_ops:
            use_prune = True
        if use_prune:
1678 1679 1680
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1681 1682 1683 1684
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1685 1686
                        str(id(_origin_program))
                    )
1687 1688 1689 1690
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1691 1692 1693 1694 1695 1696
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1697
                        self._add_pruned_program_scope_cache(
1698 1699 1700 1701 1702
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1703 1704 1705 1706 1707 1708 1709
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1710
        def _can_use_interpreter_core(program, place):
1711
            if core.is_compiled_with_mlu():
1712 1713
                return False

1714
            use_standalone_executor_for_distribution = os.environ.get(
1715 1716
                'FLAGS_CONVERT_GRAPH_TO_PROGRAM', None
            ) in [1, '1', True, 'True', 'true']
1717

1718 1719 1720
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1721
            if compiled:
1722 1723 1724 1725 1726
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1727

1728
                # Unsupported case 1: data parallel
1729 1730 1731
                if (
                    compiled_program._is_data_parallel
                    and len(
1732
                        compiled_program._get_places(
1733 1734 1735 1736 1737
                            place, compiled_program._places
                        )
                    )
                    != 1
                ):
1738 1739
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
1740 1741
                        UserWarning,
                    )
1742
                    return False
1743

1744
                # Unsupported case 2: parallel graph
P
pangyoki 已提交
1745
                if core.globals()['FLAGS_enable_parallel_graph'] in [
1746 1747 1748 1749 1750
                    1,
                    '1',
                    True,
                    'True',
                    'true',
P
pangyoki 已提交
1751
                ]:
1752 1753
                    warnings.warn(
                        "Standalone executor is not used for parallel graph",
1754 1755
                        UserWarning,
                    )
P
pangyoki 已提交
1756 1757
                    return False

1758
                # Unsupported case 3: inference
1759
                if compiled_program._is_inference:
1760 1761
                    warnings.warn(
                        "Standalone executor is not used for inference",
1762 1763
                        UserWarning,
                    )
1764
                    return False
1765

1766
                # Unsupported case 4: CUDA Graph
1767 1768 1769 1770
                if (
                    compiled_program._build_strategy is not None
                    and compiled_program._build_strategy.allow_cuda_graph_capture
                ):
1771 1772
                    warnings.warn(
                        "Standalone executor is not used for CUDA Graph",
1773 1774
                        UserWarning,
                    )
1775 1776
                    return False

1777
                # Unsupported case 5: async mode
1778 1779 1780 1781
                if (
                    compiled_program._build_strategy is not None
                    and compiled_program._build_strategy.async_mode
                ):
1782
                    warnings.warn(
1783
                        "Standalone executor is not used for async mode",
1784 1785
                        UserWarning,
                    )
1786 1787
                    return False

1788 1789
            # delete this code after supporting fleet
            from paddle.distributed.fleet import fleet
1790

1791
            if fleet._role_maker is not None:
1792 1793 1794
                warnings.warn(
                    "Standalone executor is not used for fleet", UserWarning
                )
1795 1796 1797
                return use_standalone_executor_for_distribution

            return True
1798

1799 1800
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1801 1802 1803 1804 1805
        if (
            return_merged
            and self._enable_interpreter_core
            and _can_use_interpreter_core(program, self.place)
        ):
1806

1807 1808 1809 1810 1811 1812 1813 1814
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1815 1816
                    % (type(feed))
                )
1817 1818 1819
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
1820 1821 1822 1823 1824 1825 1826 1827
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1828 1829 1830 1831

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
1832 1833 1834 1835

                assert isinstance(
                    program.lr_sheduler, LRScheduler
                ), "must be LRScheduler"
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                # for ipu, tensor is allocated on cpu
                if core.is_compiled_with_ipu():
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1849 1850 1851
            return new_exe.run(
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1852

X
polish  
Xin Pan 已提交
1853
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1854

1855 1856 1857 1858 1859 1860 1861
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1862
                vardesc = global_block.desc.find_var(varname.encode())
1863 1864 1865
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
1866 1867 1868 1869 1870 1871 1872 1873 1874
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1875 1876
                    raise ValueError('Need feed data for variable %s' % varname)

1877 1878
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1879
        # For backward compatibility, run directly.
1880
        if not compiled:
1881
            # In distributed training, the compiled program is saved in Program._graph
1882 1883 1884
            has_compiled_graph = isinstance(
                program._graph, compiler.CompiledProgram
            )
1885

1886 1887 1888 1889 1890
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged,
                )

            return self._run_program(
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
            )
1911 1912

        program._compile(scope, self.place)
C
chengduo 已提交
1913 1914 1915
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
            return self._run_parallel(
                program,
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
                fetch_var_name=fetch_var_name,
                return_numpy=return_numpy,
                return_merged=return_merged,
            )

    def _run_program(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
    ):
1937
        from paddle.optimizer.lr import LRScheduler
1938

1939 1940
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1941 1942 1943 1944
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1945
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1946
            raise TypeError(
1947 1948 1949
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
Y
Yu Yang 已提交
1950

1951
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1952
        if not isinstance(program, Program):
D
dzhwinter 已提交
1953 1954
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
1955 1956
                % (type(program))
            )
Y
Yu Yang 已提交
1957

1958 1959 1960
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
1961 1962
                % (type(fetch_var_name))
            )
1963

1964
        if use_program_cache:
1965
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1966
            cached_program = self._get_program_cache(cache_key)
1967
            cached_ctx = self._get_ctx_cache(cache_key)
1968
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1969
            if cached_program is None:
R
Ruibiao Chen 已提交
1970
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1971 1972 1973 1974
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
1975 1976
                    fetch_var_name=fetch_var_name,
                )
Q
Qiao Longfei 已提交
1977
                self._add_program_cache(cache_key, cached_program)
1978
                fetch_list_str = list(map(_to_name_str, fetch_list))
1979
                cached_ctx = self._default_executor.prepare(
1980 1981
                    cached_program.desc, 0, fetch_list_str, False
                )
1982 1983 1984 1985 1986 1987
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1988 1989 1990
                self._default_executor.create_variables(
                    cached_program.desc, cached_scope, 0
                )
1991
                self._add_ctx_cache(cache_key, cached_ctx)
1992
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1993
            program = cached_program
1994
            ctx = cached_ctx
1995
            scope = cached_scope
1996
        else:
1997 1998 1999 2000 2001 2002 2003
            program = _add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
Q
Qiao Longfei 已提交
2004 2005

        self._feed_data(program, feed, feed_var_name, scope)
2006
        if hasattr(program, 'lr_sheduler'):
2007 2008 2009
            assert isinstance(
                program.lr_sheduler, LRScheduler
            ), "must be LRScheduler"
2010 2011 2012 2013 2014 2015 2016
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2017
        if not use_program_cache:
2018 2019 2020
            self._default_executor.run(
                program.desc, scope, 0, True, True, [fetch_var_name]
            )
2021
        else:
2022 2023 2024
            self._default_executor.run_prepared_ctx(
                ctx, scope, False, False, False
            )
2025
        arr = scope.find_var(fetch_var_name).get_fetch_list()
2026
        tensors = arr._move_to_list()
D
dzhwinter 已提交
2027
        if return_numpy:
2028 2029 2030
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
2031

X
Xin Pan 已提交
2032 2033
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
2034

2035
    def _check_fetch_list(self, fetch_list):
2036
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
2037 2038
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

2039 2040 2041 2042
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
2043

2044 2045 2046
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
2047
            "the executor.run(...).".format(type(fetch_list))
2048
        )
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
2062 2063 2064 2065
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
2066 2067 2068

        return res

2069
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
2070 2071
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
2072
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
2073 2074 2075
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

2076 2077 2078 2079 2080 2081
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
2082 2083
                % (filelist_length, filelist_length)
            )
2084 2085 2086
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
2087 2088 2089 2090 2091
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
2092 2093 2094
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
2106
        is_heter = 0
T
Thunderbrook 已提交
2107
        use_ps_gpu = 0
T
Thunderbrook 已提交
2108 2109 2110
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
2111
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
2112
                is_heter = 1
T
Thunderbrook 已提交
2113 2114
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
2115 2116 2117 2118
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
2119 2120 2121
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
2122
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
2123 2124 2125
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
2126

T
Thunderbrook 已提交
2127 2128
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
2129
        if not compiled:
H
hutuxian 已提交
2130 2131 2132
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2133 2134
                    program._pipeline_opt
                )
2135 2136
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2137 2138
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
2139 2140
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
2141
                trainer._set_thread_barrier(program._is_distributed)
2142
            trainer._set_program(program)
T
Thunderbrook 已提交
2143 2144
            if is_heter:
                trainer._set_heter_info(ret)
2145
        else:
H
hutuxian 已提交
2146 2147
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2148 2149
                    program.program._pipeline_opt
                )
2150 2151
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2152 2153
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
2154 2155
            else:
                trainer = TrainerFactory()._create_trainer(
2156 2157
                    program.program._fleet_opt
                )
2158
            trainer._set_program(program.program)
H
hutuxian 已提交
2159

2160
        if thread <= 0:
T
Thunderbrook 已提交
2161 2162 2163
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
2164
                raise RuntimeError(
2165
                    "You should set thread num first, either in Dataset"
2166 2167
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
2168
            else:
2169
                trainer._set_thread(dataset.thread_num)
2170
        else:
2171
            trainer._set_thread(thread)
H
hutuxian 已提交
2172

2173 2174
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
2175
        return scope, trainer
2176

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2190 2191
        if program._pipeline_opt is not None:
            import paddle
2192

2193 2194
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
2195
            # The following fake dataset is created to call
2196 2197 2198 2199 2200
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2201 2202
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2203 2204
                    'InMemoryDataset'
                )
2205 2206
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2207 2208
                    'FileInstantDataset'
                )
2209 2210 2211 2212
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2213 2214
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2215
            # print("test_fl_stage_id: {}".format(stage_id))
2216
            heter_place = program._heter_pipeline_opt["heter_place"]
2217
            if stage_id != 0:
2218 2219
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2220

2221 2222
                    if dataset is not None:
                        raise RuntimeError(
2223 2224
                            "dataset should be None for heter pipeline mode"
                        )
2225
                    # The following fake dataset is created to call
2226 2227 2228 2229 2230 2231
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2232 2233
                        'InMemoryDataset'
                    )
2234 2235 2236 2237
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2238 2239 2240
            else:
                if dataset is None:
                    raise RuntimeError(
2241 2242
                        "dataset is need and should be initialized"
                    )
2243 2244 2245 2246 2247
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2248 2249 2250
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2251 2252

        dataset._prepare_to_run()
2253 2254
        real_fetch_list = []
        if program._pipeline_opt:
2255
            real_program = program._pipeline_opt["section_program"]
2256 2257 2258 2259 2260 2261 2262 2263
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2264
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2265 2266 2267 2268
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2269 2270
                fetch_var_name='fetch',
            )
2271 2272 2273 2274 2275 2276 2277
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2278 2279
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2280
            fetch_list = None
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2291 2292 2293 2294

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2295
        if program._pipeline_opt is None:
2296 2297
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2298 2299 2300
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2301

T
tangwei12 已提交
2302
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2303

2304
        if program._heter_pipeline_opt is None:
2305 2306 2307 2308 2309
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2310 2311
        else:
            # cache trainer instance for heterps pipeline training
2312
            if fetch_list is None:
2313 2314 2315 2316 2317
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2318 2319 2320
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2321 2322 2323
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2324

T
tangwei12 已提交
2325 2326 2327 2328 2329 2330
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2331 2332
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2333 2334
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2335 2336
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2337 2338

        dataset._dynamic_adjust_after_train()
2339
        dataset._finish_to_run()
2340 2341 2342 2343
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2344

2345 2346
        return None

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2380 2381
                    'InMemoryDataset'
                )
2382 2383
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2384 2385
                    'FileInstantDataset'
                )
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2406 2407 2408 2409 2410 2411 2412
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2413 2414 2415 2416 2417 2418 2419
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2420 2421
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2422 2423 2424 2425 2426 2427 2428
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2439 2440 2441 2442 2443 2444 2445

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2446 2447 2448
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2449 2450 2451
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2452
        trainer_instance = self._default_executor.init_for_dataset(
2453 2454
            program.desc, trainer_desc, scope, dataset.dataset
        )
2455 2456

        ctx = [scope, real_fetch_list, trainer_instance]
2457 2458
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2459

2460 2461
        return ctx

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2475
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2476
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2477
        nrank = len(trainer_endpoints)
2478

2479 2480
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2481
            "Or you can provide a list of task nodes to init fleet executor directly."
2482
        )
2483
        if 'tasks' in fleet_opt:
2484 2485 2486 2487
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2488 2489 2490
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2491
        else:
2492 2493
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2494 2495 2496 2497 2498 2499 2500 2501 2502
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2503 2504
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2505 2506 2507 2508 2509 2510 2511
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2512 2513
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2514 2515 2516 2517 2518 2519 2520 2521

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2522
                if "num_micro_batches" in fleet_opt:
2523 2524 2525
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2526 2527
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2528 2529 2530
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2531 2532 2533
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2534 2535
        place = core.Place()
        place.set_place(self.place)
2536 2537
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
            [],
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
    ):
2558 2559
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2560
        cached_scope = self._get_scope_cache(cache_key)
2561 2562 2563 2564
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2565 2566 2567
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2568
            real_feed = [] if feed is None else feed
2569 2570 2571
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2572 2573 2574 2575 2576 2577 2578
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2579 2580 2581 2582 2583 2584 2585
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2586 2587
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2588
            self._add_program_cache(cache_key, cached_program)
2589
            fleet_opt = program._pipeline_opt["fleet_opt"]
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2601 2602 2603 2604 2605
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2606 2607 2608 2609 2610 2611 2612 2613 2614
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2615 2616
                    fetch_var_name=fetch_var_name,
                )
2617 2618 2619 2620 2621 2622 2623
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2624 2625
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2626 2627
                fetch_task.set_program(fetch_program)

2628 2629 2630 2631 2632
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2633 2634
                with_standalone_executor=with_standalone_executor,
            )
2635

2636
        if feed:
2637 2638 2639
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2640
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2641 2642

        from paddle.optimizer.lr import LRScheduler
2643

2644 2645 2646 2647 2648 2649
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2650 2651 2652
            tensor = core.get_variable_tensor(
                cached_scope, lr_sheduler._var_name
            )
2653 2654
            tensor.set(data, self.place)

2655 2656
        self._fleet_executor.run(cache_key)

2657 2658 2659 2660
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2661 2662
        return None

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2674 2675
                persistable=True,
            )
2676 2677 2678 2679 2680 2681

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2682 2683 2684 2685 2686 2687
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2688 2689 2690
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2691 2692
                        % name
                    )
2693 2694 2695

        return tmp_program

2696
    @classmethod
2697 2698 2699
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2710 2711
                persistable=True,
            )
2712 2713 2714 2715 2716 2717 2718

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2719 2720 2721
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2722 2723
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2724 2725 2726 2727 2728 2729 2730 2731
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2732 2733 2734

        return tmp_program

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2773

2774
        from paddle.optimizer.lr import LRScheduler
2775

2776 2777 2778 2779 2780 2781 2782 2783 2784
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2785 2786
        self._default_executor.run_from_dataset(trainer_instance)

2787 2788 2789
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2790 2791 2792 2793 2794 2795 2796
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2809
        """
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2821

2822 2823
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2824
                if not provided, then default_main_program (not compiled) will be used.
2825
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2826 2827
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2828
            scope(Scope): the scope used to run this program, you can switch it to different scope
2829 2830 2831
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2832
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2833
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2834
                training, default is None
2835
            fetch_info(String List): print information for each Tensor, default is None
2836
            print_period(int): the number of mini-batches for each print, default is 100
2837
            fetch_handler(FetchHandler): a user define class for fetch output.
2838

2839 2840 2841 2842
        Returns:
            None

        Examples:
2843 2844

            .. code-block:: python
2845

2846
                import paddle
2847

2848 2849 2850 2851 2852 2853
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2854
                dataset.set_use_var([x, y])
2855
                dataset.set_thread(1)
2856 2857
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2858
                dataset.set_filelist(filelist)
2859 2860 2861
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2862

2863
        """
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2897

2898
        trainer._set_infer(False)
T
Thunderbrook 已提交
2899 2900 2901 2902 2903
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2904 2905
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2906

2907
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2908 2909 2910 2911 2912 2913
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2914
        # else:
T
Thunderbrook 已提交
2915 2916

        self._default_executor.run_from_dataset(trainer_instance)
2917
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2918 2919 2920

        return trainer_instance

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2933 2934 2935 2936 2937 2938 2939 2940
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2941

2942 2943 2944 2945
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2946
                if not provided, then default_main_program (not compiled) will be used.
2947
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2948 2949
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2950
            scope(Scope): the scope used to run this program, you can switch it to different scope
2951 2952 2953
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2954
            debug(bool): whether a user wants to run train_from_dataset
2955
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2956
                during training
2957
            fetch_info(String List): print information for each Tensor, its length should be equal
2958 2959
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2960
            fetch_handler(FetchHandler): a user define class for fetch output.
2961 2962 2963

        Returns:
            None
2964

2965
        Examples:
2966

2967 2968
            .. code-block:: python

2969
              import paddle
2970

2971 2972 2973 2974 2975 2976
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2977
              dataset.set_use_var([x, y])
2978
              dataset.set_thread(1)
2979 2980
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2981
              dataset.set_filelist(filelist)
2982 2983
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2984
                                     dataset=dataset)
2985 2986

        """
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )