Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5e928e57
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5e928e57
编写于
12月 27, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
try unify Executor and ParallelExecutor
test=develop
上级
a1e60ab1
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
248 addition
and
50 deletion
+248
-50
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+3
-3
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-2
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+118
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+96
-8
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+5
-3
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+13
-20
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+11
-12
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
5e928e57
...
...
@@ -193,8 +193,7 @@ ParallelExecutor::ParallelExecutor(
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
,
size_t
trainer_id
)
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
member_
->
use_cuda_
=
exec_strategy
.
use_cuda_
;
...
...
@@ -253,7 +252,8 @@ ParallelExecutor::ParallelExecutor(
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
member_
->
places_
,
nccl_id
,
build_strategy
.
num_trainers_
,
build_strategy
.
trainer_id_
));
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
5e928e57
...
...
@@ -50,8 +50,7 @@ class ParallelExecutor {
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
=
1
,
size_t
trainer_id
=
0
);
const
BuildStrategy
&
build_strategy
);
~
ParallelExecutor
();
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
5e928e57
...
...
@@ -1022,8 +1022,7 @@ All parameter, weight, gradient are variables in Paddle.
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
ProgramDesc
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&
,
size_t
,
size_t
>
())
const
ExecutionStrategy
&
,
const
BuildStrategy
&>
())
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
// of vec<Scope*> will be freed by Python GC. We can only return Scope*
...
...
python/paddle/fluid/compiler.py
0 → 100644
浏览文件 @
5e928e57
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
multiprocessing
import
os
import
six
from
..
import
compat
as
cpt
from
.
import
core
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
def
_place_obj
(
place
):
p
=
core
.
Place
()
p
.
set_place
(
place
)
return
p
class
_ProgramCompiler
(
object
):
def
__init__
(
self
,
program
):
self
.
_program
=
program
self
.
_compiled
=
False
self
.
_is_data_parallel
=
False
def
_with_data_parallel
(
self
,
loss_name
=
None
,
build_strategy
=
None
,
exec_strategy
=
None
):
assert
not
self
.
_is_data_parallel
,
"Already compiled with parallel."
self
.
_is_data_parallel
=
True
self
.
_build_strategy
=
build_strategy
self
.
_exec_strategy
=
exec_strategy
self
.
_loss_name
=
loss_name
return
self
def
_compile_data_parallel
(
self
):
self
.
_places
=
[]
self
.
_local_scopes
=
[]
if
self
.
_exec_strategy
is
None
:
self
.
_exec_strategy
=
ExecutionStrategy
()
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
self
.
_exec_strategy
.
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
)
if
self
.
_exec_strategy
.
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())
]
self
.
_places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
self
.
_places
,
"no place for execution"
if
self
.
_exec_strategy
.
num_threads
==
0
:
if
self
.
_exec_strategy
.
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
self
.
_exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_exec_strategy
.
num_threads
=
cpu_num
*
2
trainers_endpoints
=
self
.
_program
.
_trainers_endpoints
if
self
.
_build_strategy
.
num_trainers
>
1
and
trainers_endpoints
:
assert
self
.
_build_strategy
.
num_trainers
==
len
(
trainers_endpoints
),
"num_trainers == len(end_points)"
self
.
_build_strategy
.
trainers_endpoints
=
trainers_endpoints
self
.
_persistable_vars
=
set
([
cpt
.
to_text
(
v
.
name
)
for
v
in
[
var
for
var
in
self
.
_program
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
])
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
return
core
.
ParallelExecutor
(
places
,
self
.
_persistable_vars
,
self
.
_program
.
desc
,
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
self
.
_scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
)
def
_compile
(
self
,
scope
,
place
):
if
self
.
_compiled
:
return
self
self
.
_compiled
=
True
self
.
_scope
=
scope
self
.
_place
=
place
if
self
.
_is_data_parallel
:
self
.
_executor
=
self
.
_compile_data_parallel
()
else
:
p
=
_place_obj
(
self
.
_place
)
self
.
_executor
=
core
.
Executor
(
p
)
return
self
python/paddle/fluid/executor.py
浏览文件 @
5e928e57
...
...
@@ -14,11 +14,15 @@
from
__future__
import
print_function
import
os
import
multiprocessing
import
numpy
as
np
import
contextlib
import
six
from
.framework
import
Program
,
default_main_program
,
Variable
from
.
import
core
from
.
import
compiler
from
..
import
compat
as
cpt
__all__
=
[
'Executor'
,
'global_scope'
,
'scope_guard'
]
...
...
@@ -275,11 +279,8 @@ class Executor(object):
def
__init__
(
self
,
place
):
self
.
place
=
place
p
=
core
.
Place
()
p
.
set_place
(
place
)
self
.
executor
=
core
.
Executor
(
p
)
self
.
program_caches
=
dict
()
self
.
executor
=
None
self
.
_closed
=
False
def
_get_program_cache
(
self
,
program_cache_key
):
...
...
@@ -361,6 +362,7 @@ class Executor(object):
You can no long use this executor after calling this method.
For the distributed training, this method would free the resource on PServers related to
the current Trainer.
TODO(panyx0718): Why ParallelExecutor doesn't have close?
Example:
>>> cpu = core.CPUPlace()
...
...
@@ -368,10 +370,58 @@ class Executor(object):
>>> ...
>>> exe.close()
"""
if
not
self
.
_closed
:
if
not
self
.
_closed
and
self
.
executor
:
self
.
executor
.
close
()
self
.
_closed
=
True
def
_run_parallel
(
self
,
exe
,
scope
,
feed
=
None
,
fetch_list
=
None
,
return_numpy
=
True
):
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
for
feed_name
in
feed
:
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be splitted
# it is fast in CPU
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
exe
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
elif
isinstance
(
feed
,
list
)
or
isinstance
(
feed
,
tuple
):
if
len
(
feed
)
!=
len
(
self
.
_places
):
raise
ValueError
(
"Feed a list of tensor, the list should be the same size as places"
)
res
=
list
()
for
i
,
each
in
enumerate
(
feed
):
if
not
isinstance
(
each
,
dict
):
raise
TypeError
(
"Each element of feed list should be a dict"
)
res_dict
=
dict
()
for
feed_name
in
each
:
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
tensor
,
self
.
_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
res
.
append
(
res_dict
)
exe
.
feed_tensors_into_local_scopes
(
res
)
fetch_var_name
=
'@FETCHED_VAR_NAME@'
exe
.
run
(
fetch_list
,
fetch_var_name
)
arr
=
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
if
return_numpy
:
return
as_numpy
(
arr
)
return
[
arr
[
i
]
for
i
in
range
(
len
(
arr
))]
def
run
(
self
,
program
=
None
,
feed
=
None
,
...
...
@@ -428,6 +478,47 @@ class Executor(object):
if
self
.
_closed
:
raise
RuntimeError
(
"Attempted to use a closed Executor"
)
if
scope
is
None
:
scope
=
global_scope
()
compiled
=
isinstance
(
program
,
compiler
.
_ProgramCompiler
)
if
not
compiled
:
p
=
core
.
Place
()
p
.
set_place
(
self
.
place
)
self
.
executor
=
core
.
Executor
(
p
)
return
self
.
_run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
fetch_var_name
=
fetch_var_name
,
scope
=
scope
,
return_numpy
=
return_numpy
,
use_program_cache
=
use_program_cache
)
program
.
_compile
(
scope
,
self
.
place
)
self
.
executor
=
program
.
_executor
if
program
.
_is_data_parallel
:
return
self
.
_run_parallel
(
exe
=
program
.
_executor
,
scope
=
scope
,
feed
=
feed
,
fetch_list
=
fetch_list
,
return_numpy
=
return_numpy
)
else
:
return
self
.
_run
(
program
.
_program
,
feed
=
feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
fetch_var_name
=
fetch_var_name
,
scope
=
scope
,
return_numpy
=
return_numpy
,
use_program_cache
=
use_program_cache
)
def
_run
(
self
,
program
,
feed
,
fetch_list
,
feed_var_name
,
fetch_var_name
,
scope
,
return_numpy
,
use_program_cache
):
if
feed
is
None
:
feed
=
{}
if
not
isinstance
(
feed
,
dict
):
...
...
@@ -444,9 +535,6 @@ class Executor(object):
"Executor requires Program as its Parameter. But you passed in %s"
%
(
type
(
program
)))
if
scope
is
None
:
scope
=
global_scope
()
cache_key
=
_get_program_cache_key
(
feed
,
fetch_list
)
if
use_program_cache
:
cached_program
=
self
.
_get_program_cache
(
cache_key
)
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
5e928e57
...
...
@@ -167,9 +167,8 @@ class ParallelExecutor(object):
# step7: init ParallelExecutor
self
.
executor
=
core
.
ParallelExecutor
(
places
,
persistable_vars
,
main
.
desc
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
num_trainers
,
trainer_id
)
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
)
self
.
scope
=
scope
...
...
@@ -292,3 +291,6 @@ class ParallelExecutor(object):
@
property
def
device_count
(
self
):
return
len
(
self
.
_places
)
def
close
(
self
):
pass
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
5e928e57
...
...
@@ -19,6 +19,7 @@ import os
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
compiler
import
time
import
numpy
as
np
import
math
...
...
@@ -44,15 +45,8 @@ class TestParallelExecutorBase(unittest.TestCase):
optimizer
=
fluid
.
optimizer
.
Adam
,
use_fast_executor
=
False
,
enable_sequential_execution
=
False
):
def
run_executor
(
exe
,
feed
,
fetch_list
,
program
=
None
):
if
isinstance
(
exe
,
fluid
.
ParallelExecutor
):
res
=
exe
.
run
(
fetch_list
=
fetch_list
,
feed
=
feed
)
elif
isinstance
(
exe
,
fluid
.
Executor
):
if
program
is
None
:
program
=
fluid
.
default_main_program
()
res
=
exe
.
run
(
program
=
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
else
:
raise
ValueError
(
'Unkown type exe'
)
def
run_executor
(
exe
,
binary
,
feed
,
fetch_list
):
res
=
exe
.
run
(
binary
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
res
main
=
fluid
.
Program
()
...
...
@@ -72,8 +66,8 @@ class TestParallelExecutorBase(unittest.TestCase):
fluid
.
memory_optimize
(
main
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
startup_
exe
=
fluid
.
Executor
(
place
)
startup_
exe
.
run
(
startup
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
if
use_fast_executor
:
...
...
@@ -86,15 +80,13 @@ class TestParallelExecutorBase(unittest.TestCase):
build_strategy
.
enable_sequential_execution
=
enable_sequential_execution
if
use_cuda
and
core
.
is_compiled_with_cuda
():
build_strategy
.
remove_unnecessary_lock
=
True
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
use_cuda
,
binary
=
compiler
.
_ProgramCompiler
(
main
).
_with_data_parallel
(
loss_name
=
loss
.
name
,
exec_strategy
=
exec
_strategy
,
build_strategy
=
build
_strategy
)
build_strategy
=
build
_strategy
,
exec_strategy
=
exec
_strategy
)
else
:
exe
=
fluid
.
Executor
(
place
=
place
)
binary
=
compiler
.
_ProgramCompiler
(
main
)
if
batch_size
is
not
None
:
batch_size
*=
fluid
.
core
.
get_cuda_device_count
(
...
...
@@ -102,13 +94,14 @@ class TestParallelExecutorBase(unittest.TestCase):
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
begin
=
time
.
time
()
first_loss
,
=
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
for
i
in
range
(
iter
):
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[])
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[])
last_loss
,
=
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
end
=
time
.
time
()
if
batch_size
is
not
None
:
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
5e928e57
...
...
@@ -26,6 +26,7 @@ import pickle
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
RUN_STEP
=
10
DEFAULT_BATCH_SIZE
=
2
...
...
@@ -104,8 +105,8 @@ class TestDistRunnerBase(object):
else
:
place
=
fluid
.
CPUPlace
()
startup_
exe
=
fluid
.
Executor
(
place
)
startup_
exe
.
run
(
fluid
.
default_startup_program
())
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
...
...
@@ -125,19 +126,16 @@ class TestDistRunnerBase(object):
mypass
.
set_int
(
"num_repeats"
,
args
.
batch_merge_repeat
)
if
args
.
update_method
==
"nccl2"
:
num_trainers
=
len
(
args
.
endpoints
.
split
(
","
))
trainer_id
=
args
.
trainer_id
build_stra
.
num_trainers
=
len
(
args
.
endpoints
.
split
(
","
))
build_stra
.
trainer_id
=
args
.
trainer_id
else
:
num_trainers
=
1
trainer_id
=
0
build_stra
.
num_trainers
=
1
build_stra
.
trainer_id
=
0
exe
=
fluid
.
ParallelExecutor
(
args
.
use_cuda
,
binary
=
compiler
.
_ProgramCompiler
(
trainer_prog
).
_with_data_parallel
(
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
,
build_strategy
=
build_stra
,
num_trainers
=
num_trainers
,
trainer_id
=
trainer_id
)
exec_strategy
=
strategy
)
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
...
...
@@ -160,7 +158,8 @@ class TestDistRunnerBase(object):
out_losses
=
[]
for
_
in
six
.
moves
.
xrange
(
RUN_STEP
):
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
loss
,
=
exe
.
run
(
binary
,
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
get_data
()))
out_losses
.
append
(
loss
[
0
])
if
six
.
PY2
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录